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Bα,β-OPERATOR AND FITZPATRICK FUNCTIONS

AYED E. HASHOOSH AND MOHSEN ALIMOHAMMADY

Abstract. In this paper, we introduce Bα,β- operator as a new techniqne to gen-

eralize Fitzpatrick functions. We study the properties of this new operator, such

as convexity, weak ∗-closedness, locally boundedness and Fenchel duality. Further-

more, we present new concept that is Cαn -monotone bifunction. By the application

of the new operator, we prove that

ψβ,n(x, x∗) = 〈x∗, x〉 ∀(x, x∗) ∈ G(Bα,β),

for each n ≥ 2. This equation is a generalization for a known result which is studied

by many researchers.

1. Introduction

In recent years, Fitzpatrick function became a major tool for the connection be-

tween maximal monotone theory and convex analysis. The use of monotone and

maximal monotone operators have been found to provide very powerful techniques

for studying problems in various branches of applied mathematics, such as opti-

mization, variational inequality, Nash equilibria, and partial differential equation.

[6, 9, 13, 14, 16, 22, 23] and [24].
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Fitzpatrick function was also used to study the n-cyclically monotone operator, as

seen in [5] , to be an extension of the monotone operator introduced by Fitzpatrick

in [16]. It is believed that this approach has an robust role in this area.

In this work, we suppose that E is a real Banach space with dual E∗. The a

multivalued mapping T : E ( E∗ is said to be a monotone operator, provided

that 〈x∗ − y∗, x− y〉 ≥ 0 for each x, y ∈ domT , x∗ ∈ T (x) and y∗ ∈ T (y), where

domT = {x ∈ E : Tx 6= ∅} its domain, and the graph of the operator T is G(T ) =

{(x, x∗) ∈ E ×E∗ : x∗ ∈ T (x)}. We suppose that α, β : C ×C → R∪ {+∞} are two

bifunctions, where C is an arbitrary subset of E.

Monotone bifunctions were introduced in the seminal paper by Blum and Oettli

[8], while it is studied and generalized by several authors [1, 3, 7, 12, 17, 19] and [18].

In fact β is monotone bifunction if

β(x, y) + β(y, x) ≤ 0 (∀x, y ∈ C).

It is worth mentioning that Monotone bifunctions were mainly studied in conjunc-

tion with the so- called equilibrium problem, which includes variational inequalities

as special cases. For example, find x1 ∈ C such that

β(x1, x) ≥ 0 (∀x ∈ C).

This paper is divided into four sections. In addition to the introduction, in Section

2, we refer to some definitions that will assist us in the study. Section 3 introduces the

new operator Bα,β and analyse their properties. In Section 4, we introduce the appli-

cation of the new type of operator generalizing some results of a Fitzpatrick functions.

In addition, the concepts of the class Cα
n -monotone bifunction are introduced.

The aim of the work is to present various new results concerning Bα,β- operator, as

well as to establish a new technique of generalizing the result of Fitzpatrick function.
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2. Explaining Notions and Definitions

It is important that we recall some relevant notions to our study by referring to

some definitions. These definitions help us to find out the main results of the study.

Definition 2.1. ([16, Definition 3.1, p. 61]) Let A : E ( E∗ be multivalued map.

The Fitzpatrick function of A is βA(x, x∗) : E × E∗ →]−∞,+∞]

(2.1) (x, x∗) 7→ sup
(y,y∗)∈G(A)

(〈x, y∗〉+ 〈y, x∗〉 − 〈y, y∗〉).

The above function is obviously convex and lower semicontinuous, where topology

of E×E∗ is weak×weak∗ [16]. Moreover, the Fitzpatrick function has been essentially

a key note tool in the study of monotone bifunctions in the resent years [3, 5] and

[10].

Definition 2.2. ([4, Definition 5, p.7]) Suppose that E is a Banach space. Then, a

map T : E ( E∗ is said locally bounded at x0 ∈ E, if there exist ε > 0 and m > 0,

such that ‖x∗‖ ≤ m, ∀x∗ ∈ T (x) and x ∈ B(x0, ε).

Definition 2.3. ([17, Section 5, p.13]) A bifunction β is called cyclically monotone,

if

(2.2)
n∑
i=1

β(xi, xi+1) ≤ 0(∀x1, · · ·, xn+1 ∈ C),

where xn+1 = x1.

