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SOLVING LINEAR FUZZY FREDHOLM INTEGRAL EQUATIONS

SYSTEM BY TRIANGULAR FUNCTIONS

E. HENGAMIAN ASL

Abstract. In this paper, we present a numerical method to solve linear fuzzy

Fredholm integral equations system of the second kind. This method converts the

given fuzzy system into a linear system of algebraic equations by using triangular

orthogonal functions. The proposed method is tested by two examples and also

results are compared with the exact solution, by using computer simulations.

1. Introduction

It is known that the fuzzy differential and integral equations are one of the impor-

tant parts of the fuzzy analysis theory that play major role in numerical analysis. In

1990, Wu and Ma [11] investigated the fuzzy Fredholm integral equations for the first

time. Then numerous numerical methods are investigated which have been focusing

on the solution of fuzzy integral equations. For example, Tricomi, in his book [9],

introduced the classical method of successive approximations for nonlinear integral

equations. Variational iteration method [5] and Adomian decomposition method [2]

were effective and convenient for solving integral equations . Recently, a new set of

triangular orthogonal functions have been applied for solving integral equation by
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Babolian et al. [1]. Mirzaee et al. [6] have used the triangular functions for solving

fuzzy Fredholm integral equation of second kind (FFIE-2).

The aim of this paper is to apply the triangular functions for the linear fuzzy

Fredholm integral equations system of the second kind (FFIES-2). We show that the

proposed method well performs for linear FFIES-2.

This paper is organized as follows. Preliminaries of triangular orthogonal functions

and their properties is briefly presented in Section 2. In Section 3, we give an overview

of elementary concepts of the fuzzy calculus. In Section 4, numerical method for

solving system of fuzzy Fredholm integral equations of the second kind is presented.

Convergence analysis for the method is given in Section 5. Finally, we illustrate

in Section 6 some numerical examples to show the efficiency and accuracy of the

proposed method.

2. Preliminaries of triangular functions

Definition 2.1. Two m-sets of triangular functions (TFs) are defined over the inter-

val [0,T] as

T1i(t) =







1 − t−ih
h

, ih ≤ t < (i + 1)h,

0, o.w,

and

T2i(t) =







t−ih
h

, ih ≤ t < (i + 1)h,

0, o.w,

where i = 0, 1, · · · , m − 1, h = T
m

, with a positive integer value for m.

Also, consider T1i as the ith left-handed triangular function and T2i as the ith

right-handed triangular function. In this paper, it is assumed that T = 1. Consider

the first m terms of the left-handed triangular functions and the first m terms of the



SOLVING LINEAR FUZZY FREDHOLM INTEGRAL EQUATIONS SYSTEM BY TFS 187

right-handed triangular functions and write them concisely as m-vectors:

(2.1) T1(t) = [T10(t), T11(t), · · · , T1m−1(t)]
T ,

(2.2) T2(t) = [T20(t), T21(t), · · · , T2m−1(t)]
T ,

where T1(t) and T2(t) are called left-handed triangular functions (LHTF) vector and

right-handed triangular functions (RHTF) vector, respectively. We have

(2.3)

∫

1

0

T1(t)T1T (t)dt =

∫

1

0

T2(t)T2T (t)dt '
h

3
I,

and

(2.4)

∫

1

0

T1(t)T2T (t)dt =

∫

1

0

T2(t)T1T (t)dt '
h

6
I,

where I is an m × m identity matrix. We denote the TF vector T (t) as

(2.5) T (t) = [T1(t) T2(t)]T .

By using Eqs.(2.3) and (2.4), we can write

(2.6)

∫

1

0

T (t)T T (t)dt '





h
3
Im

h
6
Im

h
6
Im

h
3
Im



 = D

where D is 2m × 2m matrix [6]. Let f(t) belong to L2[0, 1), the expansion of f(t)

with respect to TFs, can be defined as follows

(2.7) f(t) '

m−1
∑

i=0

[fiT1i(t) + fi+1T2i(t)] = F1TT1(t) + F2T T2(t) = FTT (t)

where the sequence of constant coefficients {fi}
m
i=0 are given as fi = f(ih) for i =

0, 1, . . . , m. Moreover, for each function f(s, t) ∈ L2([0, 1) × [0, 1)), we can rewrite

the TFs expansion as

f(t, s) 'T1T (t).F11.T1(s) + T1T (t).F12.T2(s)

