
Jordan Journal of Mathematics and Statistics (JJMS) 10(2), 2017, pp 127 - 141

DETERMINING THE SUPPORT OF A RANDOM VARIABLE
BASED ON ITS CHARACTERISTIC FUNCTION

AYMEN RAWASHDEH

Abstract. In this article, we consider determining the support of a random vari-

ableX if only its corresponding characteristic function, φX (t) = E
(
eitX

)
, is known,

where the support is the set of all its possible realizations.i.e. S = {x; f (x) > 0}. In

other words, the amount of information contained in characteristic function about

the support of a random variable is investigated. The two main components of

the probability distribution on any random variable are: S and f (x). Most of the

proposed methods in the literature focused on determining only the density (mass)

function, f (x), assuming S is known. No one has yet considered retrieving the

support, S, from the corresponding characteristic function before estimating f (x).

This paper is an attempt to complete the gap by retrieving S before estimating

f (x), especially when the underlying random variable is a mixture of both discrete

and absolutely continuous random variables. It is found that the tail behavior of

φX (t) reveals most of the information about S. The theorems relating the proper-

ties of φX (t) to S are utilized to formulate the proposed method. Several examples

are listed for illustrating the usefulness of the studied method.

1. Introduction

Suppose X is a random variable with a distribution function F (x) and a char-

acteristic function φX (t) = E
(
eitX

)
=
∞∫
−∞

eitxdF (x), where i =
√
−1. Let f (x)
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be a probability density (mass) function, then the support, S , of the random vari-

able X is the set of all possible values that have positive probabilities (densities)

i.e. S = {x; f (x) > 0}, where x is a realization of the random variable X . The

uniqueness theorem in [7] states that there is a one-to-one correspondence between

characteristic functions and distribution functions. Two distribution functions F1 (x)

and F2 (x)are equal if and only if their corresponding characteristic functions φ1 (t)

and φ2 (t) are equal.

φ (t) has all the information about X than can be obtained from f (x). Hypothet-

ically, both the support and the corresponding probabilities (masses) of a random

variable X can be obtained from φ (t). A significant amount of literature has been

proposed on the topic of estimating f (x) using the empirical characteristic functions

assuming that the the support is known. See, [3] for properties and applications of

empirical characteristic functions. [5], [2], and [10] developed methods of retrieving

f (x) by numerical inversion of characteristic functions.

[8] developed a method to estimate Skew-symmetric model parameters using em-

pirical characteristic function. [11] used empirical characteristic functions to estimate

parameters in distributions that are finite mixtures of normal distributions. For fur-

ther details about this topic one may refer to the work done by [12], [4], and [6].

All of the previous research methods focused on estimating the distribution function

values given its characteristic function, assuming the support is known. But no

one yet has considered determining the support of the random variable given its

characteristic function. The main aim of this paper is to effectively use the properties

of the characteristic function to determine the support of the underlying random

variable.

Here is the organization of the paper. In Section two we discuss and employ

the properties of φ (t) to formulate techniques to find the support of X . This is

followed by Section three, where the suggested techniques were applied to determine
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the support of four characteristic functions. Finally, we make concluding remarks in

section four.

2. Characteristic Function Tail Behavior

2.1. Characteristic Function Decomposition. The decomposition theorem for

the distribution functions, [7], says that every distribution function F (x) can be

decomposed uniquely to F (x) = a1Fac (x) + a2Fd (x) + a3Fs (x) , where ai ≥ 0 for

all i = 1, 2, 3 and
3∑
i=1

ai = 1. Fac (x), Fd (x), and Fs (x)are respectively absolutely

continuous, discrete (step function), and singular distribution functions.

[7] stated

A singular distribution is not a discrete probability distribution because

each discrete point has a zero probability. On the other hand, neither

does it have a probability density function, since the Lebesgue integral

of any such function would be zero.

Therefore we will limit the scope of our work to cases where the distribution func-

tion F (x) is decomposed uniquely to a mixture of absolutely continuous and discrete.

