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ON THE STABILITY OF QUADRATIC FUNCTIONAL

EQUATIONS IN PARTIALLY ORDERED BANACH SPACES :

A PARTIALLY ORDERED FIXED POINT APPROACH

MARYAM RAMEZANI (1) AND HAMID BAGHANI (2)

Abstract. Using partially ordered fixed point method, we investigate the Hyers-

Ulam-Rassias stability and superstability of quadratic functional equations on Ba-

nach spaces endowed a partial order.

1. Introduction

The problem of the stability of functional equations was originally stated by S.

M. Ulam [1]. In 1941 D.H. Hyers [2] proved the stability of the additive functional

equation for the special case when the groups G1 and G2 are Banach spaces. In 1950,

T. Aoki discussed the Hyers-Ulam stability theorem in [3]. His result was further

generalized and derived as a special case by Th.M. Rassias [4] in 1978 . The stability

problem for functional equations have been extensively investigated by a number of

mathematicians [5, 6, 7, 8, 9, 10, 11]. The quadratic function f(x) = cx2 satisfies the

functional equation

f(x + y) + f(x − y) = 2f(x) + 2f(y)(1.1)

and therefore the equation (1.1) is called the quadratic functional equation. The Hy-

ers - Ulam stability theorem for the quadratic functional equation (1.1) was proved

2000 Mathematics Subject Classification. 54H25. 47H10.

Key words and phrases. alternative fixed point, generalized metric space, partial order, stability.

Copyright c© Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: July 13,2015 Accepted: Aug. 29, 2016 .

259



260 MARYAM RAMEZANI AND HAMID BAGHANI

by F. Skof [10] for the functions f : E1 → E2 where E1 is a normed space and E2 is

a Banach space. The result of Skof is still true if the relevant domain E1 is replaced

by an Abelian group and this was dealt with by P.W. Cholewa [12]. S. Czerwik [13]

proved the Hyers-Ulam-Rassias stability of the quadratic functional equation (1.1).

This result was further generalized by Th.M. Rassias [14], C. Borelli and G.L. Forti

[15].

In this paper, we will adopt the fixed point alternative of [16], to prove the Hyers-

Ulam-Rassias stability and superstability of quadratic mappings on Banach spaces

endowed a partial order and associated with the following generalized quadratic type

functional equation

f(x1 + x2 + x3 − x4) + f(x1 − x2 − x3 + x4) = 2f(x1) + 2f(x2 + x3 − x4)(1.2)

2. Stability

In this section and next section, we suppose that (E1, ‖.‖1) is a normed space

endowed with a partial order ≤1 with following conditions:

(i) x, y ∈ E1 and x≤1 y ⇒ rx≤1 ry (∀ r ∈ R
+) ;

(ii) for all x, y ∈ E1 there exists z ∈ E1 such that z is comparable to x and y.

Also, we suppose that (E2, ‖.‖2) is a Banach space endowed with a partial order ≤2

which satisfies condition (i) and

(iii) for all x, y ∈ E1 there exists z ∈ E1 such that z is an upper bound for {x, y}.

(iv) If {xn} is a nondecreasing sequence in E2 and xn → x, then x ≥ xn for all

n ∈ N.

As a example, we can see that the set

C([0, 1]) := {f : [0, 1] → R | f is continuous}
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with the following partial order

f, g ∈ C([0, 1]) , f ≤ g ⇔ f(x) ≤ g(x) for all 0 ≤ x ≤ 1.

It is easy to show that for any f, g ∈ C([0, 1]) the function max{f, g} is upper bound

of f and g.

In this section, we consider 0 × ∞ = 0. Before of our main results we need the

following proposition.

Lemma 2.1. The functional equation (1.2) is a quadratic functional equation.

