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SOFT VECTOR SPACES AND SOFT TOPOLOGICAL VECTOR

SPACES

SANJAY ROY (1), DHANANJOY MANDAL (2) AND T. K. SAMANTA (3)

Abstract. Molodtsov introduced the concept of soft set theory, which can be

used as a generic mathematical tool for dealing with uncertainty. In fact, it is free

from the difficulties that have troubled the usual theoretical approaches. Roy and

Samanta [13, 14, 15] defined several basic notions on soft set and studied many

properties. In continuation of [13, 14, 15], here we have introduced soft topological

vector space and studied few basic properties related to soft topological vector

spaces. For introduction of soft topological vector space, there is need to define

soft vector space and soft product topological space, which has been encountered

in this paper.

1. Introduction

In 1999, Molodstov [9] initiated a novel concept known as soft set as a new mathe-

matical tool for dealing with uncertainties. He pointed out that the important exist-

ing theories viz. probability theory, fuzzy set theory, intuitionistic fuzzy set theory,

rough set theory etc. which can be considered as mathematical tools for dealing with

uncertainties, have their own difficulties. These theories cannot be successfully used

to solve complicated problems in the fields of engineering, social science, economics,

medical science etc. He further pointed out that the reason for these difficulties is,

1991 Mathematics Subject Classification. 62C86, 57N17, 15A03.

Key words and phrases. Soft set, vector sum and scalar multiplication of soft sets, soft vector

space, soft product topology, soft topological vector space.

Copyright c© Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: Nov. 14, 2016 Accepted: July 16, 2017 .

143



144 SANJAY ROY , DHANANJOY MANDAL AND T. K. SAMANTA

possibly, the inadequacy of the parameterization tool of the theory. The soft set the-

ory introduced by Molodstov is free of the difficulties present in these theories. The

absence of any restrictions on the approximate description in soft set theory makes

this theory very convenient and easily applicable.

Subsequently, many works on fuzzy soft rings and fuzzy soft ideals [5], Soft group

[6], soft topological spaces [8, 10], fuzzy soft topological spaces [11], fuzzy soft open

and closed sets [12], vector sum and scalar multiplication of soft sets [13], balanced

and absorbing soft sets [14] have been done in this field. In 2007, H. Aktas et al.

[2] worked on some mathematical aspects of soft sets and soft groups. In 2010, U.

Acar et al. [1] introduced the concept of soft rings. In 2010, N. Cagman et al. [3]

applied this concepts to solve a few decision making problems. In 2015, M. Chiney

et al. [4] introduced the notion of vector soft topology. They assumed the universal

set as a usual vector space. But in this paper, only the parameter set is assumed to

be a usual vector space. The concept of fuzzy vector space was given for the first

time in [7] by A. K. Katsaras et.al. in 1977 and also the notion of fuzzy topological

vector space was given in that paper. In the present time, researchers are trying to

explore these concepts on soft sets. In this paper, we have introduced the notion

of soft topological vector space, which is a continuation of the works of [13, 14, 15].

That’s why, for organizing this paper, in Section 2, some definitions and results from

the papers [3, 10, 13, 14, 15] are highlighted. In Section 3, few properties of vector

sum and scalar multiplications on soft sets are being developed for the introduction

of soft vector space which is described in the Section 4. In Section 5, there is a

notion of soft product topological spaces and in the last section, that is, Section 6,

soft topological vector space is introduced taking help of soft vector space and soft

product topological space.
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2. Preliminaries

In this paper, U refers to an initial universe, E is the set of parameters, P (U)

is the power set of U and A ⊆ E.

Definition 2.1. [3] A soft set FA on the universe U is defined to be a set of ordered

pairs FA = {(e, FA(e)) : e ∈ E, FA(e) ∈ P (U)} where FA : E → P (U) such that

FA(e) = ∅ if e is not an element of A. The set of all soft sets over (U, E) is denoted

by S(U).

Definition 2.2. [3] Let FA ∈ S(U). If FA(e) = ∅, for all e ∈ E then FA is called a

empty soft set, denoted by Φ. FA(e) = ∅ means that there is no element in U related

to the parameter e ∈ E.

Definition 2.3. [3] Let FA, GB ∈ S(U). We say that FA is a soft subsets of GB and

we write FA v GB if and only if FA(e) ⊆ GB(e) for all e ∈ E.

Definition 2.4. [3] Let FA, GB ∈ S(U). Then FA and GB are said to be soft equal,

denoted by FA = GB if FA(e) = GB(e) for all e ∈ E.

Definition 2.5. [3] Let FA, GB ∈ S(U). Then the soft union of FA and GB is also a

soft set FAtGB = HA∪B ∈ S(U), defined by HA∪B(e) = (FAtGB)(e) = FA(e)∪GB(e)

for all e ∈ E.

Let FAi
∈ S(U), i ∈ I, an indexed set. The arbitrary soft union of the soft sets

{FAi
: i ∈ I} is a soft set ti∈IFAi

∈ S(U), defined by ti∈IFAi
(e) = ∪i∈IFAi

(e) for all

e ∈ E.

Definition 2.6. [3] Let FA, GB ∈ S(U). Then the soft intersection of FA and GB

is also a soft set FA u GB = HA∩B ∈ S(U), defined by HA∩B(e) = (FA u GB)(e) =

FA(e) ∩ GB(e) for all e ∈ E.
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Definition 2.7. [14] Let U be an initial universe and f : X → Y be a mapping,

where X and Y are sets of parameters. If FA is a soft set over (U, X) then f(FA), a

soft set over (U, Y ), is defined by

f(FA)(y) =







∪x∈f−1(y)FA(x) if f−1(y) 6= ∅

∅ otherwise.

