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THE PERIODS OF THE PELL P-ORBITS OF POLYHEDRAL AND

CENTRO-POLYHEDRAL GROUPS

ÖMÜR DEVECI(1), MERVE AKDENIZ(2) AND YEŞIM AKÜZÜM(3)

Abstract. In this paper, we define the Pell p-orbit of a finitely generated group

and then we obtain the lengths of the periods and the basic periods of the Pell

p-orbits of the finite polyhedral groups and centro-polyhedral groups.

1. INTRODUCTION AND PRELIMINARIES

The study of recurrence sequences in groups began with the earlier work of Wall [3]

where the ordinary Fibonacci sequences in cyclic groups were investigated. The con-

cept extended to some special linear recurrence sequences by several authors; see for

example, [1, 2, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16]. In [12] extended the theory to the gen-

eralized Pell p-sequences. In this paper, we examine the behaviour of the periods and

basic periods of the Pell p-orbits of the polyhedral groups (n, 2, 2), (2, n, 2), (2, 2, n),

(2, 3, 3), (2, 3, 4), (2, 2, 5) and the centro-polyhedral groups 〈−2, n, 2〉, 〈2, n,−2〉,

〈n,−2, 2〉, 〈n, 2,−2〉, 〈2,−2, n〉, 〈−2, 2, n〉 for n > 2.

In [4], the generalized Pell (p, i) numbers was defined as follows:

for p (p = 1, 2, · · · ), n > p + 1 and 0 ≤ i ≤ p,

(1.1) P (i)
p (n) = 2P (i)

p (n − 1) + P (i)
p (n − p − 1) ,
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with initial conditions P
(i)
p (1) = · · · = P

(i)
p (i) = 0 and P

(i)
p (i + 1) = · · · = P

(i)
p (p + 1) =

1.

Note that if i = 0, the initial conditions are P
(i)
p (1) = P

(i)
p (2) = · · · = P

(i)
p (p + 1) =

1.

A sequence is periodic if, after a certain point, it consists only of repetitions of a

fixed subsequence. The number of elements in the repeating subsequence is called

the period of the sequence. For example, the sequence a, b, c, d, b, c, d, b, c, d, . . . is

periodic after the initial element a and has period 3. A sequence is simply periodic

with period k if the first k elements in the sequence form a repeating subsequence.

For example, the sequence a, b, c, d, a, b, c, d, a, b, c, d, . . . is simply periodic with period

4.

Reducing the generalized Pell (p, p)-sequence
{

P
(p)
p (n)

}

by a modulus m, we can get

repeating sequence, denoted by

{
P (p,m)

p (n)
}

=
{
P (p,m)

p (1) , P (p,m)
p (2) , . . . , P (p,m)

p (p) , P (p,m)
p (p + 1) , . . . , P (p,m)

p (i) , . . .
}

where P
(p,m)
p (i) = P

(p)
p (i) (mod m). Also, it has the same recurrence relation as in

(1.1) (Deveci et al.).([12, p.3]) .

Theorem 1.1. (Deveci et al.).([12, Theorem 2.1, p.3])
{

P
(p,m)
p (n)

}

is a simply pe-

riodic sequence.

The notation hp
p (m) is used for the smallest period of the sequence

{

P
(p,m)
p (n)

}

(Deveci et al.).([12, p.3]) .

Let G be a finite j -generator group and let

X = {(x0, x1, . . . , xj−1) ∈ G × G × · · · × G
︸ ︷︷ ︸

j

| < {x0, x1, . . . , xj−1} >= G}.

We call (x0, x1, . . . , xj−1) a generating j-tuple for G.
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Definition 1.1. (Deveci et al.).([12, Definition 3.4, p.6]) A generalized Pell p-

sequence (p ≥ 2) in a finite group is a sequence of group elements x0, x1, . . . , xn, . . .

for which, given an initial (seed) set x0, . . . , xj−1, (p + 1 ≥ j) each element is defined

by

xn =







x0 (xn−1)
2 for j ≤ n < p + 1,

xn−p−1 (xn−1)
2 for n ≥ p + 1.

It is required that the initial (seed) set x0, . . . , xj−1 of the group elements se-

quence generates the group, thus, forcing the generalized Pell p-sequence to reflect

the structure of the group.

The generalized Pell p-sequence of a group generated by x0, . . . , xj−1 is denoted

by Q(p) (G; x0, x1 . . . , xj−1).

Theorem 1.2. (Deveci et al.).([12, Theorem 3.1, p.7]) A generalized Pell p-sequence

in a finite group is simply periodic.

In (Deveci et al.).([12, p.7]), the period of the generalized Pell p-sequence Q(p) (G; x0, x1, . . . , xj−1)

had been denoted by PerQ(p) (G; x0, x1, . . . , xj−1).

