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SOME RESULTS CONCERNING RIESZ BASES AND FRAMES IN

BANACH SPACES

KHOLE TIMOTHY POUMAI (1) AND S. K. KAUSHIK (2)

Abstract. In this paper, we give characterizations of Riesz bases and near Riesz

bases in Banach spaces. The notion of atomic system is defined and a characteriza-

tion of atomic system has been given. Also results exhibiting relationship between

frames, atomic systems and Riesz bases have been proved. Further, we show that

every atomic system is a projection of a Riesz basis in Banach spaces. Finally, we

give some duality results of an atomic system for Banach spaces.

1. Introduction and Preliminaries

Frames were introduced in 1952 by Duffin and Schaeffer [5]. They infact abstracted

Gabor’s [9] method to define frames for Hilbert space. Let H be a real (or complex)

separable Hilbert space with inner product 〈., 〉. A countable sequence {fn} ⊂ H is

called a frame ( or Hilbert frame ) for H, if there exist numbers A, B > 0 such that

(1.1) A‖f‖2
H ≤

∞∑

n=1

|〈f, fn〉|
2 ≤ B‖f‖2

H, for all f ∈ H.

The scalars A and B are called the lower and upper frame bounds of the frame, re-

spectively. They are not unique. The inequality in (1.1) is called the frame inequality

of the frame. For more details related to frames and Riesz bases in Hilbert spaces,

one may refer to [4, 11]. Feichtinger and Gröcheing [7] extended the notion of frames
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to Banach space and defined the notion of atomic decomposition. Gröcheing [10]

introduced a more general concept for Banach spaces called Banach frame. Casazza,

Christensen and Stoeva [2] studied Ed-frame and Ed-Bessel sequence. Recall that a

BK-space is, by definition, a Banach (scalar) sequence space in which the coordinate

functionals are continuous.

Definition 1.1. [2] Let E be a Banach space and Ed be a BK-space, a sequence

{fn}
∞
n=1 ⊆ E∗ is called an Ed-frame for E if

(1) {fn(x)} ∈ Ed, for all x ∈ E,

(2) there exist constants A and B with 0 < A ≤ B < ∞ such that

A ‖ x ‖E≤‖ {fn(x)} ‖Ed
≤ B ‖ x ‖E, for all x ∈ E.(1.2)

A and B are called Ed-frame bounds. If atleast (1) and the upper bound condition

in (1.2) are satisfied, then {fn} is called an Ed-Bessel sequence for E. If {fn} is an

Ed-Bessel sequence for E, then U : E → Ed given by

U(x) = {fn(x)}, for x ∈ E

is a bounded linear operator and U is called the analysis operator associated to Ed-

Bessel sequence {fn}. If {fn} is an Ed-frame and there exists a sequence {xn} ⊆ E

such that x =
∞∑

n=1

fn(x)xn, for all x ∈ E. Then, a pair (xn, fn) is called an atomic

decomposition for E with respect Ed. Further, if {fn} is an Ed-frame for E and there

exists a bounded linear operator S : Ed −→ E such that S({fn(x)}) = x for all x ∈E,

then ({fn}, S) is called a Banach frame for E with respect to Ed.

In [15], Stoeva defined and studied Ed-Riesz basis.

Definition 1.2. [15, 3] For a Banach space E and a BK-space Ed, an Ed-Riesz basis

for E is a sequence {xn}
∞
n=1 ⊆ E, which is complete in E and there exist constants
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0 < A ≤ B < ∞ such that

A‖{cn}
∞
n=1‖Ed

≤ ‖

∞∑

n=1

cnxn‖E ≤ B‖{cn}
∞
n=1‖Ed

for every {cn}
∞
n=1 ∈ Ed.(1.3)

A number A (resp. B) in (1.3) is called a lower (resp. upper) Ed-Riesz basis bound.

We give few results in the form of lemmas which will be used in the subsequent

work.

Lemma 1.1 (Cassaza–Christensen–Stoeva). ([2, Lemma 3.1]) Let Ed be a BK-space

for which the canonical unit vectors {en} form a Schauder basis. Then the space

Yd = {{h(en)} : h ∈ E∗
d} with norm ‖{h(en)}‖Yd

= ‖h‖E∗
d

is a BK-space isometrically

isomorphic to E∗
d . Also, every continuous linear functional Φ on Ed has the form

Φ{cn} =
∞∑

n=1

cndn, where {dn} ∈ Yd is uniquely determined by dn = Φ(en), and

‖Φ‖ = ‖{Φ(en)}‖Yd
.

Lemma 1.2 (Taylor–Lay). ([16, Theorem 12.9, p. 251]) Let X, Y be Banach spaces

and S : X → Y be a bounded linear operator from X into Y. Then the following are

equivalent.

(1) S has a pseudoinverse operator S†.

(2) There exist closed subspaces W, Z of X, Y such that

X = kerS ⊕ W, Y = S(X) ⊕ Z.