Since the characteristic function uniquely determines the distribution function

F (x) , then any characteristic function φ (t) can be decomposed to a1φac (x) +

a2φd (x) + a3φs (x) , where ai ≥ 0 for all i = 1, 2, 3 and
3∑
i=1

ai = 1. φac (x) , φd (x)

, and φs (x) respectively are characteristic functions for absolutely continuous, dis-

crete, and singular distribution functions. The next two theorems are provided to

show that different types (i.e. absolutely continuous and discrete) of characteristic

functions behave differently as t→∞

2.2. Limit of φ (t) at Infinity.

Theorem 2.1. [1] If φ (t) is a characteristic function for an absolutely continuous

random variable, then lim
t→∞

φ (t) = 0.
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The proof is based on the fact that the density function of the absolutely contin-

uous distribution function is absolutely integrable, so it can be approximated by a

step function on bounded intervals. The characteristic function of this step function

approaches zero as t→∞.

Theorem 2.2. [7] If φ (t) is a characteristic function for discrete random variable,

then lim
t→∞

sup |φ (t)| = 1.

The proof is motivated by the fact that if X is a discrete random variable, then

its distribution function F (x) has at most countable number of singularities, which

produces a periodic characteristic function.

Theorem 2.3. [7] If lim
t→∞

sup |φ (t)| = 0, then φ (t) is a characteristic function for

continuous distribution function, which can be of absolutely continuous or singular

type.

Based on the previous three theorems, lim
t→∞

sup |φ (t)| needs to be checked as follows:

(1) If the lim
t→∞

sup |φ (t)|is 0, then we are sure that the distribution function is not

discrete, and it is of continuous type, further analysis will be given in section

2.3 to check if it is absolutely continuous.

(2) If the lim
t→∞

sup |φ (t)|is 1, then it is not of absolutely continuous type, further

analysis will be given in section 2.4 to check if it is discrete, and in particular

a test for a lattice distribution can be conducted.

(3) If the lim
t→∞

sup |φ (t)|is between 0 and 1, then we are sure that, it is neither

purely discrete, nor absolutely continuous. In this case decomposing the given

characteristic function will reveal extra information about the support using

theorems in section 2.5.
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2.3. Absolutely Continuous Characteristic Functions.

Theorem 2.4. [7] If φ (t)is absolutely integrable over <(real line), then its distribu-

tion function is absolutely continuous.

This result is based on the inversion formula, which says that

F (a)− F (b) = lim
T→∞

1

2π

T∫
−T

(
e−ita − e−itb

it

)
φ (t) dt,

when F (x) is continuous at both a and b.

Theorem 2.5. [7] If φ (t)is a real-valued continuous function on <(real line) that

satisfies the following, then the distribution function is absolutely continuous.

(1) φ (0) = 1.

(2) φ (−t) = φ (t).

(3) φ is convex for positive numbers.

(4) lim
t→∞

φ (t) = 0.

2.4. Discrete Characteristic Functions. Another important correspondence be-

tween characteristic functions and distribution functions is that, [7], If φ (t) is a

characteristic function for a random variable X , then

P (X = x) = lim
T→∞

1

2T

T∫
−T

e−itxφ (t) dt.

Notice that if X has a continuous distribution function, then for any real x

lim
T→∞

1

2T

T∫
−T

e−itxφ (t) dt = 0,

Theorem 2.6. [7] A random variable X , with distribution function F (x) is discrete,

if and only if, the corresponding characteristic function φ (t) is almost periodic.
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One of the important discrete random variables is the Lattice distribution. Which is

a discrete random variable, where the discontinuity points of the distribution function

are a subset of the sequence {a+ kd; k = 0, ±1, ±2, . . .}. It is of interest to check

if the underlying distribution function of the given characteristic function is a lattice

distribution.

Theorem 2.7. [1] A distribution function F (x) of a characteristic function φ (t) is

lattice distribution, if and only if, φ (t0) = 1, for some t0 6= 0.