Definition 1.2. (Deveci et al.).([12, Definition 3.5, p.8]) Let G be a finite j-generator

groups. For a j-tuple (x0, x1, . . . , xj−1) ∈ X the basic generalized Pell p-sequence

Q
(p)

(G; x0, x1, . . . , xj−1), (p ≥ 2, p + 1 ≥ j) of the basic period m is a sequence of

group elements a0, a1, a2, . . . , an, . . . for which, given an initial (seed) set a0 = x0, a1 =

x1, a2 = x2, . . . , aj−1 = xj−1, each element is defined by

an =







a0 (an−1)
2 for j ≤ n < p + 1,

an−p−1 (an−1)
2 for n ≥ p + 1

where m ≥ 1 is the least integer with

a0 = amθ, a1 = am+1θ, a2 = am+2θ, . . . , ap = am+pθ,



4 ÖMÜR DEVECI , MERVE AKDENIZ AND YEŞIM AKÜZÜM

for some θ ∈AutG. Since G is a finite j-generator group and am, am+1, . . . , am+j−1

generate G, it follows that θ is uniquely determined. The basic generalized Pell

p-sequence Q
(p)

(G; x0, x1, . . . , xj−1) is finite containing m element.

Also, in (Deveci et al.).([12, p.8]), the basic period of the basic generalized Pell p-

sequence Q
(p)

(G; x0, x1, . . . , xj−1) had been denoted by BQ(p) (G; x0, x1, . . . , xj−1).

Definition 1.3. The polyhedral group (l, m, n) for l, m, n > 1, is defined by the

presentation

〈
x, y, z : xl = ym = zn = xyz = 1

〉
.

For the generating pair (x, y), the polyhedral group (l, m, n) have the presentations

〈
x, y : xl = ym = (xy)n = 1

〉

and

〈
x, y : xl = ym = (xy)−n = 1

〉
,

where l, m, n > 1.

The polyhedral group (l, m, n) is finite if and only if the number k = lmn
(

1
l
+ 1

m
+ 1

n
− 1

)
=

mn+nl+lm−lmn is positive. Its order is 2lmn/k (Coxeter and Moser).([7, p. 67-68]).

In this paper, we consider polyhedral groups as 3-generator groups.

Definition 1.4. The centro-polyhedral group 〈l, m, n〉, for l, m, n ∈ Z is defined by

the presentation

〈
x, y, z : xl = ym = zn = xyz

〉
.

For detailed information about these groups, see(Coxeter and Moser).([7, p. 70-

71]).
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2. MAIN RESULTS AND PROOFS

Definition 2.1. For a finitely generated group G = 〈A〉, where A = {a1, a2, . . . , ap+1}

such that p ≥ 2, the Pell p-orbit of G with respect to the generating set A, written

P
p
A (G) is the sequence x0 = a1, x1 = a2, . . . , xp = ap+1, xn+p = (xn−1) (xn+p−1)

2,

n ≥ 1. The length of the period of the sequence is called the Pell p-length of G with

respect to the generating set A, written LP
p
A (G). Also, we denote the length of basic

period of this sequence by LP
p

A (G), which is called the basic length of G with respect

to the generating set A.

Firstly, we consider the Pell p-lengths and the basic Pell p-lengths of the finite poly-

hedral groups by the following Theorems.

Theorem 2.1. Let G be any of the polyhedral groups (n, 2, 2), (2, n, 2) and (2, 2, n),

where n ≥ 3. Then

LP 2
{x,y,z} (G) =







3n
2
, n is even,

3n, n is odd
and LP

2

{x,y,z} (G) = 3.

Proof. Let us consider the group (n, 2, 2). The orbit P 2
{x,y,z} ((n, 2, 2)) is

x, y, z, x, yx2, z, x, yx4, z, x, yx6, z, x, yx8, z, x, yx10, z, . . . .

This sequence can be said to form layers of length three. Using the above, the

sequence becomes:

x0 = x, x1 = y, x2 = z,

x3 = x, x4 = yx2, x5 = z,

x6 = x, x7 = yx4, x8 = z,

x3i = x, x3i+1 = yx2i, x3i+2 = z, . . . .

So, we need the smallest i ∈ N such that 2i = nv1 for v1 ∈ N .
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If n is even, then i = n
2
. Thus, LP 2

{x,y,z} ((n, 2, 2)) = 3n
2

and LP
2

{x,y,z} ((n, 2, 2)) = 3

since xθ = x, yθ = yx−2 and zθ = z where θ is an outer automorphism of order n
2
.

If n is odd, then n = i. Thus, LP 2
{x,y,z} ((n, 2, 2)) = 3n and LP

2

{x,y,z} ((n, 2, 2)) = 3

since xθ = x, yθ = yx−2 and zθ = z where θ is an outer automorphism of order n.

The proofs for the groups (2, n, 2) and (2, 2, n) are similar to the above and are

omitted. �

Theorem 2.2. i) LP 2
{x,y,z} ((2, 3, 3)) = LP

2

{x,y,z} ((2, 3, 3)) = 65.

ii) LP 2
{x,y,z} ((2, 3, 4)) = LP

2

{x,y,z} ((2, 3, 4)) = 27.

iii) LP 2
{x,y,z} ((2, 3, 5)) = LP

2

{x,y,z} ((2, 3, 5)) = 175.