Proof. By letting x3 = x4 := 0 in (1.2) we get

f(x1 + x2) + f(x1 − x2) = 2f(x1) + 2f(x2)

and this shows that (1.2) is a quadratic functional equation. Also, putting x := x1

and y := x2 + x3 − x4 in (1.1) we infer the equation (1.2). �

Theorem 2.1. Suppose f : E1 → E2 is a function satisfies

4f(x) ≤2 f(2x) ; (x ∈ E1)(2.1)

and

‖f(x + y + z − w) + f(x − y − z + w) − 2f(x) − 2f(y + z − w)‖2

≤ φ(x, z) + φ(y, w)(2.2)

for all x, y, z, w ∈ E1 which x is comparable to z and y is comparable to w, where

φ : E1 × E1 → [0,∞) is a function satisfies φ(0, 0) = 0 and with the following

condition:

φ(x, y) ≤ 4 L φ(
x

2
,
y

2
)(2.3)
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for all x, y ∈ E1 with x comparable to y, which L ∈ (0, 1) is a constant. Then there

exists a unique a quadratic mapping H : E1 → E2 such that

‖H(x) − f(x)‖2 ≤
1

1 − L
φ(x, x)(2.4)

for all x ∈ E1.

Proof. We can see that f(0) = 0. Putting z := x and y = w := 0 in (2.9), we get

‖f(2 x) − 4 f(x)‖2 ≤ φ(x, x)

for all x ∈ E1. Hence

‖
f(2 x)

4
− f(x)‖

2
≤

1

4
φ(x, x) ≤ φ(x, x)(2.5)

for all x ∈ E1. We consider the set X := {g| g : E1 → E2} and introduce the metric

d on X by:

d(h, g) := inf{C ∈ R
+; ‖h(x) − g(x)‖2 ≤ C φ(x, x) for all x ∈ E1}

for all h , g ∈ X. It is easy to show that (X, d) is a complete generalized metric space.

We put the partial order ≤ on X as follows:

h, g ∈ X h ≤ g ⇔ h(x) ≤2 g(x) for all x ∈ E1.

Now, we define the mapping J : X → X by

J(h)(x) :=
1

4
h(2 x)
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for all x ∈ E1. For any g, h ∈ X with g ≤ h , we have

d(g, h) < C ⇒ ‖g(x) − h(x)‖2 ≤ C φ(x, x) for all x ∈ E1

⇒ ‖
g(2x)

4
−

h(2x)

4
‖

2
≤ C

φ(2x, 2x)

4
for all x ∈ E1

⇒ ‖J(g)(x) − J(h)(x)‖2 ≤ L C φ(x, x) for all x ∈ E1.

It follows that

d(J(g), J(h)) ≤ L d(g, h).

Applying inequalities (2.8) and (2.12), we can see that f ≤ J(f) and d(J(f), f) ≤ 1,

also, using the condition (i) of E1 we can show that J is a nondecreasing mapping.

Now, we show that J is a continuous function. To this end, let {hn} be a sequence in

(X, d) such that converges to h ∈ X and let ε > 0 be given. Then there exist N ∈ N

and C ∈ R
+ with C ≤ ε such that

‖hn(x) − h(x)‖2 ≤ C φ(x, x)

for all x ∈ E1 and all n ≥ N . Thus we get

‖hn(2x) − h(2x)‖2 ≤ C φ(2x, 2x)

for all x ∈ E1 and all n ≥ N . By inequality (2.10) and definition of J , we get

‖J(hn)(x) − J(h)(x)‖2 ≤ L C φ(x, x)

for all x ∈ E1 and n ≥ N . Hence,

d(J(hn), J(h)) ≤ L C < ε
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for all n ≥ N . It follows that J is continuous. Applying Theorem ??, we get J has a

fixed point. Let T ∈ X is a fixed point of J , then limn→∞
d(Jn(f), T ) = 0. It follows

that

H(x) = lim
n→∞

f(2n x)

4n
(2.6)

for all x ∈ E1. On the other hand, it follows from (2.8) that for all x ∈ E1, the

sequence { f(2n x)
4n

}∞n=0 is a nondecreasing sequence in E2, hence, by using the condition

(iii), we find that f(x) ≤ T (x), for all x ∈ E1. This shows that f ≤ T . Now, we can

see that

d(J(f), J(T )) ≤ L d(f, T )

and hence

d(f, T ) ≤
1

1 − L
.

This implies the inequality (2.11). The inequality (2.10) shows that

4−n φ(2n x, 2n y) ≤ Ln φ(x, y)(2.7)

for all x, y ∈ E1 which x is comparable to y and for all n ∈ N. Let x, y ∈ E1 are

arbitrary elements, then there exists z ∈ E1 such that z is comparable to x and y.