Definition 2.8. [14] Let U be an initial universe and f : X → Y be a mapping,

where X and Y are set of parameters. If GB is a soft set over (U, Y ) then f−1(GB),

a soft set over (U, X), is defined by f−1(GB)(x) = GB(f(x)).

Definition 2.9. [10] A soft topology τ on soft set FA is a family of soft subsets of

FA satisfying the following properties

(i) Φ, FA ∈ τ

(ii) If GB, HC ∈ τ then GB u HC ∈ τ

(iii) If FAα
∈ τ for all α ∈ Λ, an index set then tα∈ΛFAα

∈ τ .

If τ is a soft topology on a soft set FA, the pair (FA, τ ) is called the soft topological

space and the member of τ is called soft open set in (FA, τ ).

Definition 2.10. Let (FA, τ) be a soft topological space. A soft subset GB of FA

is said to be a soft closed set in (FA, τ) if FA − GB ∈ τ , where (FA − GB)(e) =

FA(e) \ GB(e) for all e ∈ E.

Definition 2.11. [10] A collection Ω of some members of a soft topology τ is said to

be soft subbase for τ if and only if the collection of all finite intersections of members

of Ω is a soft base for τ .

Theorem 2.1. [10] A collection Ω of some soft subsets of FA is a soft subbase for a

suitable soft topology τ on FA if and only if

(i) Φ ∈ Ω or Φ is the intersection of a finite number of members of Ω.

(ii) FA = tΩ.
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Definition 2.12. [13] Let U be a universal set and E be a usual vector space over R or

C and FA1
, FA2

, · · · , FAn
be soft sets over (U, E) and f : En → E be a function defined

by f(e1, e2, · · · , en) = e1 + e2 + · · ·+ en. Then the vector sum FA1
+ FA2

+ · · ·+ FAn

is defined by

(FA1
+ FA2

+ · · ·+ FAn
)(e) = ∪(e1,e2,··· ,en)∈f−1(e){FA1

(e1) ∩ FA2
(e2) ∩ · · · ∩ FAn

(en)}.

Definition 2.13. [13] If U is a universal set, E is a usual vector space over R or

C, t is a scalar and g : E → E is a mapping defined by g(e) = te then the scalar

multiplication tFA of a soft set FA is defined by tFA = g(FA). That is, for e ∈ E,

tFA(e) = g(FA)(e) = ∪e
′
∈g−1(e)FA(e

′

).

Proposition 2.1. [13] Let U be a universal set, E be a usual vector space over R or

C, t be a scalar and FA be a soft set over (U, E). Then

tFA(e) =



















FA(t−1e) if t 6= 0,

∅ if t = 0 and e 6= 0,

∪x∈EFA(x) if t = 0 and e = 0.

Proposition 2.2. [13] Suppose E1 and E2 are linear spaces over the same field R

or C and f : E1 → E2 is linear mapping. Then for any soft sets FA and GB over

(U, E1) and for the scalar t,

(i) f(FA + GB) = f(FA) + f(GB).

(ii) f(tFA) = tf(FA).

Proposition 2.3. [13] If S is an ordinary subset of a linear space E over R or C,

FA is a soft set over (U, E) and x ∈ E then

(i) (x + FA)(e) = FA(e − x) for all e ∈ E where x + FA means 1x + FA and

1x(e) =







U if e = x

∅ if e 6= x.

(ii) x+FA = Tx(FA) for the translation mapping Tx : E → E defined by Tx(e) = x+e
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for all e ∈ E.

(iii) S + FA = ta∈S(a + FA).

Proposition 2.4. [13] If FA, FA1
, FA2

, · · · , FAn
are soft sets over (U, E), where E is

a linear space. Then for the scalars t1, t2, · · · , tn, the following are equivalent:

(i) t1FA1
+ t2FA2

+ · · ·+ tnFAn
v FA

(ii) for all e1, e2, · · · , en ∈ E, FA(t1e1 + t2e2 + · · ·+ tnen) ⊇ ∩n
i=1FAi

(ei)

Proposition 2.5. [15] If FA is a soft set over (U, E) and α ∈ K then αFA + 0FA =

αFA, where E is a vector space over the field K(= R or C).

The Definitions 2.12, 2.13 and the Propositions 2.1, 2.2, 2.3, 2.4, 2.5 could also be

true if we consider E as a vector space over any field K instead of considering K as

the field of real numbers R or the field of complex numbers C.

3. A few properties of vector sum and scalar multiplication of soft

sets

In this section, we assume that the parameter set E is a usual vector space over

the field K and U , universal set.

Proposition 3.1. If FA and FB are two soft sets over (U, E) then a(FA + FB) =

aFA + aFB for any scalar a ∈ K.

Proof. Case1 : If a 6= 0 then for e ∈ E,

a(FA + FB)(e)

= (FA + FB)(a−1e)

= ∪a−1e=e1+e2
{FA(e1) ∩ FB(e2)}

= ∪e=ae1+ae2
{FA(e1) ∩ FB(e2)}

= ∪e=x+y{FA(a−1x) ∩ FB(a−1y)} where ae1 = x and ae2 = y

= ∪e=x+y{aFA(x) ∩ aFB(y)}

= (aFA + aFB)(e).
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Case2 : If a = 0 then we show that 0(FA +FB)(e) = (0FA +0FB)(e) for any e ∈ E.

If e 6= 0 then it is easy to see that 0(FA +FB)(e) = (0FA +0FB)(e) = ∅. So we assume

that e = 0. Then

0(FA + FB)(0)

= ∪e∈E(FA + FB)(e)

= ∪e∈E [∪e=x+y{FA(x) ∩ FB(y)}]

= ∪x, y∈E{FA(x) ∩ FB(y)}

= {∪x∈EFA(x)} ∩ {∪y∈EFB(y)}

= 0FA(0) ∩ 0FB(0)

= (0FA + 0FB)(0).