Definition 2.4. Assume that E is a Banach space and that f : E → R ∪ {+∞} is

a function. Then

i) The Fenchel-Moreau conjugate f ∗ : E∗ → R of f is defined by

f ∗(x∗) = sup
x∈E
〈x∗, x〉 − f(x).
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ii) The (Fenchel) subdiferential ∂f(x) : E ( E∗ of f is defined by

∂f (x) =

 x∗ ∈ E∗ : f(y)− f(x) ≥ 〈x∗, y − x〉 ,∀y ∈ E, iff(x) ∈ R

∅ iff(x) /∈ R.

iii) For ε ≥ 0, the ε− subdifferential ∂fε(x) : E ( E∗ of f, which is introduced, in [20] is

defined as

∂fε (x) =

 x∗ ∈ E∗ : f(y)− f(x) ≥ 〈x∗, y − x〉 − ε,∀y ∈ E, iff(x) ∈ R

∅ iff(x) /∈ R.
.

Here, we shall recall a new type of monotone operators introduced in [2] is called

it α-monotone,

Definition 2.5. Assume that T : E ( E∗ and α : domT × domT → R are two

maps. T is considered to be α - monotone, if for each x, y ∈ domT , x∗ ∈ T (x) and

y∗ ∈ T (y) such that

(2.3) 〈x∗ − y∗, x− y〉 ≥ α(x, y).

In 2016 Hashoosh et.al. introduced a new class of monotone bifunctions. It is

defined as follows:

Definition 2.6. ([2, Definition 1, p.1]) A bifunction β : C × C → R is called α-

monotone, if

(2.4) β(x, y) + β(y, x) + α(x, y) ≤ 0 (∀x, y ∈ C).

Example 2.1. Let E = R, K = R and let β : K ×K → R be bifunction defined by

β(u, v) = cos(u− v)2 + (u− v)2,

for all u, v ∈ K. Then

β(u, v) + β(v, u) = 2 cos(u− v)2 + 2(u− v)2 
 0,
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where u 6= v. Therefore β is not monotone bifunction.

But, it easy to see that β is α-monotone bifunction with α(u, v) = −5(u − v)2. In

fact,

β(u, v) + β(v, u) = 2 cos(u− v)2 + 2(u− v)2

≤ 5(u− v)2

= −α(u, v).

The orginal definition of monotone bifunction is introduced in [9] and generalized

by several authers [10, 11] and [13].

Proposition 2.1. ([17, Proposition 5.1, p.13]) Assume that E is a vector space,

φ 6= C ⊆ E, and G: C ×C → R is a bifunction. Then, G is a cyclically monotone, iff

there exists a function f : C → R, such that

(2.5) G(x, y) ≤ f(y)− f(x) ∀x, y ∈ C.

Definition 2.7. Let E be a Banach space. A mapping Λ : X → R is said to be

lower semicontinuous (for short ,(l.s.c)) at x0 ∈ E, if

Λ(x0) ≤ lim inf
n

Λ(xn),

for any sequence xn of E such that xn → x0.

3. Bα,β -operator and Fenchel duality

In this section, we introduce the class of Bα,β -operators with their properties, such

as convexity, weak∗-closedness and locally boundedness of Bα,β. In addition, we are

going to prove two results by using Fenchel duality.
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Definition 3.1. Let α, β : C × C → R be two bifunctions, where C is an arbitrary

subset of a Banach space E. The map Bα,β : E ( E∗ is given by

Bα,β (x) =

 x∗ ∈ E∗ ifβ(y, x) + 〈x∗, x〉 ≥ 〈x∗, y〉+ α(y,x)
2 (∀y ∈ C)

∅ ifx /∈ C.
(3.1)

Theorem 3.1. Assume that β : C ×C → R is α-monotone bifunction. Then Bα,β is

α-monotone, where α(x, y) + α(y, x) = 0.

Proof. For x∗ ∈ Bα,β(x), y∗ ∈ Bα,β(y),

β(y, x) + 〈x∗, x− y〉 ≥ α (y, x)

2

β(x, y) + 〈y∗, y − x〉 ≥ α (x, y)

2
= −α (y, x)

2
.

Then,

β(y, x) + β(x, y) + 〈x∗ − y∗, x− y〉 ≥ 0

〈x∗ − y∗, x− y〉 ≥ −β(y, x)− β(x, y) ≥ α(y, x).