This implies that 2nz is comparable to 2nx and 2ny for all n ∈ N. It follows from

(2.9) that

‖f(2n(x + y)) + f(2n(x − y)) − 2f(2nx) − 2f(2ny)‖2

= ‖f(2n x + 2n y + 2nz − 2nz) + f(2n x − 2n y − 2nz + 2nz)

− f(2nx) − f(2ny + 2nz − 2nz)‖2

≤ φ(2n x, 2n z) + φ(2n y, 2n z)

for all n ∈ N. Since L ∈ (0, 1) and by using (2.13) and (2.14), we find that H

is a Cauchy mapping. To prove the uniqueness property of H, we suppose that

T1 is another quadratic function satisfying (2.11). It is clear that J(T1) = T1.
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Fix the arbitrary element x ∈ E1, then there exists h(x) ∈ E2 such that h(x) =

upper bound {H(x), T1(x)}. This shows that h : E1 → E2 is a function comparable

to H and T1. Hence,

d(H, T1) ≤ d(H, Jn(h)) + d(Jn(h), T1)

= d(Jn(H), Jn(h)) + d(Jn(h), Jn(T1))

≤ L−n d(H, h) + L−n d(h, T1)

for all n ∈ N. Therefore, T = T1 and this completes the proof. �

Theorem 2.2. Suppose f : E1 → E2 is a function satisfies

f(x) ≤2 4 f(
x

2
) ; (x ∈ E1)(2.8)

and

‖f(x + y + z − w) + f(x − y − z + w) − 2f(x) − 2f(y + z − w)‖2

≤ φ(x, z) + φ(y, w)(2.9)

for all x, y, z, w ∈ E1 which x is comparable to z and y is comparable to w, where

φ : E1 × E1 → [0,∞) is a function satisfies φ(0, 0) = 0 and with the following

condition:

4 L φ(x, y) ≤ φ(2x, 2y)(2.10)

for all x, y ∈ E1 with x comparable to y, which L ∈ (1,∞) is a constant. Then there

exists a unique a quadratic mapping H : E1 → E2 such that

‖H(x) − f(x)‖2 ≤
1

L − 1
φ(x, x)(2.11)

for all x ∈ E1.
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Proof. It is clearly that f(0) = 0. Putting z = x := x
2

and y = w := 0 in (2.9), we

get

‖f(x) − 4 f(
x

2
)‖

2
≤ φ(

x

2
,
x

2
)

for all x ∈ E1. Hence

‖f(x) − 4 f(
x

2
)‖

2
≤

1

4L
φ(x, x) ≤

1

L
φ(x, x)(2.12)

for all x ∈ E1. We consider the set X := {g| g : E1 → E2} and introduce the metric

d on X by:

d(h, g) := inf{C ∈ R
+; ‖h(x) − g(x)‖2 ≤ C φ(x, x) for all x ∈ E1}

for all h , g ∈ X. It is easy to show that (X, d) is a complete generalized metric space.

We put the partial order ≤ on X as follows:

h, g ∈ X h ≤ g ⇔ h(x) ≤2 g(x) for all x ∈ E1.

Now, we define the mapping J : X → X by

J(h)(x) := 4 h(
x

2
)

for all x ∈ E1. For any g, h ∈ X with g ≤ h , we have

d(g, h) < C ⇒ ‖g(x) − h(x)‖2 ≤ C φ(x, x) for all x ∈ E1

⇒ ‖4g(
x

2
) − 4h(

x

2
)‖

2
≤ 4C φ(

x

2
,
x

2
) for all x ∈ E1

⇒ ‖J(g)(x) − J(h)(x)‖2 ≤ L−1 C φ(x, x) for all x ∈ E1.