Lemma 1.3 (Stoeva). ([15, Propositions 3.3 and 3.4]) Let Ed be BK-space which

has a sequence of canonical unit vectors as Schauder basis and {xn}
∞
n=1 ⊆ E be a

sequence. Then

(1) every Ed-Riesz basis {xn} is a Schauder basis for E.

(2) {xn} is a Riesz basis if and only if the operator T, given by T{αn}
∞
n=1 =

∞∑
n=1

αnxn is an isomorphism of Ed onto E.
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Throughout this paper, E will denote a Banach space over the scalar field K (which

is R or C), E∗ the conjugate space of E, [xn] the closed linear span of {xn} in

the norm topology of E, [̃fn] the closed linear span of {fn} ⊆ E∗ in the σ(E∗, E)-

toplogy. Further, Ed denotes a BK-space which has a sequence of canonical unit

vectors {en}
∞
n=1 as Schauder basis, E∗

d the conjugate space of Ed and Yd = {{h(en)} :

h ∈ E∗
d} denotes a BK-space which is defined in Lemma 1.1. π : E −→ E∗∗ is the

natural canonical projection from E onto E∗∗. This paper is devoted to the study of

frames, Ed-Riesz bases, near Ed-Riesz bases, atomic systems in Banach spaces and

the extremality property of atomic systems. In Section 2, we give the necessary and

sufficient conditions for the existence of frames in Banach spaces. We also study the

relationship between Ed-Riesz bases and frames. A necessary and sufficient condition

for a frame to be an Ed-Riesz basis is obtained. Also, we give a necessary and sufficient

condition for a frame to be a near Ed-Riesz basis. Section 3 is devoted to atomic

systems in Banach spaces. We prove that every atomic system is a frame in Banach

spaces. We also show that Ed-Riesz bases and near Ed-Riesz bases are atomic systems

in Banach spaces. Also, various properties of atomic systems which are similar to

that of the properties of frames in Hilbert spaces have been given. Further, we show

that atomic systems are compression of Ed-Riesz bases in Banach spaces. Finally,

we discuss the extremality property of atomic systems in the conjugate of a Banach

space.

2. Frames and Ed-Riesz bases

P. A. Terekhin [17, 18] introduced and studied the notion of frames for Banach

spaces.

Definition 2.1. [17, 18] Let E be a Banach space and Ed be a BK-space which has a

sequence of canonical unit vectors {en} as Schauder basis. A sequence {xn}
∞
n=1\{0} ⊆

E is called a frame for E with respect to Ed if
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(1) {f(xn)} ∈ Yd for all f ∈ E∗,

(2) there exist constants A and B with 0 < A ≤ B < ∞ such that

A‖f‖E∗ ≤ ‖{f(xn)}‖Yd
≤ B‖f‖E∗, for all f ∈ E∗.(2.1)

We refer (2.1) as the frame inequalities. If atleast (1) and the upper bound condition

in (2.1) are satisfied, then {xn} is called Bessel sequence for E with respect to Ed.

In the following result, we give the necessary and sufficient conditions for the

existence of frames in Banach spaces.

Theorem 2.1. {xn}
∞
n=1 ⊆ E is a frame for E with respect to Ed if and only if there

exists a bounded linear operator T : Ed → E from Ed onto E for which T (en) = xn,

for all n ∈ IN.

Proof. Let f ∈ E∗, B be upper bound of the frame {xn}. By Lemma 1.1, {f(xn)}={Φf(en)}

for some Φf ∈ E∗
d and ‖{f(xn)}‖Yd

= ‖Φf‖E∗
d
. Let n, m ∈ IN with n ≤ m and

{cn} ∈ Ed, then

‖

m∑

k=n

ckxk‖E = sup
f∈E∗,‖f‖=1

|

m∑

k=n

ckf(xk)|

= sup
f∈E∗,‖f‖=1

|

m∑

k=n

ckΦf (ek)|

= sup
f∈E∗,‖f‖=1

|Φf(
m∑

k=n

ckek)|

≤ sup
f∈E∗,‖f‖=1

‖Φf‖‖

m∑

k=n

ckek‖Ed

= sup
f∈E∗,‖f‖=1

‖{f(xn)}‖Yd
‖

m∑

k=n

ckek‖Ed

≤ B‖
m∑

k=n

ckek‖Ed
.
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Hence, T : Ed → E given by T {cn} =
∞∑

n=1

cnxn, {cn} ∈ Ed is well defined bounded

linear operator from Ed into E. Moreover, T (en) = xn, for all n ∈ IN. By Lemma

1.1 and for f ∈ E∗ we have

‖{f(xn)}‖Yd
= ‖{f(T (en))}‖Yd

= ‖{T ∗(f)(en)}‖Yd
= ‖T ∗f‖E∗

d

and from the frame inequalities we have T ∗ is one-one and T ∗(E∗) is closed. Thus

by [13, Theorem 4.15, p. 103], T is onto.