+ T2T (t).F21.T1(s) + T2T (t).F22.T2(s),
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or

(2.8) f(t, s) ' T T (t).F.T (s)

where F11, F12, F21 and F22 are m × m matrices and can be obtained easily as

follows

(F11)ij = f(ih, jh),

(F12)ij = f(ih, (j + 1)h),

(F21)ij = f((i + 1)h, jh),

(F22)ij = f((i + 1)h, (j + 1)h),(2.9)

for i, j = 0, 1, . . . , m − 1, and T (t), T (s) are 2m1 and 2m2 dimensional TFs and F

is a 2m1 × 2m2 TFs coefficient matrix [1]. For simplicity, we put m1 = m2 = m, so

matrix F can be written as

(2.10) F =





(F11)m×m (F12)m×m

(F21)m×m (F22)m×m





where F11, F12, F21 and F22 are previously defined in Eq. (2.9). ( For more details

see, [1, 6] )

3. The basic concepts of fuzzy equations

In this section, the basic notations in fuzzy calculus and integral equations, which

we will use, are briefly introduced. We started by defining the fuzzy number.

Definition 3.1. A fuzzy number is a fuzzy set u : R
1 → [0, 1] such that:

(a) u is upper semi-continuous,

(b) u(x) = 0 outside some interval [a, d],

(c) There are real numbers b, c such as a ≤ b ≤ c ≤ d and

(i) u(x) is monotonically increasing on [a, b],
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(ii) u(x) is monotonically decreasing on [c, d],

(iii) u(x) = 1, b ≤ x ≤ c.

The set of all fuzzy numbers is denoted by E1 and it is a convex cone [3, 8].

An alternative definition or parametric form of a fuzzy number which yields to the

same E1 is given by Kaleva [4] as follows

Definition 3.2. A fuzzy number u is a pair (u, u) of functions u(r) and u(r), where

0 ≤ r ≤ 1, such that

(a) u(r) is abounded monotonic increasing left continuous function,

(b) u(r) is abounded monotonic decreasing left continuous function,

(c) u(r) ≤ u(r), 0 ≤ r ≤ 1.

For arbitrary fuzzy numbers u = (u(r), u(r)), v = (v(r), v(r)) and real number k,

we define

(a) Equality: u = v if and only if u(r) = v(r) and u(r) = v(r),

(b) Addition: u ⊕ v = (u(r) + v(r), u(r) + v(r)),

(c) Scalar multiplicationand: k ⊗ u =







(ku(r), ku(r)), k ≥ 0,

(ku(r), ku(r)), k < 0.

Definition 3.3. For arbitrary numbers u = (u(r), u(r)) and v = (v(r), v(r)),

(3.1) D(u, v) = max{ sup
0≤r≤1

|u(r) − v(r)|, sup
0≤r≤1

|u(r) − v(r)|}

is the distance between u and v. It is proved that (E1, D) is a complete metric space

with its properties [7], and

(a) ∀u, v, w ∈ E1; D(u ⊕ w, v ⊕ w) = D(u, v),

(b) ∀u, v ∈ E1, ∀k ∈ R; D(k ⊗ u, k ⊗ v) = |k|D(u, v),
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(c) ∀u, v, w, e ∈ E1; D(u ⊕ v, w ⊕ e) ≤ D(u, w) + D(v, e).

Definition 3.4. Let f, g : [a, b] → E1 be fuzzy real number valued functions. The

uniform distance between f and g is defined by [10]

DU(f, g) = sup{D(f(x), g(x))|x ∈ [a, b]}.

Definition 3.5. Suppose f : [a, b] → E1 is a fuzzy function. For each partition

P = {x0, x1, . . . , xn} and orbitrary ξi, xi−1 ≤ ξi ≤ xi, i = 1, 2, . . . , n, let RP =
∑n

i=1
f(ξi)(xi − xi−1), and λ = max1≤i≤n |xi − xi−1|. The integral of f(x) over [a,b]

is defined as
∫ b

a

f(x)dx = lim
λ→0

RP

provided that the limit exists in the metric D.

If the fuzzy function f(x) is continuous in the metric D, then the definite integral

in last equation exists [3], and also we have

∫ b

a

f(x, r)dx) =

∫ b

a

f(x, r)dx

and

(

∫ b

a

f(x, r)dx) =

∫ b

a

f(x, r)dx

where (f(x, r), f(x, r)) is the parametric form of f(x). More details about the prop-

erties of the fuzzy integral are given in [3, 4].