The proof in, [1], is listed because some details of the proof will be used in section 3.

IfX is a lattice distribution, let pk = Pr (X = xk), where xk ∈ {a+ kd; k = 0, ±1, ±2, . . .}.

Then the characteristic function φ (t) =
∑
k=0

pke
it(a+kd) = eita

∑
k=0

pke
itdk. So, when

t = t0 = 2π
d

, then |φ (t0)| = 1. On the other hand, if |φ (t0)| = 1, for some t0 6= 0,

then φ (t0) = eit0a for some real a. At t0, φ (t0) =
∞∫
−∞

eit0xdF (x). So,

e−it0a
∞∫
−∞

eit0xdF (x) =

∞∫
−∞

eit0(x−a)dF (x) = 1.

This implies that,

∞∫
−∞

(
1− eit0(x−a)

)
dF (x) =

∞∫
−∞

(1− cos (t0 (x− a))) dF (x)−i
∞∫
−∞

sin (t0 (x− a)) dF (x) = 0.

Since,
∞∫
−∞

(1− cos (t0 (x− a))) dF (x) = 0, and (1− cos (t0 (x− a)))is a non-negative

function, then µF ({t0 (x− a) ; k = 0, ±1, ±2, . . .}) = 1, where µF is the Lebesgue-

Stieltjes measure defined by F . Therefore F is supported by a discrete set

{t0 (x− a) ; k = 0, ±1, ±2, . . .} =

{
xk = a+

2π

t0
; k = 0, ±1, ±2, . . .

}
,

which is a support for lattice distribution.

This section is concluded by discussing some results about general characteristic

function that corresponds to the convolution of distribution functions. These results
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are helpful in determining the support of the distribution function when decomposing

the characteristic function.

2.5. General Characteristic Functions. [1]. If X1 and X2 are independent ran-

dom variables, then the distribution function F (x) for the sum X = X1 +X2 is the

convolution of F1 (x)and F2 (x) given by F (x) = (F1 ∗ F2) (x) =
∞∫
−∞

F1 (x− z) dF2 (z) dz.

The characteristic function φ (t) of F (x)is given by φ (t) =
∞∫
−∞

eitxd (F1 ∗ F2) (x) =

E
(
eit(X1+X2)

)
= E

(
eitX1

)
E
(
eitX2

)
= φ1 (t)φ2 (t).

Theorem 2.8. [7] If F (x) = (F1 ∗ F2) (x), then the following are true:

(1) If Fi (x) is continuous, then F (x) is continuous, for i = 1, 2.

(2) If Fi (x) is absolutely continuous, then F (x) is continuous, for i = 1, 2.

(3) F (x) is discrete, if and only of, both F1 (x)and F2 (x)are discrete.

Theorem 2.9. [1] If φ (t) is the characteristic function for the distribution function

F (x), then lim
T→∞

1
2T

T∫
−T
|φ (t)|2 dt =

∑
k

p2k, where {pk; k = 1, 2, . . .} are the jumps at

the discontinuities of F (x).

This result is helpful in identifying mixture distributions.

Now we ready to use the above-mentioned theorems to determine the support of

based on φ (t).

(1) Check the behavior of the characteristic function at infinity, then use theorems

2.1, 2.2,and 2.3 to decide if it is purely discrete or absolutely continuous or a

mixture.

(2) Theorems 2.4, 2.5, 2.6, and 2.7 are helpful in determining the support, when

the underlying distribution function is purely discrete or absolutely continu-

ous.
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(3) If it is neither purely discrete nor absolutely continuous then decomposing the

given characteristic function into its natural components (absolutely continu-

ous, purely discrete) together with theorems 2.8, 2.9 will be helpful. Now we

are ready to start investigating the given characteristic functions.

3. Application

The proposed method is illustrated through different examples in this section. It

is applied to find the support of the following four characteristic functions.

Example 3.1. : φ1 (t) = eiNt−1
N(eit−1) , where N is a positive integer.