Proposition 3.2. If FA and FB are two soft sets over (U, E) then FA+FB = FB+FA.

Proposition 3.3. If FA, FB and FC are soft sets over (U, E) then (FA +FB)+FC =

FA + (FB + FC).

Proof. Let e ∈ E. Then

{(FA + FB) + FC}(e)

= ∪e=e1+e2
{(FA + FB)(e1) ∩ FC(e2)}

= ∪e=e1+e2
[{∪e1=x+y(FA(x) ∩ FB(y))} ∩ FC(e2)]

= ∪e=e1+e2
[∪e1=x+y{FA(x) ∩ FB(y) ∩ FC(e2)}]

= ∪e=x+y+e2
{FA(x) ∩ FB(y) ∩ FC(e2)}

= ∪e=x+z[∪z=y+e2
{FA(x) ∩ FB(y) ∩ FC(e2)}]

= ∪e=x+z[FA(x) ∩ {∪z=y+e2
(FB(y) ∩ FC(e2))}]

= ∪e=x+z[FA(x) ∩ (FB + FC)(z)}]

= {FA + (FB + FC)}(e)

Hence (FA + FB) + FC = FA + (FB + FC).

Proposition 3.4. If FA is a soft set over (U, E) then a(bFA) = b(aFA) for any

scalars a, b ∈ K.
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Proof. Case 1 : If a = b = 0 then it is trivial.

Case 2 : If one of a and b is zero, say a = 0 then we show that 0(bFA)(e) = b(0FA)(e)

for all e ∈ E.

Subcase 1 : If e 6= 0 then

0(bFA)(e) = ∅ and b(0FA)(e) = 0FA(b−1e) = ∅. Thus 0(bFA) = b(0FA).

Subcase 2 : If e = 0 then

0(bFA)(0)

= ∪e∈EbFA(e)

= ∪e∈EFA(b−1e)

= ∪x∈EFA(x) as b−1E = E

=0FA(0)

= b(0FA)(0).

Case 3 : If a, b 6= 0 then we show that a(bFA)(e) = b(aFA)(e) for all e ∈ E.

Subcase 1 : If e = 0 then

a(bFA)(0) = FA(0) = b(aFA)(0).

Subcase 2 : If e 6= 0 then

a(bFA)(e) = FA(b−1a−1e) = FA(a−1b−1e) = b(aFA)(e). This completes the proof.

4. Soft Vector Spaces

In this section, we assume that the parameter set E is a usual vector space over

the field K and U , a universal set.

Definition 4.1. A soft set FA over (U, E) is called a soft vector space or soft linear

space if the following conditions are hold:

i) FA + FA v FA

ii) tFA v FA for every scalar t ∈ K.

Example 4.1. Let E be a vector space over the field K and U be a universal set and

A be a finite dimensional sub-vector space of E. Also let {α1, α2, · · · , αn} be a basis
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of A and {U1, U2, · · · , Un} be the collection of n subsets of U . Let us define a soft set

FA over (U, E) as follows:

FA(tαi) =







U if t = 0,

Ui if t(6= 0) ∈ K
for i = 1, 2, · · · , n.

and for any e ∈ A with e = t1αk1
+ t2αk2

+ · · · + tmαkm
for some non-zero scalars

t1, t2, · · · , tm ∈ K and {k1, k2, · · · , km} ⊆ {1, 2, · · · , n},

FA(e) = Uk1
∩ Uk2

∩ · · · ∩ Ukm
and for e ∈ E − A, FA(e) = ∅.

We now show that FA is a soft vector space.

Let e ∈ E and e = e1 + e2. Then two cases arise:

(i) one or both of e1, e2 belongs in E − A, (ii) e1, e2 ∈ A.

(i) If e1 or e2 ∈ E − A then FA(e1) ∩ FA(e2) = ∅ ⊆ FA(e) .

(ii) If e1, e2 ∈ A then let e = t1αk1
+t2αk2

+· · ·+tmαkm
, e1 = c1αp1

+c2αp2
+· · ·+crαpr

and e2 = d1αq1
+d2αq2

+· · ·+dsαqs
for some non-zero scalars t1, t2, · · · , tm, c1, c2, · · · , cr

and d1, d2, · · · , ds ∈ K. Here it is easy to see that

{αk1
, αk2

, · · · , αkm
} ⊆ {αp1

, αp2
, · · · , αpr

, αq1
, αq2

, · · · , αqs
}. So, FA(e1) ∩ FA(e2) ⊆

FA(e).

Therefore, if e ∈ E − A then by (i) we get (FA + FA)(e) = ∅ ⊆ FA(e) and if

e ∈ A then by (i) and (ii), we get (FA + FA)(e) = ∪e=e1+e2
{FA(e1) ∩ FA(e2)} ⊆

∪e=e1+e2
{FA(e)} = FA(e). So, FA + FA v FA. Thus the first assumption of soft

vector space holds.

For the second assumption, let e ∈ E and t ∈ K.

Case 1 : If e ∈ E − A then e 6= 0 and t−1e ∈ E − A for all t(6= 0) ∈ K. So,

tFA(e) = ∅ ⊆ FA(e) for all t ∈ K.

Case 2 : If e ∈ A then either e = 0 or e 6= 0.

If e = 0 then tFA(0) ⊆ U = FA(0).
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If e 6= 0 then tFA(e) =







∅ if t = 0,

FA(e) if t(6= 0).

So, tFA(e) ⊆ FA(e) for all e ∈ A.

Thus, tFA v FA for all t ∈ K. Hence FA is a soft vector space over (U, E).