4. Solving linear fuzzy Fredholm integral equations system

In this section, we present a TFs method to solve linear FFIES-2. First consider

the following FFIE-2:

u(x) = g(x) ⊕ λ ⊗

∫

1

0

k(x, t) ⊗ u(t)dt
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where k(x, t) is an orbitary kernel function over the square 0 ≤ x, t ≤ 1 and u(x) is

a fuzzy real valued function. We introduce the FFIES-2 in the form






























u1(x) = g1(x) ⊕
∑n

j=1
λ1j ⊗

∫

1

0
k1j(x, t) ⊗ uj(t)dt,

u2(x) = g2(x) ⊕
∑n

j=1
λ2j ⊗

∫

1

0
k2j(x, t) ⊗ uj(t)dt,

...

un(x) = gn(x) ⊕
∑n

j=1
λnj ⊗

∫

1

0
knj(x, t) ⊗ uj(t)dt,

(4.1)

where kij(x, t) is an orbitary kernel function over the square 0 ≤ x, t ≤ 1 and λij 6= 0

for i, j = 1, 2, . . . , n are real constants. In system (4.1), the fuzzy function gi(x) and

kernel kij(x, t) are given and assumed to be differentiable as the discussion required

with respect to all their arguments on the interval 0 < x, t < 1. Also, ui(x) is a

fuzzy real valued function and U(x) = [u1(x), u2(x), . . . , un(x)]T is the solution to be

determined. For simplicity, we consider the ith equation of system (4.1) as

(4.2) ui(x) = gi(x) ⊕
n
∑

j=1

λij ⊗

∫

1

0

kij(x, t) ⊗ uj(t)dt.

Let (g
i
(x, r), gi(x, r)) and (ui(x, r), ui(x, r)), 0 ≤ r ≤ 1 and x ∈ [0, 1) be parametric

forms of gi(x) and ui(x), respectively. Therefore, by using definition (3), we get

kij(x, t) ⊗ uj(x) =







(kij(x, t)uj(x, r), kij(x, t)uj(x, r)), kij(x, t) ≥ 0,

(kij(x, t)uj(x, r), kij(x, t)uj(x, r)), kij(x, t) < 0.

In this paper, we assumed that kij(x, t) ≥ 0. Now, for solving (4.1) we write the

parametric form of the given fuzzy integral equations system as follows

(4.3) ui(x, r) = g
i
(x, r) +

n
∑

j=1

λij

∫

1

0

kij(x, t)uj(t, r)dt

and

(4.4) ui(x, r) = gi(x, r) +

n
∑

j=1

λij

∫

1

0

kij(x, t)uj(t, r)dt
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for i, j = 1, 2, . . . , n. Let us expand ui(x, r), g
i
(x, r) and kij(x, t) by using Eq. (2.8)

as follow

ui(x, r) ' T T (x).Ui.T (r),

g
i
(x, r) ' T T (x).Gi.T (r),(4.5)

kij(x, t) ' T T (x).Kij.T (t),

where Ui, Gi and Kij a in Eq. (2.10). Substituting Eqs. (4.5) in Eq. (4.3), we have

(4.6) T T (x)UiT (r) ' T T (x)GiT (r) +
n
∑

j=1

λijT
T (x)Kij

(
∫

1

0

T (t)T T (t)dt

)

UjT (r).

Substituting Eqs. (2.6) in Eq. (4.6), we get

T T (x)UiT (r) ' T T (x)GiT (r) + T T (x)(
n
∑

j=1

λijKijDUj)T (r).

Thus, we have

Ui = Gi +
n
∑

j=1

λijKijDUj.

Then, we get the following system

(4.7)

n
∑

j=1

(∆ij − λijKijD)Uj = Gi

where

∆ij =







I i = j

0 i 6= j

for i, j = 1, 2, . . . , n and I is a 2m × 2m identity matrix. By solving this matrix

system, we can find Ui where is a 2m × 2m matrix. So ui(x, r) ' T T (x)UiT (r). The

same procedure is used for ui(x, r) in Eq. (4.4). For solving system (4.1), we need to

solve the two systems of (4.7).
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5. Convergence Analysis

In this section, we obtain error estimate for the numerical method proposed in

previous section. We first present the following lemma.