Therefore, Bα,β is α- monotone operator. �

Remark 1. In special case, one can easily check

i)Bα,β is monotone if α ≡ 0 or β is monotone bifunction.

ii)Bα,β = ∂f(x) if substituing β(x, y)− α(y,x)
2

= f(y)− f(x).

Here, we recall a new type of a subdifferential concept is called α− subdifferential,

denoted by ∂αf .

Definition 3.2. ([20, Definition 7, p.2]) Assume that E is a Banach space, and f :

E → R∪{+∞} is a proper function. One can say that x∗ ∈ E∗ is a α-subdifferential

of f in x ∈ domf = {x : f(x) <∞}, if f(y)− α(y,x)
2
≥ f(x) + 〈x∗, y − x〉 (∀y ∈ E)}.
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Remark 2. From definition 3.2, one can check ∂αf(x) = Bα,β(x) if β(y, x) = f(y) −

f(x).

It is known that the subdifferential of any function is monotone. However, this

fact for ∂αf(x) is extended.

Corollary 3.1. Let f be a function and α be symmetric; (i.e;α(x, y) = α(y, x) ∀x, y ∈

E). Then ∂αf(x) : E ( E∗ is α-monotone.

Proof. Let x∗ ∈ ∂αf(x) and y∗ ∈ ∂αf(y). From Definition 3.2

(3.2) x∗ ∈ ∂αf(x)⇐⇒ f(y)− α (y, x)

2
≥ f(x) + 〈x∗, y − x〉

(3.3) y∗ ∈ ∂αf(y)⇐⇒ f(x)− α (x, y)

2
≥ f(y) + 〈y∗, x− y〉

In adding (3.2) to (3.3), we get

−1
2
α (y, x)− 1

2
α (x, y) ≥ −〈x∗ − y∗, x− y〉

so,

〈x∗ − y∗, x− y〉 ≥ α(x, y).

�

From what has been given, one can easily check that if α is antisymmetric, then

∂αf(x) is monotone operator.

In what follows, we are going to study the weak ∗-closedness and the convexity of

Bα,β.

Theorem 3.2. Assume that β is a monotone bifunction. Then, Bα,β is convex and

weak ∗-closed for all x ∈ C, where C is a convex subset of E.
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Proof. Let z∗ =λx∗1 + (1− λ)x∗2, x
∗
1, x
∗
2 ∈ Bα,β(x), λ ∈ [0, 1].

Then for any y ∈ C,

〈z∗, y − x〉 = 〈λx∗1 + (1− λ)x∗2, y − x〉

= λ 〈x∗1, y − x〉+ (1− λ) 〈x∗2, y − x〉

≤ λ(β(y, x)− α (y, x)

2
) + (1− λ)(β(y, x)− α (y, x)

2
)

= β(y, x)− α (y, x)

2
.

This means that z∗ ∈ Bα,β(x). Therefore, Bα,β(x) is convex ∀x ∈ C.

To prove that Bα,β is weak ∗-closed, assume that y∗ ∈ (Bα,β(x))c ; (i.e, y∗ in the

complement of Bα,β(x)). There is y0 ∈ C, such that

β(y0, x) + 〈y∗, x− y0〉 < 1
2
α (y, x) .

Choose t0 in which β(y0, x)+〈y∗, x− y0〉 < t0 <
1
2
α (y0, x). Suppose that 〈y∗, x− y0〉 <

t0 − β(y0, x) = −t.

Suppose that U := {x∗ ∈ E∗ : 〈x∗, x− y0〉 < −t} is w∗− open [21]. If z∗ ∈ U , then

〈z∗, x− y0〉 < −t = t0 − β(y0, x). Therefore,

β(y0, x) + 〈z∗, x− y0〉 < t0 <
1

2
α(y0, x)

It means that z∗ ∈ (Bα,β(x))c, so U ⊂ (Bα,β(x))c. Therefore, (Bα,β(x))c is weak

∗-open, so Bα,β(x) is a weak ∗-closed. �

Theorem 3.3. Let β be a bifunction, and t, s ≥ 0 and t+ s = 1. Then,

(tBα,β1 + sBα,β2)(x) ⊆ Bα,tβ1+sβ2(x).