Conversely, let T : Ed → E be well defined bounded linear operator from Ed onto

E with T (en) = xn, for all n ∈ IN. So T ∗ is one-one and T ∗(E∗) is closed by [13,

Theorem 4.15, p. 103]. Again, by [6, Lemma 1, p. 487], there exists constant C > 0

such that ‖f‖ ≤ C‖T ∗(f)‖ for all f ∈ E∗. Let f ∈ E∗. Also

{f(xn)} = {f(T (en))} = {T ∗f(en)} ∈ Yd.

Then, by using Lemma 1.1 and for f ∈ E∗ we have

‖f‖E∗ ≤ C‖T ∗(f)‖E∗
d

= ‖{T ∗f(en)}‖Yd
= ‖{f(T (en))}‖Yd

= ‖{f(xn)}‖Yd
.

To show the upper inequality,

‖{f(xn)}‖Yd
= ‖{T ∗f(en)}‖Yd

= ‖T ∗(f)‖E∗
d
≤ ‖T ‖‖f‖E∗, for all f ∈ E∗.

Hence, {xn} is a frame for E. �

Note that, {xn} is a Bessel sequence for E if and only if T : Ed → E is a well

defined bounded linear operator from Ed into E for which T (en) = xn, for all n ∈ IN.

The operator T is called the synthesis operator associated to Bessel sequence {xn}

and bounded linear operator R : E∗ → Yd given by

R(f) = {f(xn)}, for f ∈ E∗.
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is called the analysis operator associated to Bessel sequence {xn}. As in Lemma

1.1, Yd is isometrically isomorphic to E∗
d . So, let Jd : Yd → E∗

d be isometrically

isomorphism from Yd onto E∗
d . Therefore, T ∗ = Jd ◦ R.

Remark 1. Every Ed-Riesz basis is a frame for E with respect to Ed. This is very

clear from Lemma 1.3 and Theorem 2.1.

Next, we give the equivalent conditions for a sequence {xn}
∞
n=1 ⊆ E to be an

Ed-Riesz basis in Banach spaces.

Proposition 2.1. Let {xn}
∞
n=1 ⊆ E. Then, the following conditions are equivalent.

(1) {xn} is an Ed-Riesz basis for E.

(2) There exists an isomorphism T from Ed onto E for which T (en) = xn, for all

n ∈ IN.

(3) {xn} is a Schauder basis for E and
∑
n

anxn converges if and only if {an} ∈ Ed.

(4) {xn} is complete in E and there exist constants 0 < A ≤ B < ∞ such that

for every finite sequence of scalars c1, c2, ..., cn, we have

A‖{ck}
n
k=1‖Ed

≤ ‖
n∑

k=1

ckxk‖E ≤ B‖{ck}
n
k=1‖Ed

(5) {xn} is a complete Bessel sequence in E and possesses a biorthogonal system

{fn} ⊆ E∗ which is also an Ed-Bessel sequence and total over E i.e. [̃fn] = E∗.

Proof. (1) ⇔ (2) Follows from Lemma 1.3.

(2) ⇒ (5) By given hypothesis, {xn} is a frame for E and {xn} is complete. Let {ln}

be sequence of coordinate functionals on Ed and take fn = (T−1)∗ln, n ∈ IN. Now

for x ∈ E, we have fn(x) = ln(T−1(x)), n ∈ IN. So, {fn(x)} = T−1(x) ∈ Ed, for all

x ∈ E. Moreover,

‖{fn(x)}‖Ed
= ‖T−1(x)‖Ed

≤ ‖T−1‖‖x‖E, for all x ∈ E.
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To show biorthogonality, let i, j ∈ IN we have

fi(xj) = liT
−1(xj) = li(T

−1T (ej) = li(ej) = δij.

Finally, let x ∈ E and fn(x) = 0 for all n ∈ IN. Then, T−1(x) = 0 which implies that

x = 0. Hence, [̃fn] = E∗.

(5) ⇒ (2) Since, {xn} is a complete Bessel sequence and its synthesis operator T

given by T ({an}) =
∞∑

n=1

anxn is well defined bounded linear operator from Ed into

E. Also {fn(x)} ∈ Ed, for all x ∈ E. Let x ∈ E and let z =
∞∑

n=1

fn(x)xn. So, for

any j ∈ IN we have fj(z) =
∞∑

n=1

fn(x)fj(xn) = fj(x). Therefore fj(z − x) = 0 for all

j ∈ IN. Since, {fn} is total over E, so x = z. Thus,

x =

∞∑

n=1

fn(x)xn = T ({fn(x)}), for all x ∈ E.

That shows T is onto. To show one-one, let T ({an}) =
∞∑

n=1

anxn = 0. Take any

j ∈ IN. Then, fj(
∞∑

n=1

anxn) = 0. From here aj = 0, for all j ∈ IN. Hence, T is an

isomorphism from Ed onto E.