Proposition 4.1. If FA is a soft set over (U, E) then the followings are equivalent

i) FA is a soft vector space.

ii) aFA + bFA v FA for all scalars a, b ∈ K.

iii) FA(ax + by) ⊇ FA(x) ∩ FA(y) for all a, b ∈ K and for all x, y ∈ E.

Proof. (i) ⇒ (ii)

Suppose FA is a soft vector space. Then for any e ∈ E,

(aFA + bFA)(e)

= ∪e=x+y{aFA(x) ∩ bFA(y)}

⊆ ∪e=x+y{FA(x) ∩ FA(y)}

= (FA + FA)(e)

⊆ FA(e).

This proves (ii).

(ii) ⇒ (i)

Let us assume that aFA + bFA v FA for all scalars a, b ∈ K.

Taking a = b = 1 then FA + FA v FA.

Taking b = 0 then by Proposition 2.5, we have aFA = aFA + 0FA v FA.

Again by Proposition 2.4, (ii) and (iii) are equivalent. This completes the proof of

the proposition.

Proposition 4.2. If FA is a soft vector space over (U, E) then FA(x) ⊆ FA(0) for

all x ∈ E.
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Proof. By the Definition 4.1, we have tFA v FA for every t ∈ K. So, 0FA v FA,

that is, 0FA(0) ⊆ FA(0) which implies that ∪x∈EFA(x) ⊆ FA(0). Hence FA(x) ⊆

FA(0) for all x ∈ E.

Theorem 4.1. FA is a soft vector space over (U, E) if and only if (i) FA(x + y) ⊇

FA(x) ∩ FA(y) and (ii) FA(ax) ⊇ FA(x) for all x, y ∈ E and a ∈ K.

Proof. Let FA be a soft vector space over (U, E). Then from Proposition 4.1, we

have FA(ax + by) ⊇ FA(x) ∩ FA(y) for all a, b ∈ K and for all x, y ∈ E.

Taking a = b = 1 then FA(x + y) ⊇ FA(x) ∩ FA(y).

Taking y = 0 then FA(ax) ⊇ FA(x) ∩ FA(0) = FA(x) by Proposition 4.2.

Conversely, we assume that the conditions (i) and (ii) are hold. Then FA(x)∩FA(y) ⊆

FA(ax) ∩ FA(by) ⊆ FA(ax + by) for all a, b ∈ K. Therefore by Proposition 4.1, FA is

a soft vector space over (U, E).

Theorem 4.2. If FA and FB are soft vector spaces over (U, E) then FA + FB and

tFA are soft vector spaces over (U, E) for any scalar t ∈ K.

Proof. Let a, b ∈ K. Then

a(FA + FB) + b(FA + FB)

= (aFA + aFB) + (bFA + bFB) by Proposition 3.1

= (aFA + bFA) + (aFB + bFB) by Propositions 3.2, 3.3

v FA + FB.

Thus by the Proposition 4.1, FA + FB is a soft vector space over (U, E).

Again a(tFA) + b(tFA)

= t(aFA) + t(bFA) by Proposition 3.4

= t(aFA + bFA) by Proposition 3.1

v tFA, as FA is a soft vector space.
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Theorem 4.3. If X and Y are two linear spaces over the same field K and f : X → Y

is a linear mapping then FA is a soft vector space over (U, X) implies that f(FA) is

a soft vector space over (U, Y ).

Proof. By Proposition 2.2, we have f(FA) + f(FA) = f(FA + FA) v f(FA), as

FA + FA v FA.

Again, by Proposition 2.2, we have tf(FA) = f(tFA) v f(FA) for all t ∈ K. Hence

f(FA) is also a soft vector space over (U, Y ).

Theorem 4.4. Let X and Y be two linear spaces over the same field K and f : X →

Y be a linear mapping. If GB is a soft vector space over (U, Y ) then f−1(GB) is a

soft vector space over (U, X).

Proof. Let GB be a soft vector space over (U, Y ) and x ∈ X. Then

(f−1(GB) + f−1(GB))(x)

= ∪x=x1+x2
{f−1(GB)(x1) ∩ f−1(GB)(x2)}

= ∪x=x1+x2
{GB(f(x1)) ∩ GB(f(x2))}

= ∪f(x)=f(x1)+f(x2){GB(f(x1)) ∩ GB(f(x2))}

= (GB + GB)(f(x))

⊆ GB(f(x))

= f−1(GB)(x).

Thus, f−1(GB) + f−1(GB) v f−1(GB).

Next let t ∈ K and x ∈ X. We now show that tf−1(GB)(x) ⊆ f−1(GB)(x).

Case 1 : If t 6= 0 then

tf−1(GB)(x) = f−1(GB)(t−1x) = GB(f(t−1x)) = GB(t−1f(x)) = tGB(f(x)) ⊆

GB(f(x)) = f−1(GB)(x).

Case 2 : If t = 0 and x 6= 0 then it is trivial.

Case 3 : If t = 0 and x = 0 then

0f−1(GB)(0) = ∪x∈Xf−1(GB)(x) = ∪x∈XGB(f(x)) ⊆ ∪y∈Y GB(y) = 0GB(0) ⊆
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GB(0) = GB(f(0)) = f−1(GB)(0).

Hence f−1(GB) is a soft vector space over (U, X).

5. Soft Product Topology

Definition 5.1. Let {FAi
: i ∈ I} be an indexed family of soft sets over (U, E). Then

the soft product of these family of soft sets is denoted by
∏

i∈I

FAi
and is defined by

∏

i∈I

FAi
(x) =











∩i∈IFAi
(xi) if x ∈

∏

i∈I

Ai,

∅ otherwise,

where xi is the i-th component of x.

Definition 5.2. Let {FAi
: i ∈ I} be an indexed family of soft sets and FA =

∏

i∈I

FAi
.