Proof. Let x∗ ∈ (tBα,β1 + sBα,β2)(x), x∗ = tx∗1 + sx∗2, where x∗1 ∈ Bα,β1(x) and x∗2 ∈

Bα,β2(x).

(3.4) β1(y, x) + 〈x∗1, x− y〉 ≥
1

2
α(y, x)
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(3.5) β2(y, x) + 〈x∗2, x− y〉 ≥
1

2
α(y, x)

when (3.4) is multiplied by t and (3.5) by s, and they are added together, we have

(tβ1 + sβ2)(y, x) + 〈tx∗1 + sx∗2, x− y〉 ≥
(t+s)
2
α (y, x) ,

so,

x∗ ∈ Bα,tβ1+sβ2(x).

It means that

(tBα,β1 + sBα,β2)(x) ⊆ Bα,tβ1+sβ2(x).

�

Theorem 3.4. Let α, β : C × C → R be two bifunctions on intC ∩ B (x0, ε) 6= ∅.

If β is bounded from above to a constant m and α is bounded below to m
2

. Then

Bα,β(x) is locally bounded at x0.

Proof. Assume that ε > 0,m ∈ R such that B (x0, ε) ⊂ C and β(y, x) 6 m and

α(y, x) ≥ m

2
∀x, y ∈ B(x0, ε). Suppose that x∗ ∈ Bα,β(x),

‖x− x0‖ ≤
ε

2
and ‖ w‖ ≤ 1.

Then, ∥∥∥x+
ε

2
w − x0

∥∥∥ ≤ ‖x− x0‖+
ε

2
‖w‖ ≤ ε

Put y = x+
ε

2
w. Therefore,

ε

2
〈x∗, w〉 = 〈x∗, y − x〉 ≤ β(y, x)− α(y, x)

2
≤ m− m

2
=
m

2
.

Then

‖ x∗ ‖≤ m
ε

. Hence, Bα,β is a locally bounded at x0. �

The following example shows that Bα,β may be unbounded.
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Example 3.1. Let x ∈ C and Let α, β : C × C → R be two bifunctions by

α(y, x) = 4 ‖ x− y ‖ and β(y, x) =‖ x− y ‖ .

If x∗ ∈ Bα,β(x), then

〈x∗, x− y〉 ≥ 1

2
α (y, x)− β(y, x) =‖ x− y ‖,

and

〈nx∗, x− y〉 ≥‖ x− y ‖ ∀n ≥ 1.

Hence, nx∗ ∈ Bα,β(x). Therefore, Bα,β(x) is unbounded.

For bifunctions β1, β2 and β : C × C → R, β1 + β2 is defined as follows:

(β1 + β2)(y, x) = β1(y, x) + β2(y, x).

Theorem 3.5. If α, β1 and β2: C × C → R are bifunctions, such that α(y, x) ≥

0 ∀(x, y) ∈ C × C. Then Bα,β1(x) +Bα,β2(x) ⊂ Bα,β1+β2(x)(∀x ∈ E).

Proof. Assume that x ∈ C, x∗ ∈ Bα,β1(x) +Bα,β2(x), so x∗ = x∗1 + x∗2,

for some x∗1 ∈ Bα,β1(x) and x∗2 ∈ Bα,β2(x). Then

(3.6) β1(y, x) + 〈x∗1, x− y〉 ≥
α (y, x)

2
.

(3.7) β2(y, x) + 〈x∗2, x− y〉 ≥
α (y, x)

2
.

By adding (3.6) to (3.7), we obtain

(β1 + β2)(y, x) + 〈x∗, x− y〉 ≥ α (y, x)

2
(∀y ∈ C).

Hence, x∗ ∈ Bα,β1+β2(x). �

The following properties of Bα,β(x) are studied via Fenchel duality.

Theorem 3.6. Let α, β : C × C → R be two bifunctions, if
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(i) α(x, x) ≥ 0,∀x, y ∈ C,

(ii) β(y, x) = f(y)− f(x),

then

x∗ ∈ Bα,β(x)⇔ 〈x∗, x〉 = f ∗α(x∗, x) + f(x),

where, f ∗α : E∗ × E → R define as follows

f ∗α(x∗, x) = sup
y∈C

[
〈x∗, y〉 − f(y) +

α(y, x)

2

]
.(3.8)

Proof. Let x∗ ∈ Bα,β(x), from (3.1) and (ii), then

f(y)− f(x) ≥ 〈x∗, y〉 − 〈x∗, x〉+
α(y, x)

2
.