(4) ⇒ (3) Take cn = 1 and cj = 0 if j 6= n. So, 0 < A ≤ ‖xn‖ which shows

xn is non zero for all n ∈ IN. Take any finite sequence of scalars c1, c2, ..., cn. Let

N, M ∈ IN with N ≤ M , then

‖

N∑

k=1

ckxk‖E ≤ B‖

N∑

k=1

ckek‖Ed
≤ B‖

M∑

k=1

ckek‖Ed
≤

B

A
‖

M∑

k=1

ckxk‖E.

Also, span{xn}
∞
n=1 = E. Thus, {xn} is a Shauder basis for E. It remains to show

that
∑
n

anxn converges if and only if {an} ∈ Ed. For this, take N, M ∈ IN with

N ≤ M

A‖
M∑

k=N

akek‖Ed
≤ ‖

M∑

k=N

akxk‖E ≤ B‖
M∑

k=N

akek‖Ed
.
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From here it clearly shows that
∑
n

anxn converges if and only if {an} ∈ Ed.

(3) ⇒ (2) By the given conditions, Schauder basis {xn} is equivalent to Schauder

basis {en}. So there exists an isomorphism T from Ed onto E such that T (en) = xn,

for all n ∈ IN.

(2) ⇒ (4) As {T (en) = xn} is a Schauder basis for E, so {xn} is complete in E. Let

c1, c2, ..., cn be any n scalars. Then

‖{ck}
n
k=1‖Ed

= ‖T−1T ({ck}
n
k=1)‖Ed

≤ ‖T−1‖‖
n∑

k=1

ckxk‖E,

‖

n∑

k=1

ckxk‖E = ‖T ({ck}
n
k=1)‖E ≤ ‖T‖‖({ck}

n
k=1)‖Ed

.

�

In the following theorem, we give the characterization of Riesz bases from frames

in Banach spaces.

Theorem 2.2. Let {xn} be a frame for E with respect to Ed and T be its synthesis

operator. Then, the following conditions are equivalent.

(1) {xn} is an Ed-Riesz basis for E.

(2) T is one-one.

(3) {xn} is a Schauder basis for E.

(4) {xn} has unique biorthogonal system {fn} ⊆ E∗.

(5) If
∞∑

n=1

dnxn = 0 for some {dn}
∞
n=1 ∈ Ed, then dn = 0 for all n ∈ IN.

(6) {xn} is minimal, that is xj /∈ span{xn}n6=j.

Proof. (1) ⇔ (2) Obvious.

(2) ⇒ (3) Since, {en} is a Schauder basis for Ed and T is an isomorphism from Ed

onto E. So, {xn} = {T (en)} is a Schauder basis for E.
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(2) ⇒ (4) Let {ln} ⊆ E∗
d be sequence of coordinate functionals on Ed. Take fn =

(T −1)∗ln ∈ E∗, for n ∈ IN. So that

fn(xj) = (T −1)∗ln(xj) = lnT
−1(xj) = lnT

−1T (ej) = ln(ej) = δnj.

(4) ⇒ (3) Let {fn}
∞
n=1 ⊂ E∗ be a sequence which is unique biorthogonal system to

{xn}. But for any x ∈ E, x =
∞∑

n=1

αnxn, {αn} ∈ Ed. Therefore, fn(x) = αn, for all

n ∈ IN. Thus, {xn} is a Schauder basis for E.

(3) ⇒ (4) Obvious.

(2) ⇔ (5) Obvious.

(4) ⇔ (6). Follows from [11, Lemma 5.4, p. 155]. �

Definition 2.2. A frame {xn} ⊆ E is called a near Ed-Riesz basis for E if there

exists a finite subset σ of IN for which {xn}n∈IN\σ
is an Ed-Riesz basis for E.

Next, we give the following characterization of near Ed-Riesz bases in Banach

spaces. This result generalizes the result due to Holub [12, Theorem 2.4], let {xn}
∞
n=1

be a frame in Hilbert space H and Q : l2 → H be the associated preframe operator.

Then, kerQ is finite dimensional ⇔ {xn}
∞
n=1 is a near-Riesz basis for H.

Theorem 2.3. Let {xn} be a frame for E with respect to Ed and T be the associated

synthesis operator. Then, kerT is finite dimensional if and only if {xn} is a near

Ed-Riesz basis for E.

Proof. Let kerT be finite dimensional subspace of Ed. So, there exists a complemented

subspace M of Ed such that Ed = M ⊕ kerT . And let Q be projection from Ed onto

M and IEd
− Q is a projection from Ed onto kerT . Define Γ : Ed → E ⊕ kerT as

Γ(α) = (T (α), (IEd
− Q)(α)), for α ∈ Ed.