It follows that

d(J(g), J(h)) ≤ L−1 d(g, h).
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Applying inequalities (2.8) and (2.12), we can see that f ≤ J(f) and d(J(f), f) ≤

L−1, also, using the condition (i) of E1 we can show that J is a nondecreasing

mapping. By the same method of Theorem 2.1 we can prove that J is a continuous

mapping and we get J has a fixed point. Let H ∈ X is a fixed point of J , then

limn→∞
d(Jn(f), H) = 0. It follows that

H(x) = lim
n→∞

4n f(
x

2n
)(2.13)

for all x ∈ E1. On the other hand, it follows from (2.8) that for all x ∈ E1, the

sequence {4n f( x
2n

)}∞n=0 is a nondecreasing sequence in E2, hence, by using the con-

dition (iii), we find that f(x) ≤ T (x), for all x ∈ E1. This shows that f ≤ T . Now,

we can see that

d(J(f), J(T )) ≤ L−1 d(f, T )

and hence

d(f, T ) ≤
1

L − 1
.

This implies the inequality (2.11). The inequality (2.10) shows that

φ(
x

2n
,

y

2n
) ≤ 4−n L−n φ(x, y)(2.14)

for all x, y ∈ E1 which x is comparable to y and for all n ∈ N. Let x, y ∈ E1 are

arbitrary elements, then there exists z ∈ E1 such that z is comparable to x and y.

This implies that z
2n

is comparable to x
2n

and y

2n
for all n ∈ N. It follows from (2.9)

that

‖f(
x + y

2n
) + f(

x − y

2n
) − 2f(

x

2n
) − 2f(

y

2n
)‖2

= ‖f(
x

2n
+

y

2n
+

z

2n
−

z

2n
)) + f(

x

2n
−

y

2n
−

z

2n
+

z

2n
)

f(
x

2n
) − f(

y

2n
+

z

2n
−

z

2n
)‖2

≤ φ(
x

2n
,

z

2n
) + φ(

y

2n
,

z

2n
)
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for all n ∈ N. Since L−1 ∈ (0, 1) and by using (2.13) and (2.14), we find that H

is a Cauchy mapping. To prove the uniqueness property of H, we suppose that

T1 is another quadratic function satisfying (2.11). It is clear that J(T1) = T1.

Fix the arbitrary element x ∈ E1, then there exists h(x) ∈ E2 such that h(x) =

upper bound {H(x), T1(x)}. This shows that h : E1 → E2 is a function comparable

to H and T1. Hence,

d(H, T1) ≤ d(H, Jn(h)) + d(Jn(h), T1)

= d(Jn(H), Jn(h)) + d(Jn(h), Jn(T1))

≤ L−n d(H, h) + L−n d(h, T1)

for all n ∈ N. Therefore, H = T1 and this completes the proof. �

Corollary 2.1. Let ε ∈ (0,∞) and f : E1 → E2 be a function with f(0) = 0 and

satisfies the following

4f(x) ≤2 f(2x) ; (x ∈ E1)

‖f(x + y + z − w) + f(x − y − z + w) − 2f(x) − 2f(y + z − w)‖2 ≤ ε

for all x, y, z, w ∈ E1 which x is comparable to z and y is comparable to w. Then

there exists a unique quadratic mapping H : E1 → E2 such that

‖H(x) − f(x)‖2 ≤ ε

for all x ∈ E1.

Proof. Set φ(x, y) = ε
2

for all x, y ∈ E1 with x, y 6= 0 and φ(0, 0) = 0 and let L = 1
4

in Theorem 2.1. Then we get the desired result. �
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Corollary 2.2. Let p ∈ (0, 2) (p ∈ (2,∞)) and ε ∈ (0,∞) are real numbers. Suppose

that f : E1 → E2 is a mapping satisfies

4f(x) ≤2 f(2x) (f(x) ≤2 4 f(
x

2
)) ; (x ∈ E1)

for all x, y, z, w ∈ E1 which x is comparable to z and y is comparable to w. Then

there exists a unique quadratic mapping H : E1 → E2 such that

‖H(x) − f(x)‖2 ≤
23−p

22−p − 1
ε ‖x‖p (‖H(x) − f(x)‖2 ≤

2

2p−2 − 1
) ε ‖x‖p)

for all x ∈ E1.

Proof. Set φ(x, y) = ε (‖x‖p + ‖y‖p) for all x, y ∈ E1 and L = 2p−2 ( L = 2p−2) in

Theorem 2.1 (2.2). Then we get the desired result. �
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