A box in FA is a subset GB of FA of the form
∏

i∈I

GBi
where GBi

v FAi
, for all i ∈ I.

For j ∈ I, GBj
is called the j−th side of the box GB.

A box GB is said to be large box if all except finitely many of its sides are equal to

the respective sets FAi
’s.

Definition 5.3. Let f : E1 → E2 be a mapping and FA be a soft sets over (U, E1).

Then by the Definition 2.7, the mapping f : E1 → E2 can be extended to the soft

mapping f : FA → FB where FB is a soft set over (U, E2) containing f(FA). The

extended soft mapping f : FA → FB is said to be a soft mapping induced by the

mapping f : E1 → E2.

Definition 5.4. Let {FAi
: i ∈ I} be an indexed family of soft sets. A wall GB v

∏

i∈I

FAi
corresponding to the soft set GBj

v FAj
for some j ∈ I is a set of the form

∏

i∈I

FBi
where FBi

= FAi
for i 6= j and FBj

= GBj
.

The wall corresponding to the soft set GBj
is denoted by wall(GBj

).

Definition 5.5. Let {FAi
: i ∈ I} and {FBi

: i ∈ I} be two indexed family of soft

sets. Then the soft union of
∏

i∈I

FAi
and

∏

i∈I

FBi
is defined by the soft set

∏

i∈I

FCi
, where

FCi
= FAi

t FBi
for all i ∈ I.
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The soft intersection of
∏

i∈I

FAi
and

∏

i∈I

FBi
is defined by the soft set

∏

i∈I

FCi
, where

FCi
= FAi

u FBi
for all i ∈ I.

Theorem 5.1. Let {(FAi
, τi) : i ∈ I} be an indexed collection of soft topological

spaces. Then the family of all wall corresponding to the soft sets GBi
∈ τi, i ∈ I

forms a soft subbase for some topology τ on
∏

i∈I

FAi
.

Proof. Let S = {wall(GBi
) : GBi

∈ τi, i ∈ I}. So, it is now enough to show

that S forms a soft subbase for some topology τ . Since the empty soft set Φi ∈

τi for each i ∈ I, wall(Φi) ∈ S and obviously, for each i ∈ I, wall(Φi) forms a

empty soft subset of
∏

i∈I

FAi
. So, S contains the empty soft subset of

∏

i∈I

FAi
. Again

wall(GBj
) t wall(GBk

) =
∏

i∈I

FAi
for j 6= k. So, ti∈Iwall(GBi

) =
∏

i∈I

FAi
. Hence S

forms a soft subbase for some topology τ .

Definition 5.6. Let {(FAi
, τi) : i ∈ I} be an indexed collection of soft topological

spaces. The soft topology generated by S = {wall(GBi
) : GBi

∈ τi, i ∈ I} as a

subbase is called the soft product topology on
∏

i∈I

FAi
.

Theorem 5.2. Let {(FAi
, τi) : i ∈ I} be an indexed collection of soft topological

spaces and τ be the soft product topology on the soft set
∏

i∈I

FAi
. Then the family of

all large boxes with all its sides are soft open in their respective spaces is a soft base

for the soft product topology τ on
∏

i∈I

FAi
.

Proof. Since the set S = {wall(GBi
) : GBi

∈ τi, i ∈ I} forms a soft subbase for

soft product topology τ on
∏

i∈I

FAi
, the collection of all finite intersection of members

of S forms a soft base. Now wall(GBi
) =

∏

j∈I

FBj
, where FBj

= FAj
for j 6= i and

FBi
= GBi

. So, wall(GBi
) forms a large box whose all sides are soft open in their

respective spaces and also all sides are equal to the respective spaces except i−th side.

That is, any finite intersection of members of S forms a large box whose all sides are

soft open.

We now show that any large box whose all sides are soft open in their respective spaces
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is a finite intersection of members of S.

Let GB =
∏

i∈I

GBi
be a large box with GBi

∈ τi for all i ∈ I and GBi
= FAi

except

for i = i1, i2, · · · , in. Then GB = un
k=1wall(GBik

). This completes the proof of the

theorem.

Definition 5.7. Let FA be a soft set over (U, E), where E is a usual vector space

over the field K and P ⊆ K. Then we define the soft set P × FA over (U, K ×E) as

follows:

P × FA = 1P × FA where 1P (e) =







U if e ∈ P

∅ if e /∈ P.

So, (P × FA)(t, e) = (1P × FA)(t, e) =







FA(e) if t ∈ P,

∅ if t /∈ P,

where (t, e) ∈ K × E.

Example 5.1. Let the universal set U = Z be the set of all integers , the parameter

set E = R be a euclidean vector space and A = Z. Also let FA be a soft set over

(U, E) defined by

FA(n) =







[n] if n ∈ Z,

∅ if n /∈ Z,

where [n] denotes the set of all integers which are congruent with n modulo 5.

Let P be the set of all natural numbers. Then the soft set P × FA over (U, R× E) is

(P × FA)(t, n) =







[n] if (t, n) ∈ P × Z,

∅ otherwise.

Theorem 5.3. If (FA, τ) is soft topological space over (U, E), where E is a usual

vector space over the field K and σ is a topology on K then the collection {P ×GB :

P ∈ σ, GB ∈ τ} forms a soft product topology on K × FA, where 1P belongs to the

soft topology on 1K iff P ∈ σ.
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6. Soft Topological Vector Spaces

In this section, we assume that the parameter sets E, E1 and E2 are usual vector

spaces over the field K and U , a universal set.

Definition 6.1. If FA is a soft set over (U, E) then a point (x, u) ∈ E × U is said

to be a soft point of FA if u ∈ FA(x). If (x, u) is a soft point of FA then we write

(x, u) ∈ FA. Here E is not necessarily a vector space.