Then, Γ is an isomorphism from Ed onto E ⊕ kerT by [18, Theorem 2]. Let {en}

be sequence of canonical unit vectors as Schauder basis of Ed and take yn = Γ(en),
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for all n ∈ IN. Then, {yn} is a Schauder basis of E ⊕ kerT . Let P be projec-

tion from E ⊕ kerT onto E. By the construction of Γ, we have T = PΓ. Thus

xn = T (en) = P (Γ(en)) = P (yn), n ∈ IN. Let dim(kerT )=N, by [1, Theorem 2]

there exists a finite subset σ = {k1, k2, k3, ..., kN} of IN, where ki 6= kj at i 6= j for

which {P (yn)}n∈IN\σ
is a Schauder basis for E. Thus, by Theorem 2.2, {xn}n∈IN\σ

is a Ed-Riesz basis for E. Hence, {xn}
∞
n=1 is near Ed-Riesz basis for E.

For the converse, let us assume that KerT is infinitely dimensional subspace of Ed

and let {un}
∞
n=1 be the basis of kerT . By given hypothesis, there exists a finite subset

σ of IN such that {xn}n∈IN\σ
is a Riesz basis. So, by Theorem 2.2, T |[en]

n∈IN\σ

is an iso-

morphism from [en]
n∈IN\σ

onto [xn]
n∈IN\σ

= E. But codim([en]
n∈IN\σ

)=card(σ)=k<

∞. By [14, Lemma 4.1, p. 268], there exists a non zero element u ∈ [en]
n∈IN\σ

∩

[un]
k+1
n=1. But, [un]

k+1
n=1 ⊂ kerT . Thus, T |[en]

n∈IN\σ

(u) = T (u) = 0. That gives us u = 0,

which is a contradiction. Hence, kerT is finite dimensional subspace of Ed. �

Corollary 2.1. Let {xn} be a frame for E with respect to Ed for which {xn}n∈IN\σ

is an Ed-Riesz basis for some finite subset σ of IN and T be the synthesis operator of

{xn}. Then, card(σ)=dim(kerT ).

Proof. From Theorem 2.3, {yn} is a Schauder basis of E ⊕ kerT and {xn}n∈IN\σ

is a Schauder basis for E. Thus, [yn] = [xn]
n∈IN\σ

⊕ kerT . Therefore, card(σ) =

dim(kerT ). �

Remark 2. Let {xn} be near Ed-Riesz basis and T be its associated synthesis operator,

then T is a Fredholm operator. By Theorem 2.3, kerT is finitely dimensional. But,

kerR = kerT ∗ and from frame inequalities kerT ∗ = {0}. Also T is bounded linear

operator from Ed onto E. Hence, T is Fredholm operator.
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3. Atomic systems

The notion of a family of local atoms for a closed subspace H0 of a Hilbert space H

is introduced in [8]. We generalize this notion and define atomic system for Banach

spaces.

Definition 3.1. Let E be a Banach Space and Ed be a BK-space which has a sequence

of canonical unit vectors {en} as Schauder basis. A Bessel sequence {xn}
∞
n=1\{0} ⊆ E

for E with respect to Ed is called an atomic system for E with respect to Ed if there

exists an Ed-Bessel sequence {fn} ⊆ E∗ for E such that for every x ∈ E, we have

x =
∞∑

n=1

fn(x)xn. We shall call {fn} as the associated Ed-Bessel sequence for atomic

system {xn}.

Remark 3. An atomic system for E with respect to a BK-space Ed is a frame for E

with respect to Ed. By definition, there exists an Ed-Bessel sequence {fn} ⊆ E∗ with

bound D and satisfying x =
∞∑

n=1

fn(x)xn, for all x ∈ E. So, for f ∈ E∗ we have

‖f‖E∗ = sup
x∈E,‖x‖=1

|f(
∞∑

n=1

fn(x)xn)| ≤ sup
x∈E,‖x‖=1

D‖x‖E‖{f(xn)}‖Yd

= D‖{f(xn)}‖Yd
.

Thus, {xn} is a frame for E with respect to Ed.

Remark 4. It is observed that every frame {xn} for Hilbert space H is an atomic

system. However, every frame for Banach need not be atomic system, that we will

show later.

In the following, we shall show that every Ed-Riesz basis for E is an atomic system

for E.
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Theorem 3.1. Every Ed-Riesz basis {xn} for E is an atomic system.

Proof. Let A, B be bounds of an Ed-Riesz basis {xn}. Obviously, {xn} is a frame

and its synthesis operator T is an isomorphism from Ed onto E. Take fn = (T −1)∗ln,

n ∈ IN and {ln}
∞
n=1 be sequence of coordinate functionals on Ed. For x ∈ E we have

fn(x) = (T −1)∗ln(x) = ln(T −1(x)), for all n ∈ IN.

So, {fn(x)} = T −1(x) ∈ Ed, for all x ∈ E. Moreover,

‖{fn(x)}‖Ed
= ‖T −1(x)‖Ed

≤ ‖T −1‖‖x‖E ≤ A−1‖x‖E, for all x ∈ E.