〈x∗, x〉 ≥ 〈x∗, y〉+
α(y, x)

2
− f(y) + f(x).

Therefore,

〈x∗, x〉 ≥ sup
y∈C

[
〈x∗, y〉+

α(y, x)

2
− f(y)

]
+ f(x),

so,

(3.9) 〈x∗, x〉 ≥ f ∗α(x∗, x) + f(x).

On the other hand, replacing y = x in (3.8), and from condition (i),

(3.10) 〈x∗, x〉 ≤ f ∗α(x∗, x) + f(x).

From (3.9) and (3.10) the equality concludes.

Conversely, Let 〈x∗, x〉 = f ∗α(x∗, x) + f(x).

〈x∗, x〉 = sup
y∈C

[
〈x∗, y〉 − f(y) +

α(y, x)

2

]
+ f(x)

≥
[
〈x∗, y〉 − f(y) +

α(y, x)

2

]
+ f(x)

=

[
〈x∗, y〉 − β(y, x) +

α(y, x)

2

]
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so, x∗ ∈ Bα,β(x). �

Corollary 3.2. One can check from Remark 2 and Theorem 3.6,

x∗ ∈ ∂αf(x)⇔ f(x) + f ∗α(x∗, x) = 〈x, x∗〉.

The next result was first established in [15] by Censor, Iusem and Zenios for sub-

differential operator. Now we extend and develop the result for Bα,β-operator.

Proposition 3.1. Let α, β : C × C → R be two bifunctions, and the assumptions

(i− ii) in Theorem 3.6 hold. In addition, assume that

iii)Bα,β is a para-monotone i.e., if x∗ ∈ Bα,β(x), y∗ ∈ Bα,β(y), then

〈x∗ − y∗, x− y〉 = 0.

iv) f ∗α(x∗, x) ≤ 〈x∗, y〉 − f(y), ∀x, y ∈ C and ∀x∗, y∗ ∈ E∗.

Then x∗ ∈ Bα,β(y) and y∗ ∈ Bα,β(x).

Proof. Using (i), (iv) and (3.8),

(3.11) f ∗α(x∗, x) = 〈x∗, y〉 − f(y).

From Theorem 3.6 for (x∗, x), (y∗, y) ∈ G(Bα,β), one can get

(3.12) 〈x∗, x〉 = f ∗α(x∗, x) + f(x).

(3.13) 〈y∗, y〉 = f ∗α(y∗, y) + f(y).

By adding (3.12) and (3.13) and by condition (iii), one can have

〈x∗, y〉+ 〈y∗, x〉 = f ∗α(x∗, x) + f(x) + f ∗α(y∗, y) + f(y).

So,

[f ∗α(x∗, x) + f(y)− 〈x∗, y〉] + [f ∗α(y∗, y) + f(x)− 〈y∗, x〉] = 0.

From (3.11) f ∗α(x∗, x) + f(y) = 〈x∗, y〉, f ∗α(y∗, y) + f(x) = 〈y∗, x〉 .

This means that x∗ ∈ Bα,β(y) and y∗ ∈ Bα,β(x). �
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4. General Fitzpatrick transform

In this section, we generalize some results of a Fitzpatrick functions by using the

operator Bα,β. In addition, the concepts of the class Cα
n -monotone are introduced

and studied.

Definition 4.1. Assume that α, β : C × C → R ∪ {+∞} are two bifunctions. The

function ψβ : E × E∗ → R ∪ {+∞} is defined as follows:

(4.1) ψβ(x∗, x) = sup
y∈E

[
〈x∗, y〉+ β(x, y) +

α(x, y)

2

]
∀(x, x∗) ∈ E × E∗.

Remark 3. If α(·, y), β(·, y) are l.s.c and convex ∀x, y ∈ domβ∩domα, one can easily

check that ψβ is also l.s.c and convex.

Lemma 4.1. Assume that α, β : C × C → R ∪ {+∞} are two bifunctions, and that

f : E → R ∪ {+∞} is a function in which

(i) domf = C = {x : f(x) <∞} 6= φ,

(ii) β(x, y) ≥ f(x)− f(y),

(iii) α is symmetric,

then

ψβ(x, x∗) ≥ f ∗α(x∗, x) + f(x).