Definition 6.2. If FA is a soft set over (U, E), where E is a vector space over the

field K and t ∈ K, (x, u) ∈ FA then (t, (x, u)) is said to be a soft point of K × FA

and we write (t, (x, u)) ∈ K × FA.

Proposition 6.1. If f : FA → FB is a soft mapping induced by the mapping f :

E1 → E2 then the image of a soft point (x, u) of FA is a soft point (f(x), u) of FB

where FA, FB are two soft sets over (U, E1) and (U, E2) respectively.

Proof. Let (x, u) be a soft point of FA. This soft point is equivalent to a soft set

P u
x where P u

x (e) =







{u} if e = x

∅ if e 6= x.

Therefore f(x, u)(e) = f(P u
x )(e) = ∪e1∈f−1(e)P

u
x (e1) =







{u} if e = f(x)

∅ if e 6= f(x).

So, f(P u
x ) = (f(x), u). Hence the image of a soft point (x, u) of FA is a soft point

(f(x), u) of FB.

Proposition 6.2. If f : K × FA → FB is a soft mapping induced by the mapping

f : K × E → E, defined by f(t, x) = tx then the image of a soft point (t, (x, u)) of

K × FA is a soft point (f(t, x), u) of FB where FA, FB are two soft sets over (U, E).

Proof. Let (t, (x, u)) be a soft point of K × FA. The soft point (x, u) is equivalent

to a soft set P u
x where P u

x (e) =







{u} if e = x

∅ if e 6= x.
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If t 6= 0 then f(t, (x, u))(e) = f(t, P u
x )(e)

= ∪(t,e1)∈f−1(e)P
u
x (e1) =







{u} if e = f(t, x)

∅ if e 6= f(t, x).

So, f(t, (x, u)) = (f(t, x), u).

Again if t = 0 then f(0, (x, u))(e) = f(0, P u
x )(e) = 0P u

x (e) =







{u} if e = 0

∅ if e 6= 0.

So, f(0, (x, u)) = (0, u) = (f(0, x), u). Hence the image of a soft point (t, (x, u)) of

FA is a soft point (f(t, x), u) of FB.

Definition 6.3. If (FA, τ) is a soft topological space and HC v FA then HC is said

to be a soft neighbourhood of a soft point (x, u) of FA if there exists GB ∈ τ such

that (x, u) ∈ GB v HC .

Definition 6.4. Let f : FA → FB be a soft mapping induced by the mapping

f : E1 → E2 where (FA, τ1), (FB, τ2) be two soft topological spaces over (U, E1) and

(U, E2) respectively. Then the soft mapping f is said to be soft continuous on FA if

for any GB1
∈ τ2, f−1(GB1

) ∈ τ1.

Definition 6.5. Let f : FA → FB be a soft mapping induced by the mapping

f : E1 → E2 where (FA, τ1), (FB, τ2) be two soft topological spaces over (U, E1) and

(U, E2) respectively. Then the soft mapping f is said to be soft continuous at a soft

point (x, u) of FA if for any GD ∈ τ2 with (f(x), u) ∈ GD, there exists GC ∈ τ1 with

(x, u) ∈ GC such that f(GC) v GD

Theorem 6.1. If f : FA → FB is a soft mapping induced by the mapping f : E1 →

E2 where (FA, τ1), (FB, τ2) are two soft topological spaces over (U, E1) and (U, E2)

respectively then f is soft continuous at every soft point of FA if and only if f is soft

continuous on FA.

Proof. At first we assume that f is soft continuous at every soft point of FA

and GB1
∈ τ2. Let the soft point (x, u) ∈ f−1(GB1

). Then f(x, u) = (f(x), u) ∈
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GB1
. Since f is soft continuous, there exists GAu

x
∈ τ1 with (x, u) ∈ GAu

x
such that

f(GAu
x
) v GB1

, that is GAu
x
v f−1(GB1

). Therefore
⊔

(x,u)∈f−1(GB1
)

GAu
x

= f−1(GB1
).

since each GAu
x
∈ τ1,

⊔

(x,u)∈f−1(GB1
)

GAu
x
∈ τ1. Hence f−1(GB1

) ∈ τ1.

Conversely, let f be soft continuous on FA and (x, u) ∈ FA. We now show that f

is soft continuous at the soft point (x, u). Let (f(x), u) ∈ GC ∈ τ2. Since f is soft

continuous, f−1(GC) ∈ τ1. Now (f(x), u) ∈ GC implies that (x, u) ∈ f−1(GC). So

(f(x), u) ∈ GC implies that there exists f−1(GC) ∈ τ1 with (x, u) ∈ f−1(GC) such that

f(f−1(GC)) v GC . Thus f is soft continuous at (x, u). Since (x, u) is an arbitrary

soft point of FA, f is soft continuous at every soft point of FA.

Definition 6.6. Let (FA, τ1) be a soft topological space over (U, E) and f : E×E →

E be a mapping defined by f(x, y) = x+y. Then the soft mapping f : FA×FA → FB,

induced by the mapping f where (FB, τ2) is a soft topological space over (U, E), is

said to be soft continuous with respect to the first variable separately if for any soft

point (x, u) ∈ FA and for any GD ∈ τ2 with (f(x, y), u) ∈ GD, there exists GC ∈ τ1

with (x, u) ∈ GC such that f(GC , y) = y + GC v GD, where y is an arbitrary but a

fixed element of E. Similarly, we can defined the soft continuous with respect to the

second variable separately.

Definition 6.7. Let (FA, τ1) and (FB, τ2) be two soft topological spaces over (U, E1)

and (U, E2) respectively. Also let (K, σ) be a topological space and f : K ×E1 → E2

be a mapping defined by f(t, x) = tx. Then the soft mapping f : K × FA → FB,

induced by the mapping f is said to be soft continuous at a soft point (t, (x, u)) ∈

K × FA if for any GD ∈ τ2 with (f(t, x), u) ∈ GD, there exist P ∈ σ containing t and

GC ∈ τ1 with (x, u) ∈ GC such that f(P × GC) v GD.