Also, x = T T −1(x) = T ({fn(x)}) =
∞∑

n=1

fn(x)xn, for all x ∈ E. �

Next, we give the following characterization of atomic systems.

Theorem 3.2. Let {xn} be frame for E with respect to Ed and T be its associated

synthesis operator, then the following are equivalent.

(1) {xn} is an atomic system.

(2) T has pseudoinverse T †.

(3) kerT is complemented subspace of Ed.

(4) T ∗(E∗) is complemented subspace of E∗
d .

(5) R(E∗) is complemented subspace of Yd

(6) T ∗ has pseudoinverse T ∗†.

(7) There exists a complemented subspace M of Ed with T Q(Ed) = E, where Q

is a projection from Ed onto M and positive constants 0 < A ≤ B < ∞ such

that

A‖{αn}‖Ed
≤ ‖

∑

n

αnxn‖E ≤ B‖{αn}‖Ed
, for all {αn} ∈ M.
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Proof. (1) ⇒ (2) By given hypothesis, there exists an Ed-Bessel sequence {fn} ⊆ E∗

such that

x =

∞∑

n=1

fn(x)xn, for all x ∈ E.

Let U : E → Ed be the associated analysis operator of Ed-Bessel sequence {fn} given

by U(x) = {fn(x)}, x ∈ E. Then, T U = IE and T UT = T . Hence, T has pseudoin-

verse.

(2) ⇒ (1) T T † is a projection from E onto T (Ed) = E. So T T † = IE. Take

fn = (T †)∗(ln), n ∈ IN, where {ln} ⊆ E∗
d is a sequence of coordinate functionals on

Ed. So, for x ∈ E, we have

fn(x) = (T †)∗(ln(x)) = ln(T †(x)).

This gives {fn(x)} = T †(x) ∈ Ed, for all x ∈ E. Further

‖{fn(x)}‖Ed
≤ ‖T †‖‖x‖E, for all x ∈ E.

Thus, {fn} is an Ed-Bessel sequence for E. Also, for x ∈ E, we have

x = T T †(x) = T ({fn(x)}) =
∞∑

n=1

fn(x)xn.

Hence, {xn} is an atomic system for E.

(2) ⇔ (6) Straight forward.

(4) ⇔ (5) Straight forward.

(2) ⇔ (3) Since T (Ed) = E, by Lemma 1.2, the equivalence follows.

(4) ⇔ (6) Since kerT ∗ = {0}, by Lemma 1.2, the equivalence follows.

(3) ⇒ (7) By given hypothesis we have Ed = M⊕kerT , where M is a closed subspace

of Ed. Let T1 : M → E is restriction of T to M . By [16, Theorem 6.3, p. 29], T1 is
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an isomorphism from M onto E. So, for {αn} ∈ M we have

‖{αn}‖Ed
= ‖T−1

1 T1({αn})‖Ed
≤ ‖T−1

1 ‖‖T1({αn})‖E = ‖T−1
1 ‖‖

∑

n

αnxn‖E.

Also,

‖
∑

n

αnxn‖E = ‖T1({αn})‖E ≤ ‖T1‖‖{αn}‖Ed
, for all {αn} ∈ M.

(7) ⇒ (2) Let T1 : M → E as restriction of T to M . Then, T1({αn}) =
∑
n

αnxn, for

{αn} ∈ M . From the given condition, T1 is invertible and T = T1Q. Thus,

T T−1
1 T (α) = T1QT−1

1 T1Q(α) = T1Q
2(α) = T (α), for all α ∈ Ed.

Hence, T has pseudoinverse. �

Remark 5. A near Ed-Riesz basis for a Banach space E is an atomic system.

A Banach space X is said to be primary if each of its infinite-dimensional comple-

mented subspace is isomorphic to X.

Theorem 3.3. Let Ed be primary BK-space. Let E be not isomorphic to Ed. Then,

none of the frames {xn} for E with respect to Ed is an atomic system.

Proof. On the contrary, let {xn} be an atomic system. So by Theorem 3.2, Ed =

kerT ⊕M , where M is a closed subspace of Ed. Moreover, from the proof of Theorem

3.2, the restriction of T on M , T : M → E is an isomorphism from M onto E. But

M is isomorphic to Ed. Thus, E is isomorphic to Ed which is a contradiction. Hence,

{xn} is not an atomic system. �

Now, we will show that a frame need not be an atomic system. We give the

following example.
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Example 3.1. Let E = L[0, 1] be the Lebesgue space. We extend each function

φ ∈ L[0, 1] beyond the unit interval by zero. Define

φn(t) = φj,k(t) = 2jφ(2jt − k), n ∈ IN,

where j=0,1,2,... and k = 0, 1, ..., 2j −1 are such that n = 2j +k. In [18, Example 1],

it is shown that system of functions {φn(t) : t ∈ [0, 1]} is a frame for E with respect to

Ed = l1. But l1 is a primary Banach space which is not isomorphic to L[0, 1]. Hence,

by Theorem 3.3, this system of functions {φn(t) : t ∈ [0, 1]} is not an atomic system

for E with respect to l1.