Proof. The orbit P 2
{x,y,z} ((2, 3, 3)) is

x, y, z, y, 1, z, yxy, xyx, yx, xy, yxy2, yx, y2xy, yxy2, yx, yxy, xy, y2xy,

yxy, y2, xyx, xyx, xy, yxy2, xyx, yxy2, yxy2, xyx, y2, yx, x, y2, yxy, yx,

xyx, xyx, x, xyx, 1, x, xyx, yxy, yx, x, yxy, z, y, yx, y, 1, yx, yxy2, 1, yx, z,

xy, y2xy, z, z, yx, y, xyx, x, y, y2xy, x, y, z, . . . ,

which has period 65. Also, LP
2

{x,y,z} ((2, 3, 3)) = 65 since xθ = x, yθ = y and zθ = z

where θ is identity automorphism.

The proofs of the cases ii and iii are similar to the above and are omitted. �

Now we give the Pell p-lengths and the basic Pell p-lengths of some centro polyhedral

groups by the following Theorem.

Theorem 2.3. Let G be any of the centro-polyhedral groups 〈−2, n, 2〉, 〈2, n,−2〉,

〈n,−2, 2〉, 〈n, 2,−2〉, 〈2,−2, n〉 and 〈−2, 2, n〉, where n ≥ 3. Then

LP 2
{x,y,z} (G) =







n
2
· h2

2 (4 (n − 1)) , n is even,

n · h2
2 (4 (n − 1)) , n is odd

and LP
2

{x,y,z} (G) = h2
2 (4 (n − 1)) ,

where h2
2 (4 (n − 1)) denotes the smallest period of the sequence

{

P
(2,4(n−1))
2 (n)

}

.
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Proof. Let us consider the group 〈−2, n, 2〉. It is clear that the centro polyhedral

group 〈−2, n, 2〉 is defined the presentation

〈
x, y, z : x−2 = yn = z2 = xyz

〉
.

writing x−2 = yn = z2 = xyz = s, we find that |s| = 4n

4n( 1

2
+ 1

n
+ 1

2
−1)

− 1 = n − 1. Thus

we obtain |〈−2, n, 2〉| = 4n (n − 1) , |x| = |z| = 4 (n − 1) and |y| = 2n (n − 1). Also

note that z2 is central element of the group 〈−2, n, 2〉.

If n is a positive even integer, then the orbit P 2
{x,y,z} (〈−2, n, 2〉) becomes:

x0 = x, x1 = y, x2 = z,

xh2

2
(4(n−1)) = x, xh2

2
(4(n−1))+1 = y, xh2

2
(4(n−1))+2 = zyk1·4(n−1),

xh2

2
(4(n−1))i = x, xh2

2
(4(n−1))i+1 = y, xh2

2
(4(n−1))i+2 = zyk1·4(n−1)i, . . . ,

where k1 ∈ N be such that
(
k1,

n
2

)
= 1. Since |y| = 2n (n − 1), we need the smallest

i ∈ N such that k1 · 4 (n − 1) i = 2n (n − 1) v2 for v2 ∈ N . Then, we obtain i = n
2

for

v2 = k1 since n is a positive even integer. Thus, LP 2
{x,y,z} (〈−2, n, 2〉) = n

2
·h2

2 (4 (n − 1))

and LP
2

{x,y,z} (〈−2, n, 2〉) = h2
2 (4 (n − 1)) since xθ = x, yθ = y and zθ = zyt1·4(1−n)

where θ is an outer automorphism of order n
2

and t1 ∈ N such that
(
t1,

n
2

)
= 1.

If n is a positive odd integer, then the orbit P 2
{x,y,z} (〈−2, n, 2〉) becomes:

x0 = x, x1 = y, x2 = z,

xh2

2
(4(n−1)) = x, xh2

2
(4(n−1))+1 = y, xh2

2
(4(n−1))+2 = zyk2·4(n−1),

xh2

2
(4(n−1))i = x, xh2

2
(4(n−1))i+1 = y, xh2

2
(4(n−1))i+2 = zyk2·4(n−1)i, . . . ,

where k2 ∈ N be such that (k2, n) = 1. Since |y| = 2n (n − 1), we need the smallest

i ∈ N such that k2 · 4 (n − 1) i = 2n (n − 1) v3 for v3 ∈ N . Then, we obtain i = n for

k2 = v3 since n is a positive odd integer. Thus, LP 2
{x,y,z} (〈−2, n, 2〉) = n·h2

2 (4 (n − 1))

and LP
2

{x,y,z} (〈−2, n, 2〉) = h2
2 (4 (n − 1)) since xθ = x, yθ = y and zθ = zyt2·4(1−n)

where θ is an outer automorphism of order n and t2 ∈ N such that (t2, n) = 1.
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The proofs for the groups 〈2, n,−2〉, 〈n,−2, 2〉, 〈n, 2,−2〉, 〈2,−2, n〉 and 〈−2, 2, n〉

are similar to the above and are omitted. �

All necessary calculations were carried out on the computer using the GAP com-

putational algebra system, see (The GAP group).[17]
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