Proof. From (i), there is x ∈ C. Then

ψβ(x, x∗) = sup
y∈E

[
〈x∗, y〉+ β(x, y) +

α(x, y)

2

]
≥ sup

y∈E

[
〈x∗, y〉 − f(y) +

α(x, y)

2
+ f(x)

]
= f ∗α(x∗, x) + f(x).

Moreover, the equality holds in (3.5), if the equality holds in the condition (ii). �
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Next to what we have introduced above, we will give the concept of nα-cyclically

monotone

Definition 4.2. Let α, β : C×C → R∪{+∞} be two bifunctions. Then β is called

nα-cyclically monotone ( for short Cα
n -monotone ), if

(4.2) 2
i=n∑
i=1

β(xi+1, xi) +
i=n∑
i=1

α(xi+1, xi) ≤ 0.

for any cyclic x1, x2, · · ·, xn+1 = x1.

β is called Cα-monotone if β is Cα
n -monotone for each n ≥ 2.

Remark 4. If α is symmetric, one can check that

(1) If β is Cα
2 -monotone bifunction, then β is α-monotone bifunction.

(2) Define
α(y, x)

2
= β1(y, x)− β(y, x), then

(a) β is α-monotone bifunction ⇐⇒ β1 is monotone bifunction.

(b) β is Cα-monotone bifunction ⇐⇒ β1 is cyclically monotone bifunction.

What follows is a theorem that is considered extension of Proposition 2.1.

Theorem 4.1. Assume that α, β : C × C → R are two bifunctions, where α is

symmetric. Then β is Cα-monotone iff there exists a function f : C → R such that

(4.3) β(y, x) + f(y) +
1

2
α(y, x) ≤ f(x)(∀x, y ∈ C).

Proof. Assume that
α(y, x)

2
= β1(y, x) − β(y, x). According to Remark 4, β is Cα-

monotone, iff β1 is a cyclically monotone. Hence, from Proposition 2.1 , there exists

a function f : C → R, such that β1(y, x) 6 f(x)− f(y)∀x, y ∈ C. Then

(4.4) β(y, x) + f(y) +
1

2
α(y, x) ≤ f(x).

Conversely, if 4.4 holds, also by the assumption, then

β1(y, x) ≤ f(x)− f(y).
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Proposition 2.1 and Remark 4 imply that β is Cα-monotone bifunction. �

What we are going to do in the next part of our study is to generalize the recursion

formula for Fitzpatrick transform of order n by using two bifunctions.

Definition 4.3. Let α, β : C × C → R ∪+{∞} be two bifunctions. The transform

of β and α of order n ∈ {2, 3, · · ·} at (x, x∗) ∈ E×E∗ is defined by recursion formula

as follows

(4.5) ψβ,n(x, x∗) = sup
y∈E

[
ψβ,n−1(y, x

∗) + β(x, y) +
α(x, y)

2

]
such that

ψβ,1(x, x
∗) = 〈 x∗, x〉 .

The Fitzpatrick function of infinite order is defined by

(4.6) ψβ,∞(x, x∗) = sup
n≥2

ψβ,n.

Here, we shall generalize the recursion formula in 4.5.

ψβ,2(x, x
∗) = sup

y∈E

[
ψβ,1(y, x

∗) + β(x, y) + 1
2
α(x, y)

]
= sup

y∈E

[
〈x∗, y〉+ β(x, y) + 1

2
α(x, y)

]
.

(4.7)

(4.8) ψβ,3(x, x
∗) = sup

y∈E

[
ψβ,2(y, x

∗) + β(x, y) +
1

2
α(x, y)

]
.

Substituing in (4.8) y by z, and x by y, then

(4.9) ψβ,3(x, x
∗) = sup

y∈E,z∈E

[
〈x∗, z〉+ β(y, z) +

1

2
α(y, z) + β(x, y) +

1

2
α(x, y)

]
.