In the following, we shall show that an atomic system for E is a projection of an

Ed-Riesz basis of an ambient Banach space containing E.

Theorem 3.4. Let {xn}
∞
n=1 ⊆ E. Then {xn} is an atomic system for E with respect

to Ed if and only if there exist a Banach space Z with E as its complemented subspace

and Riesz basis {yn} for Z such that P (yn) = xn for all n ∈ IN, where P is a projection

from Z onto E.

Proof. Let {xn} be an atomic system for E and T be its synthesis operator. By

Theorem 3.2, kerT is a complemented subspace of Ed. So, Ed = M ⊕ kerT , where

M is a closed subspace of Ed and let Q be a projection from Ed onto M . Take

Z = E ⊕ kerT . From Theorem 2.3, a map Γ : Ed → E ⊕ kerT defined by Γ(α) =

(T (α), (IEd
−Q)(α)) for α ∈ Ed is an isomorphism from Ed onto Z. Take yn = Γ(en),

for n ∈ IN. So, {yn} is a Schauder basis of Z and span{yn}
∞
n=1 = Z. Let α = {αn} ∈

Ed and we have

‖α‖Ed
= ‖Γ−1Γ(α)‖Ed

≤ ‖Γ−1‖‖Γ(α)‖Z = ‖Γ−1‖‖
∞∑

n=1

αnyn‖Z .
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Also,

‖

∞∑

n=1

αnyn‖Z = ‖Γ(α)‖Z ≤ ‖Γ‖‖α‖Ed
, for all α ∈ Ed.

Thus, {yn} is a Ed-Riesz basis for E. Let P be projection from Z onto E. We know

that T (en) = xn, for all n ∈ IN. From the definition of Γ, we have T = PΓ. Hence,

xn = T (en) = PΓ(en) = P (yn), for all n ∈ IN.

Conversely, let Z = E ⊕ W , where W is a closed subspace of Z. Let {yn} be

Ed-Riesz basis for Z with bounds A, B and P (yn) = xn, for all n ∈ IN. Then, by

Proposition 2.1 there is an isomorphism Γ : Ed → Z from Ed onto Z such that

Γ(en) = yn, for all n ∈ IN. Define T : Ed → E as T = PΓ. So, T is surjective and

T (en) = PΓ(en) = P (yn) = xn, for all n ∈ IN. By Theorem 2.1, {xn} is a frame for

E and T is the synthesis operator. Let S : E → Ed be the restriction of Γ−1 to E.

Then,

TST = PΓΓ−1PΓ = P 2Γ = PΓ = T.

Thus, S is the pseudoinverse of T . By Theorem 3.2, {xn} is an atomic system. �

Next, we discuss dual atomic system of a given atomic system {xn} analogue to

that of the dual frame in Hilbert spaces. That is, if {xn} is an atomic system for E

with {fn} as its associated Ed-Bessel sequence and E∗
d has a sequence of canonical

unit vectors {e∗n} as Schauder basis. Then, {fn} is an atomic system for E∗ with

respect to Yd and (fn, π(xn)) is an atomic decomposition for E∗ with respect to Yd.

In the following, we give duality results of a given atomic system {xn}.

Theorem 3.5. Let E∗
d has a sequence of canonical unit vectors {e∗n} as Schauder

basis and {xn} ⊆ E. Then,

(1) if {xn} is an atomic system for E with respect to Ed and {fn} ⊆ E∗ be its

associated Ed-Bessel sequence, then {fn} is an atomic system for E∗ with

respect to Yd.
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(2) {xn} be an atomic system for E with respect to Ed if and only if there exists

an Ed-Bessel sequence {fn} ⊆ E∗ such that (fn, π(xn)) is an atomic decom-

position for E∗ with respect to Yd.

Proof. (1) By given hypotheses, {xn} is a Bessel sequence for E with respect to Ed

and

x =
∞∑

n=1

fn(x)xn, for all x ∈ E.

Let T be the associated synthesis operator of {xn} and U be the associated analysis

operator of {fn}. Then, I = T U . So I∗ = U∗T ∗ and f = U∗T ∗(f), for all f ∈ E∗.

Therefore, U∗ : E∗
d → E∗ is surjective. Define V : Yd → E∗ as V = U∗Jd. Obviously,

{J−1
d (e∗n)}∞n=1 is basis of Yd and V is also sujective. Also, for n ∈ IN we have

U∗e∗n(x) = e∗n(U(x)) = e∗n({fn(x)}) = fn(x), for all x ∈ E.