Lemma 5.1. [12] If f and g : [a, b] ⊆ R → E1 are fuzzy continuous function, then

the function F : [a, b] → R+ by F (x) = D(f(x), g(x)) is continuous on [a, b] and

D

(∫ b

a

f(x)dx,

∫ b

a

g(x)dx

)

≤

∫ b

a

D(f(x), g(x))dx.

Theorem 5.1. If kij(x, t), i, j = 1, 2, . . . , n and 0 ≤ x, t ≤ 1 are bounded and con-

tinuous, then approximate solution of System (4.1), converges to the exact solution.

Proof. Suppose that ũi(x) is the approximate solution of exact solution ui(x).

Therefore, ũi(x) ' UT
i T (x) (see Eq. (2.7) ). Then,

D(ui(x), ũi(x)) = D

(

n
∑

j=1

λij

∫

1

0

kij(x, t)uj(t)dt,

n
∑

j=1

λij

∫

1

0

kij(x, t)UT
j T (t)dt

)

≤ M

n
∑

j=1

∫

1

0

D
(

uj(t),U
T
j T (t)

)

dt, M = max
0≤x,t≤1

|λijkij(x, t)|.

Also, limm→∞ UT
i T (x) = ui(x), [6]. So D(ui(x),UT

i T (x)) → 0 as m → ∞. Since M

is bounded, limm→∞ D(ui(x), ũi(x)) → 0. Hence, the proof is completed.

6. Numerical examples

In this section, we present two examples of linear FFIES-2 and the results will be

compared with the exact solutions. All results are computed by using a program

written in the Matlab.

Example 6.1. Consider the system of fuzzy linear Fredholm integral equations with

(g
1
(x, r), g1(x, r)) = x2(r2 + 2r + 2, 7 − 2r) +

x

3
(r2 + r + 1, 4 − r)

(g
2
(x, r), g2(x, r)) = x(r2 + 3r + 3, 10 − 3r), 0 ≤ x, t ≤ 1, for 0 ≤ r ≤ 1,
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and kernel functions:

k11(x, t) =x, k12(x, t) = 2x2,

k21(x, t) =4xt, k22(x, t) = 2x,

and λij = −1 for i, j = 1, 2. The exact solution in this case is given by

(u1(x, r), u1(x, r)) = x2(r2 + r + 1, 4 − r),

(u2(x, r), u2(x, r)) = x(r + 1, 3 − r).

We solve this system by the proposed method with m = 32, x = 0.5 and r ∈ [0, 0.9]

we noticed that the absolute error is zero. The absolute error of (u1(x, r), u1(x, r))

and (u2(x, r), u2(x, r)) for this Example is listed in Table 1. Moreover, the errors

are also shown in Table 2, with m = 16, 32, 64, 128, 256, 512, 1024 and 2048. We see

that the absolute error converges to zero as m → ∞. Also Fig. 1, shows comparison

between the exact solution and the approximate solution using the presented method.

In addition, the absolute error functions obtained by the present method shown in

Fig. 2.

Example 6.2. Consider the system of fuzzy linear Fredholm integral equations with

g
1
(x, r) = r(ex + (1 + x)(2 − e) −

1

4
(1 − x2)(2r + 5r2)),

g1(x, r) = (2 − r)(ex + (1 + x)(2 − e)) −
1

4
(1 − x2)(9 − 2r5),

g
2
(x, r) = (2r2 + 5r3)(x −

11

12
(1 − x3)) + 3rx − 2rxe,

g2(x, r) = 15x − x(2r5 + 3r + 4e − 2re) + (1 − x3)(
11

6
r5 −

33

4
),

where 0 ≤ x, t ≤ 1, for 0 ≤ r ≤ 1, and kernel functions:

k11(x, t) =t2(1 + x), k12(x, t) = t2(1 − x2),

k21(x, t) =x(1 + t2), k22(x, t) = (t − 2)2(1 − x3),
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and λij = 1 for i, j = 1, 2. The exact solution in this case is given by

(u1(x, r), u1(x, r)) = ex(r, 2 − r),

(u2(x, r), u2(x, r)) = x(2r2 + 5r3, 9 − 2r5).

The results are presented for Example 2 in Table 3 and Figs. 3 and 4. Moreover,

the errors are also presented in Table 4, with m = 16, 32, 64, 128, 256, 512, using

E1 = |u1(x, r) − ũ1(x, r)| and E2 = |u1(x, r) − ũ1(x, r)|. Fig. 4 shows the absolute

error functions obtained by the present method. We see that the absolute error

converges to zero as m → ∞.