We need to observe the behavior of |φ1 (t)|when t→∞, which is shown in

Figure 1, where N = 8.

Figure 1. Plot for |φ1 (t)|

Notice that it is a periodic function, based on Theorem 2.6 and Theorem 7 it is of

discrete type, and particularly it is a lattice distribution. So, we know that its support
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is contained in {a+ kd; k = 0, ±1, ±2, . . .}. To find d notice that |φ (2πk)| = 1, for

any integer k, so it has a period of 2π, if we let t0 = 2π, then based on the discussion

by the end of Theorem 2.7, d = 2π
t0

= 1.

In general, the number of local peaks within any two peaks of 1 is N − 2 for

φ1 (t). It turns out that φ1 (t) is the characteristic function of the discrete random

variable X with support of {xk; k = 0, 1, 2, . . . , (N − 1)}, where Pr (X = xk) = 1
N

.

Alternatively, direct application of the inversion formula to the given characteristic

function produces the same support. Notice that f (x) = 1
2π

π∫
−π

φ1 (t) e−itxdt. =

1
2πN

N−1∑
l=0

π∫
−π
eitl(−x)dt =


1
N

, if x = 0, 1, . . . , (N − 1)

0 , Otherwise .

Example 3.2. : φ2 (t) = πt
sinh(πt)

.

We need to observe the behavior of |φ2 (t)|when t→∞, which is shown in

Figure 2
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Figure 2. Plot for |φ2 (t)|

Since lim
t→∞

sup |φ2 (t)| = 0, then based on Theorem 2.3 its distribution function is

continuous. To check if the distribution function is absolutely continuous, notice that
∞∫
−∞
|φ (t)| dt = lim

T→∞

T∫
−T
|φ (t)| dt = lim

T→∞

T∫
−T

φ (t) dt = lim
T→∞

T∫
−T

πt
sinh(πt)

dt ≈ 1.5708. So,

by Theorem 2.4 the distribution function is absolutely continuous.

By looking at the formula of this characteristic function, we notice that as a

complex-valued function defined on complex numbers, sinh (πz) is an entire function

on the plane, which has zeros when zj = ij, where i =
√
−1 and j = 0, ±1, ±2, . . ..

By Weierstrass Theorem, in [9], sinh (πz) can be represented by sinh (πz) = πz
∞∏
j=1(

1− z
ij

)(
1 + z

ij

)
= πz

∞∏
j=1

(
1 + z2

j2

)
. Replacing z by t, we obtain φ2 (t) = πt

sinh(πt)
=
∞∏
j=1(

1 + z2

j2

)−1
.

But the characteristic function for Laplace random variable is mφ (t) = (1 + t2)
−1

,

with support (−∞, ∞). So,
n∏
j=1

(
1 + t2

j2

)−1
=

n∏
j=1

φ
(
t
j

)
, which is the characteristic
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function for
n∑
l=1

Xj

j
, where X1, X2, . . . , Xn are independent Laplace random variables.

Notice that the support for
n∑
l=1

Xj

j
is (−∞, ∞) for every n ≥ 1.

Since φ2 (t) = πt
sinh(πt)

is the limit of
n∏
j=1

φ
(
t
j

)
as n → ∞, then by the continuity

theorem, in Casella [2], the distribution function Fn (x) of the random variable
n∑
l=1

Xj

j

converges to the distribution function of interest F (x), this convergence is for all

continuity points x of F (x). But, F (x) is continuous, so the convergence is for all

real numbers. The support in this case is all real numbers (−∞, ∞).

Example 3.3. : φ3 (t) =
3
4

1− 1
4

(eit−1)
it

.

Check the behavior of |φ3 (t)|when t→∞, which is shown in Figure 3.