Thus, fn = U∗e∗n and V (J−1
d e∗n) = fn, for all n ∈ IN. Since V is surjective, so for any

f ∈ E∗ there exists α = {αn} ∈ Yd such that f = V (α) and

f = V (α) = V (

∞∑

n=1

αnJ−1
d (e∗n)) =

∞∑

n=1

αnU∗JdJ
−1
d (e∗n) =

∞∑

n=1

αnfn.(3.1)

By Theorem 2.1, {fn} is a frame for E∗ with V as its synthesis operator. Moreover,

V J−1
d T ∗V = U∗JdJ

−1
d T ∗U∗Jd = U∗Jd = V

Thus, V has pseudoinverse V † and by Theorem 3.2, {fn} is an atomic system for E∗

with respect to Yd.

(2) Since, {xn} is an atomic system, so {xn} is a frame for E. Let {fn} be its

associated Ed-Bessel sequence with bound C. As in Proof (1), we have I∗
E∗ = U∗T ∗ =

U∗JdR and {J−1
d (e∗n)} is a basis of Yd. Now, for any f ∈ E∗ we have

f = U∗T ∗(f) = U∗JdR(f) = U∗Jd({f(xn)}(f) =
∞∑

n=1

f(xn)U∗JdJ
−1
d (e∗n).
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Hence,

f =

∞∑

n=1

f(xn)fn, for all f ∈ E∗.(3.2)

Conversely, since (fn, π(xn)) is an atomic decomposition of E∗ with respect to Yd, so

there exist constants 0 < A ≤ B < 0 such that

A‖f‖E∗ ≤ ‖{f(xn)}‖Yd
≤ B‖f‖E∗, for all f ∈ E∗,

and

f =
∞∑

n=1

f(xn)fn, for all f ∈ E∗.

Also, {fn(x)} ∈ Ed, for all x ∈ E. Let x ∈ E and N ∈ IN. Then

‖x −
N∑

k=1

fk(x)xk‖E = sup
f∈E∗,‖f‖=1

|
∞∑

k=N+1

fk(x)f(xk)|

≤ B‖

∞∑

k=N+1

fk(x)ek‖Ed
→ 0 as N → ∞

Hence, x =
∞∑

n=1

fn(x)xn, for all x ∈ E. �

In [18], P. A. Terekhin discussed an analogue of the extremality property of frame

expansion in E. We shall discuss such similar property in the conjugate space E∗

from a given atomic system. A closed subspace F in a Banach space E is said to

be 1-complemented or constrained, if F is the range of a norm one projection on E.

In the following result, we characterize 1-complemented subspace of Yd in term of an

atomic system for E.

Theorem 3.6. Let E∗
d has a sequence of canonical unit vectors {e∗n} as Schauder

basis. Let {xn} be frame for E. Then, the following conditions are equivalent.

(1) R(E∗) is 1-complemented subspace of Yd.
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(2) {xn} is an atomic system for E such that among all {αn} ∈ Yd for which the

representation (3.1) holds, the sequence {f(xn)} of the coefficients of expan-

sion (3.2) has minimum Yd norm,

‖{f(xn)}‖Yd
≤ ‖{αn}‖Yd

.(3.3)

Proof. (2) ⇒ (1) By Theorem 3.2, R(E∗) is a complemented subspace of Yd. Let

{fn} be its associated Ed-Bessel sequence. As proved in Theorem 3.5, we have

IE∗ = U∗T ∗ = U∗JdJ
−1
d T ∗ = V R

So, V = V RV and R = RV R. Indeed, Q = RV is a projection from Yd onto R(E∗)

and Yd = R(E∗)⊕ kerRV . It is obvious that kerV ⊆ kerRV . Let α ∈ kerRV , then

RV (α) = 0. So, V RV (α) = 0 and V (α) = 0. Thus, Yd = kerV ⊕R(E∗). Let α ∈ Yd,

then α = α0 + Q(α), where α0 ∈ kerV and Q(α) ∈ R(E∗). Moreover, Q(α) = R(f)

for some f ∈ E∗ and

f = V R(f) = V Q(α) = V (α − α0) = V (α),

which satisfies (3.1). Thus, ‖Q(α)‖Yd
= ‖R(f)‖Yd

≤ ‖α‖Yd
. Therefore, ‖Q‖ = 1.

Hence R(E∗) is 1-complemented subspace of Yd.

(1) ⇒ (2) By Theorem 3.2, {xn} is an atomic system for E. Also, there exists a

projection Q from Yd onto R(E∗) and ‖Q‖ = 1. Take an arbitrary element α =

{αn} ∈ Yd which satisfies the representation (3.1). Then, f = V (α), for f ∈ E∗.

As shown above that E∗
d = kerV ⊕ R(E∗). Let α = α0 + Q(α), for α0 ∈ kerV and

Q(α) ∈ R(E∗). Then, Q(α) = f 1, for some f 1 ∈ E∗. Also, as shown above

f 1 = V R(f 1) = V (Q(α)) = V (α) = f.

Thus, Q(α) = R(f). Finally, we have

‖{f(xn)}‖Yd
= ‖R(f)‖Yd

= ‖Q(α)‖ ≤ ‖Q‖‖α‖Yd
= ‖α‖Yd

.
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