Table 1. Numerical results for Example 1, with x = 0.5, m = 32.

r Absolute error Absolute error Absolute error Absolute error

u1(x, r) u1(x, r)) u2(x, r) u2(x, r)

0.0 3.4882e-05 1.3953e-04 6.9764e-05 2.7906e-04

0.1 3.3792e-07 1.3604e-04 7.7449e-05 2.7208e-04

0.2 1.5332e-05 1.3255e-04 8.6524e-05 2.6510e-04

0.3 1.0099e-05 1.2906e-04 9.6989e-05 2.5813e-04

0.4 1.5359e-05 1.2558e-04 1.0884e-04 2.5115e-04

0.5 6.1044e-05 1.2209e-04 1.2209e-04 2.4417e-04

0.6 2.9312e-05 1.1860e-04 1.3675e-04 2.3720e-04

0.7 1.7806e-05 1.1511e-04 1.5280e-04 2.3022e-04

0.8 2.6527e-05 1.1162e-04 1.7024e-04 2.2325e-04

0.9 5.5473e-05 1.0813e-04 1.8907e-04 2.1627e-04



196 E. HENGAMIAN ASL

Table 2. Numerical results for Example 1, with x = 0.7, r = 0.1

m Absolute error Absolute error Absolute error Absolute error

u1(x, r) u1(x, r)) u2(x, r) u2(x, r)

16 1.0238e-03 1.9816e-03 4.3420e-04 1.5243e-03

32 3.0426e-04 7.9992e-04 1.0843e-04 1.8091e-04

64 6.3944e-05 1.2378e-04 2.7102e-05 9.5218e-05

128 1.9013e-05 4.9988e-05 6.7750e-06 2.3804e-05

256 3.9963e-06 7.7362e-06 1.6937e-06 5.9509e-06

512 1.1883e-06 3.1242e-06 4.2343e-07 1.4877e-06

1024 2.4977e-07 4.8351e-07 1.0586e-07 3.7193e-07

2048 7.4267e-08 1.9526e-07 2.6464e-08 9.2983e-08

Table 3. Numerical results for Example 2, with x = 0.3, m = 64.

r Absolute error Absolute error Absolute error Absolute error

u1(x, r) u1(x, r)) u2(x, r) u2(x, r)

0.0 0.0000e-00 9.6557e-04 0.0000e-00 1.1249e-03

0.1 3.7316e-05 9.2891e-04 2.1803e-05 1.0863e-03

0.2 7.6432e-05 8.9223e-04 2.4615e-05 1.0486e-03

0.3 1.1813e-04 8.5545e-04 5.2431e-05 1.0142e-03

0.4 1.6319e-04 8.1838e-04 4.0274e-05 9.9034e-04

0.5 2.1236e-04 7.8064e-04 2.3819e-04 9.2738e-04

0.6 2.6646e-04 7.4156e-04 1.0944e-04 9.6112e-04

0.7 3.2622e-04 7.0024e-04 2.3040e-04 9.1817e-04

0.8 3.9244e-04 6.5533e-04 2.9456e-04 9.0901e-04

0.9 4.6589e-04 6.0509e-04 2.8055e-04 9.8385e-04



SOLVING LINEAR FUZZY FREDHOLM INTEGRAL EQUATIONS SYSTEM BY TFS 197

Table 4. Numerical results for Example 2, with r = 0.1, x = 0.7

m 16 32 64 128 256 512

E1 7.238e-04 1.881e-04 4.501e-05 1.174e-05 2.813e-06 7.340e-07

E2 2.098e-04 5.304e-05 1.382e-05 3.377e-06 8.640e-07 2.119e-07
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Figure 1. Comparison between the exact solution and the approxi-

mate solution of Example 1.
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Figure 2. Absolute error functions obtained by the present method

of Example 1.
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Figure 3. Comparison between the exact solution and the approxi-

mate solution of Example 2.
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Figure 4. Absolute error functions obtained by the present method

of Example 2.
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7. Conclusion

In this paper, we introduce TFs method for approximating the solution of linear

FFIES-2. The structural properties of TFs are utilized to reduce the FFIES-2 to a

system of algebraic equations, without using any integration. In the above presented

numerical example we see that the proposed method is very accurate and efficient for

linear FFIES-2.
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