Subsittuing in (4.9) if z by x1 and y by x2, then

(4.10) ψβ,3(x, x
∗) = sup

x1,x2∈E

[
〈x∗, x1〉+

i=2∑
i=1

β(xi+1, xi) +
1

2

i=2∑
i=1

α(xi+1, xi)

]
.
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In continuing with the transformation of Fitzpatrick by using the same way above

and by using the mathematical induction, we can do the Fitzpatrick transformation

of α and β of order n as:

(4.11) ψβ,n(x, x∗) = sup
x1,···,xn∈E

[
〈x∗, x1〉+

n−1∑
i=1

β(xi+1, xi) +
1

2

n−1∑
i=1

α(xi+1, xi)

]
.

From what has been presented above, the main result of this section is given below.

Theorem 4.2. Let α, β : E×E → R∪{+∞} be two bifunctions, where α(x1, x) ≥ 0

for each x1 ∈ C. Then

ψβ,n(x, x∗) = 〈x∗, x〉 ∀(x, x∗) ∈ G(Bα,β).

If β is Cα
n -monotone for each n ≥ 2.

Proof. Assume that (x, x∗) ∈ G(Bα,β), and β be Cα
n -monotone. Then ∀x1, · · ·, xn−1 ∈

domβ, x ∈ dom(Bα,β)

(4.12)
n−1∑
i=1

β(xi+1, xi) + β(x1, x) +
1

2

n∑
i=1

α(xi+1, xi) ≤ 0.

Since (x, x∗) ∈ G(Bα,β),

β(x1, x) + 〈x∗, x〉 ≥ 〈x∗, x1〉+
1

2
α (x1, x) .

So,

(4.13) 〈x∗, x〉 ≥ 〈x∗, x1〉 − β(x1, x).

Adding (4.12) to (4.13), will result in

(4.14)
n−1∑
i=1

β(xi+1, xi) + 〈x∗, x1〉+
1

2

n−1∑
i=1

α(xi+1, xi) +
1

2
α(x1, x) ≤ 〈x∗, x〉 .

By taking supremum on x1, · · ·, xn−1 ∈ domβ in (4.14), one can obtain

ψβ,n(x, x∗) ≤ 〈x∗, x〉 (∀(x, x∗) ∈ G(Bα,β)).
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Conversely, by α(x1, x) ≥ 0, and from (3.1) one can get

(4.15) β(x, x) ≥ 1

2
α(x, x) ≥ 0.

By applied (4.15) in (4.5) one can obtain

ψβ,n(x, x∗) ≥ ψβ,n1(x, x
∗) ≥ · · · ≥ ψβ,1(x, x

∗) = 〈x∗, x〉 .

�

Corollary 4.1. The converse of Theorem 4.2 holds, if

β(x1, x) ≤ 〈x∗, x1 − x〉 (∀x1 ∈ C).

Proof.

n∑
i=1

β(xi+1, xi) +
1

2

n∑
i=1

α(xi+1, xi)

=
n−1∑
i=1

β(xi+1, xi) + β(x1, x) +
1

2

n−1∑
i=1

α(xi+1, xi) +
1

2
α(x1, x)

≤
n−1∑
i=1

β(xi+1, xi) + 〈x∗, x1〉+
1

2

n−1∑
i=1

α(xi+1, xi)− 〈x∗, x〉

≤ ψβ,n(x, x∗)− 〈x∗, x〉

= 0.

Hence, β is Cα
n - monotone bifunction. �

Corollary 4.2. Let α, β : E × E → R ∪ {+∞} are two bifunctions, and f : E →

R ∪ {+∞} be a function. If the following hold

(i) α(x, y) = α(y, x) ≥ 0,

(ii) β(x, y) ≥ f(x)− f(y),

then

ψβ,n(x, x∗) ≥ fα
∗(x∗, x) + f(x).
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Proof. We will use the recursion formula in Definition 4.3 and induction on n. In

case n = 2 is proved in Lemma 4.1. We suppose that the result satisfies when n = m,

i.e., for all (x, x∗) ∈ E × E∗

ψβ,m(x, x∗) ≥ f ∗α(x∗, x) + f(x).

To prove for n = m+ 1, from Definition 4.3, one can have

ψβ,m+1(x, x
∗) ≥ ψβ,m(y, x∗) + β(x, y) +

1

2
α(x, y)

≥ f(y) + fα
∗(x∗, y) + f(x)− f(y) +

1

2
α(x, y)

≥ fα
∗(x∗, y) + f(x) ∀y ∈ C.

Then

ψβ,n(x, x∗) ≥ fα
∗(x∗, x) + f(x).

�
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