Thus following the Theorem 6.1, we have : If f is soft continuous at every point of

K × FA then f is said to be a soft continuous on K × FA.



SOFT VECTOR SPACES AND SOFT TOPOLOGICAL VECTOR SPACES 161

Definition 6.8. Let (FA, τ1) and (FB, τ2) be two soft topological spaces over (U, E1)

and (U, E2) respectively. Then the soft mapping f : FA → FB, induced by the

mapping f : E1 → E2 is said to be soft open or open if for any GC ∈ τ1, f(GC) ∈ τ2.

Suppose FA is a soft vector space over (U, E) and

g : E × E → E defined by g(x, y) = x + y and

h : K × E → E defined by h(t, x) = tx. Then the image g(FA × FA) of the product

soft set FA × FA is a soft set where

g(FA × FA)(x)

= ∪(y,z)∈g−1(x){FA(y) ∩ FA(z)}

⊆ ∪(y,z)∈g−1(x)FA(y + z), [ by the Theorem 4.1 ]

= FA(x) for all x ∈ E.

Hence g(FA × FA) v FA.

Again to find the image h(K × FA) of the product soft set K × FA, we shall prove

the following result:

Result 6.1. Let FA be a soft set over (U, E), where E is a vector space over the field

K and h : K × E → E defined by h(t, x) = tx. Then h(P × FA)(x) = ∪t∈P tFA(x)

for all x ∈ E and P ⊆ K.

Proof. We shall prove the result by the following cases:

Case 1: If 0 /∈ P , then

h(P × FA)(x) = ∪(t, y)∈h−1(x), t∈P (P × FA)(t, y) = ∪(t, y)∈h−1(x), t∈P FA(y)

= ∪(t, y)∈h−1(x), t∈P tFA(ty)

= ∪t∈P tFA(x).

Case 2: If 0 ∈ P ,

Subcase 1: x 6= 0, then

h(P × FA)(x) = ∪(t, y)∈h−1(x), t(6=0)∈P (P × FA)(t, y) = ∪(t, y)∈h−1(x), t(6=0)∈P FA(y)

= ∪(t, y)∈h−1(x), t(6=0)∈P tFA(ty)
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= ∪t(6=0)∈P tFA(x)

= ∪t∈P tFA(x) as 0FA(x) = ∅ for x 6= 0.

Subcase 2: x = 0, then

h(P × FA)(0) = ∪(t, y)∈h−1(0), t∈P (P × FA)(t, y) = ∪(t, y)∈h−1(0), t∈P FA(y)

= ∪y∈EFA(y)

= 0FA(0) = ∪t∈P tFA(0)

Hence h(P × FA)(x) = ∪t∈P tFA(x) for all x ∈ E.

So, from the result 6.1, we have h(K×FA)(x) = ∪t∈KtFA(x) ⊆ ∪t∈KFA(x) = FA(x)

for all x ∈ E. Hence h(K × FA) v FA.

Therefore the induced mappings g : FA × FA → FA and h : K × FA → FA are well

defined.

Definition 6.9. A soft vector space FA over (U, E) with a soft topology τ is said to

be a soft topological vector space if

i) the soft mapping g : FA × FA → FA, induced by the mapping g : E × E → E

where g(x, y) = x + y is soft continuous in each variable separately and

ii) the soft mapping h : K × FA → FA, induced by the mapping h : K × E → E

where h(t, x) = tx is soft continuous when K has a topology and K × FA has given

the soft product topology.

Example 6.1. Let E be a vector space over the field K, A be a sub-vector space of E

and (A, τA) be a topological vector space. Let V ⊆ U and FA be a soft set over (U, E)

defined by FA(e) =







V if e ∈ A,

∅ otherwise.

Then it is easy to see that FA is a soft vector space. For each B ∈ τA, let us define a

soft set GB as GB(e) =







FA(e) if e ∈ B,

∅ otherwise.

Let υ = {GB : B ∈ τA}. Then υ is a soft topology on FA. So, it is enough to

show that the mappings (i) g, defined in the Definition 6.9 is soft continuous from
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FA ×FA to FA in each variable separately, (ii) h, defined in the Definition 6.9 is soft

continuous from K × FA to FA where K has a topology σ.

Let a ∈ E, (x, u) ∈ FA and (a + x, u) ∈ GB ∈ υ. So, u ∈ GB(a + x). Obviously,

a + x ∈ B and B ∈ τA. Since (A, τA) is topological sub-vector space, there exist

C, D ∈ τA such that a ∈ C, x ∈ D and C + D ⊆ B, that is, a + D ⊆ B. Since

x ∈ D, (x, u) ∈ GD. It is easy to see that a + GD v GB. Thus, the mapping g is

soft continuous from FA × FA to FA w.r.t the second variable separately. Similarly it

can be prove that the mapping g is soft continuous from FA ×FA to FA w.r.t the first

variable separately.

Let t ∈ K, (x, u) ∈ FA and (tx, u) ∈ GB ∈ υ then u ∈ GB(tx). Obviously,

tx ∈ B and B ∈ τA. Since (A, τA) is topological sub-vector space, there exist P ∈ σ

containing t and C ∈ τA containing x such that PC ⊆ B. Since C ∈ τA, GC ∈ υ

and (x, u) ∈ GC . Now it is easy to see that PGC v GB. Thus, the mapping h is soft

continuous. Hence (FA, υ) is a soft topological vector space.