Figure 3. Plot for |φ3 (t)|
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Notice that,lim
t→∞

sup |φ3 (t)| = 0.75, which is neither 0 nor 1. So based on the

discussion that follows Theorem 2.3, the corresponding distribution function is nei-

ther purely discrete, nor absolutely continuous. We suspect in this case that it is

a mixture of distribution functions. To understand the nature of this characteristic

function; firstly, notice that |φ3 (t)|approaches 0.75 as t → ∞. Based on Theo-

rem 2.9, lim
T→∞

1
2T

T∫
−T
|φ3 (t)|2 dt =

∑
k

p2k, where{pk; k = 1, 2, . . .} are the jumps at

the discontinuities of F (x), where F (x) is the distribution function of interest. By

using (R package) we can approximately evaluate this integral, it turns out that

1
2π

T∫
−T
|φ3 (t)|2 dt ≈ 0.5625 = 0.752, when T = 100000.

Now based on the decomposition theorem of characteristic functions we would

like to decompose φ3 (t)to better understand its nature. This can be done by cross-

multiplying φ3 (t) =
3
4

1− 1
4

(eit−1)
it

, which leads to

φ3 (t) =
1

4

(
φ3 (t)

(eit − 1)

it

)
︸ ︷︷ ︸

φac(t)

+
3

4
φd (t) ,

where:

(1)

(
φ3 (t)

(eit−1)
it

)
is the product between φ3 (t)and

(eit−1)
it

which is the char-

acteristic function of the uniform (0, 1). So, the corresponding distribu-

tion function is the convolution between the absolutely continuous uniform

(0, 1)distribution function and F (x), our distribution function of interest.

Based on Theorem 2.8, this convolution is absolutely continuous since one of

the components is absolutely continuous.

(2) φd (t) = 1, is the characteristic function for the degenerate distribution func-

tion, which has a jump of one at its discontinuity point. Notice lim
T→∞

1
2T

T∫
−T

|φ3 (t)|2 dt =
∑
k

p2k = 0.5625 = 0.752, since our distribution of interest F (x)has

only one discontinuity point with jump equals to 0.75. Our best guess for the
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support is the closed unit interval [0, 1] with a mass of about 0.75 at x = 0 .

This result is consistent with the convolution with uniform (0, 1) distribution.

Example 3.4. : φ4 (t) =
1
4
e−t2

1− 3
4
(1+t2)−1 .

Check the behavior of |φ4 (t)|when t→∞, which is shown in Figure 4.

Figure 4. Plot for |φ4 (t)|

It is clear from the formula that describes φ4 (t)and the accompanying graph, that

lim
t→∞

sup |φ4 (t)| = lim
t→∞

φ4 (t) = 0, which, based on Theorem 2.3 has a continuous

distribution function. Notice that |φ4 (t)| ≤ e−t
2
, for all t. Since,

∞∫
−∞

e−t
2
dt =

√
2π,

then φ4 (t) is absolutely integrable. By Theorem 2.4, the corresponding distribution

function is absolutely continuous. To further investigate the nature of the distribution

function of interest F (x), let’s cross multiply the equation given to describe φ4 (t),

which will lead to

φ4 (t) =
3

4

(
φ4 (t)

1

(1 + t2)

)
︸ ︷︷ ︸+

1

4
e−t

2

.
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We can think of F (x) s a mixture of two absolutely continuous distributions, where:

(1)

(
φ4 (t)

1

(1 + t2)

)
︸ ︷︷ ︸ is the characteristic function that corresponds to the convo-

lution between F (x)and the distribution function of Laplace random variable,

since 1
(1+t2)

is the characteristic function for the Laplace random variable with

support (−∞, ∞).

(2) e−t
2

is the characteristic function that corresponds to the distribution function

of Normal (µ = 0, σ2 = 2) with support (−∞, ∞).

Based on the above discussion, it is suggested that the support is (−∞, ∞).

4. Concluding Remarks and Discussion

To summarize, in this article, we have presented a method to determine the support

of a random variable if only its corresponding characteristic function is given. The

tail behavior of the characteristic function reveals most of the information about the

support. It turns out that it is not an easy problem to fully determine the support

of the distribution function if we are given its corresponding characteristic function,

even though the characteristic function has all the information we need.
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