Definition 6.10. Let f : FA → FB be a soft mapping induced by the mapping

f : E1 → E2 where (FA, τ1) and (FB, τ2) be two soft topological spaces over (U, E1)

and (U, E2) respectively. Then the soft mapping f is said to be a soft homeomorphism

if

i. f : E1 → E2 is bijective.

ii. The soft mapping f : FA → FB is both soft open and soft continuous.

Theorem 6.2. If (FA, τ) is a soft topological vector space over (U, E) and a ∈ E

then the soft mapping Ta : FA → FA, induced by the translation Ta : E → E where

Ta(x) = x + a is a soft homeomorphism.

Proof. It is clear that Ta is bijective.

Since (FA, τ) is a soft topological vector space over (U, E), Ta is soft continuous.

Again, the inverse of Ta being T−a defined by T−a(x) = x − a. By similar argument
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T−a is also soft continuous on FA. Let GB ∈ τ . Since the mapping T−a is soft

continuous, T−1
−a (GB) ∈ τ .

Now T−1
−a (GB)(x) = GB(T−a(x)) = GB(x − a) = (a + GB)(x) for all x ∈ E (using

Proposition 2.3). So, a + GB ∈ τ . Therefore the mapping Ta is soft open. Hence Ta

is a soft homeomorphism on FA.

Theorem 6.3. If (FA, τ) is a soft topological vector space over (U, E) and t(6= 0) ∈ K

then the soft mapping Mt : FA → FA, induced by the mapping Mt : E → E where

Mt(x) = tx is a soft homeomorphism.

Proof. It is clear that Mt is bijective.

We now show that Mt is soft continuous on FA. Let (x, u) ∈ FA and (Mt(x), u) =

(tx, u) ∈ GD ∈ τ . Since the soft mapping h on FA given in the Definition 6.9 is soft

continuous, there exists P ∈ σ containing t and GC ∈ τ containing (x, u) such that

h(P × GC) v GD, that is,

h(P × GC)(e) ⊆ GD(e) for all e ∈ E,,

or, ∪p∈PpGC(e) ⊆ GD(e) for all e ∈ E, by Result 6.1

or, tGC(e) ⊆ GD(e) for all e ∈ E, as t ∈ P . Therefore, tGC v GD, that is,

Mt(GC) v GD. Thus the soft mapping Mt is a soft continuous on FA.

Again, the inverse of Mt being Mt−1 defined by Mt−1(x) = t−1x. By similar argument

Mt−1 is also soft continuous on FA. Let GB ∈ τ . Since the mapping Mt−1 is soft

continuous, M−1
t−1(GB) ∈ τ by Definition 6.4.

Now M−1
t−1(GB)(e) = GB(Mt−1(e)) = GB(t−1e) = ∪y∈M−1

t (e)GB(y) = Mt(GB)(e) for

all e ∈ E. So, Mt(GB) ∈ τ . Therefore the mapping Mt is open. Hence Mt is a soft

homeomorphism on FA.

Corollary 6.1. In a soft topological vector space, every translation of a soft open set

is a soft open set and any multiplication of a soft open set by a non-zero scalar is

also a soft open set.
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Proposition 6.3. If (FA, τ) is a soft topological vector spaces over (U, E) then

FA(x) = FA(y) for all x, y ∈ E.

Proof. From the Theorem 6.2, it is clear that for any x ∈ E and GB ∈ τ ,

x + GB ∈ τ . Now since FA ∈ τ , x + FA ∈ τ for all x ∈ E. Also it is obvious

that x + FA v FA for all x ∈ E. Let x, y ∈ E. Then (y − x) + FA v FA. So,

((y − x) + FA)(y) ⊆ FA(y), that is, FA(x) ⊆ FA(y). Similarly, it can be shown that

FA(y) ⊆ FA(x). Thus, if (FA, τ) is a soft topological vector spaces over (U, E) then

FA(x) = FA(y) for all x, y ∈ E.

Corollary 6.2. If (FA, τ) is a soft topological vector space over (U, E) and a ∈ E

then for any soft closed set GB, a + GB is also soft closed sets.

Proof. At first, let us consider the soft homeomorphism Ta : FA → FA, induced

by Ta : E → E where Ta(x) = x + a. Since GB is closed, FA − GB is open. So,

Ta(FA − GB) is open. Now for x ∈ E,

Ta(FA−GB)(x) = ∪y∈T−1
a (x)(FA−GB)(y) = ∪y∈T−1

a (x){FA(y)−GB(y)} = FA(x−a)−

GB(x − a) = FA(x) − (a + GB)(x) = (FA − (a + GB))(x).

So, FA − (a + GB) is open. That is, a + GB is soft closed set.

Corollary 6.3. If (FA, τ) is a soft topological vector space over (U, E) and t(6= 0) ∈ K

then for any soft closed set GB, tGB is also soft closed sets.

Proof. At first, let us consider the soft homeomorphism Mt : FA → FA induced

by Mt : E → E where Mt(x) = tx. Since GB is soft closed set, FA − GB is soft open

set. So, Mt(FA − GB) is soft open. Now for x ∈ E,

Mt(FA−GB)(x) = ∪y∈M−1

t (x)(FA−GB)(y) = ∪y∈M−1

t (x){FA(y)−GB(y)} = FA(t−1x)−

GB(t−1x) = FA(x) − tGB(x) = (FA − tGB)(x).

So, FA − tGB is soft open. That is, tGB is soft closed set.

Conclusion: During last few year, several researchers are trying to incorporate

soft set theory in crisp mathematical analysis and as a result different notions are
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being grown up which are sometimes very much useful for making decision in different

expert systems. In this paper, it is seen that soft open and closed sets remain invariant

through translations and scalar multiplications which are also soft homomorphisms.

In future it would help to establish several results of crisp topological vector space in

soft topological vector space.
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