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ON COMPARISON OF SURVIVAL CURVES WITH INTERVAL

CENSORED DATA

REZA PAKYARI (1) AND DANIAL HABIBI (2)

Abstract. Survival comparison is one of the main goals and interesting problems

in most survival studies such as clinical studies. In this paper, we compare through

a Monte Carlo study, several tests for comparison of survival functions for interval

censored failure time data. In particular, three nonparametric generalized log-rank

tests, a parametric score test and an imputation-based test have been considered.

It is observed that the parametric score test and the imputation test outperform

the nonparametric generalized log-rank tests in most cases. Finally, a real dataset

is studied for illustrative purposes.

1. Introduction

Interval censored data often arise in medical periodic follow-up studies where the

survival time of interest is observed only to belong to an interval rather than being

exactly known. For example, consider a patient who is monitoring weekly or monthly

for a clinically observed change and is missing some visits, and returns with a changed

in observed response status, thus producing an interval censored observation. Another

example occurs in breast cancer studies, where early breast cancer patients were

supposed to be seen at clinic for breast retraction every four to six months. Here, the

event of interest is the time to breast retraction, however, no exact time is available.
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In this case, the interval censored observation consists the interval from the time

of the last retraction negative test and the time of the first retraction positive test

(Finkelstein and Wolfe [1]).

One of the main problems in survival studies is the comparison of survival functions

between different treatment groups. The well known log-rank test is used when the

available data are right censored (see e.g. Fleming and Harrington [2] and Kalbfleisch

and Prentice [3]). However, with interval censored data there are several generaliza-

tions of the log-rank tests provided by the authors. Peto and Peto [4] studied the

problem for comparing two groups of independent interval censored observations.

Their method allow the data to be exact or interval censored. Finkelstein [5] used

a proportional hazards regression model to develop a parametric score test for this

problem.

Zhao and Sun [6] improved the nonparametric test studied by Sun [7] and proposed a

generalized log-rank test that allows data to have both interval censored and exactly

observed observations.

Sun and Zhao [8] proposed a generalized log-rank test when all the data are of the

form of interval censored and there is no exact observations. Zhao et. al. [9] developed

the test procedure of Sun and Zhao [8] to allow data with exact observations as well

as the interval censored. Whence, their method reduces to the Sun and Zhao [8] when

there is no exact observations in the interval censored data. Recently Zhao et. al. [10]

proposed a new class of generalized log-rank tests. They also provided the asymptotic

distribution of the test statistics under both null and alternative distributions. For

an excellent overview on interval censoring, one may refer to Sun [11], Sun [12] and

Chen et. al. [13].

Another approach to handle interval censored data is to use an imputation-based

inference. Imputation for interval censored data means to consider one single data

representing the whole interval data. One common choice is to consider the middle
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point of the data, however one may consider the left or the right end points of the

interval. The resulting data will be a set of complete data and then the usual log-rank

test can be employed to carry out the survival comparison. The big merit of using

the imputation method is its simplicity and if all the intervals are relatively narrow

the resulting inference will be reasonably well.

The rest of this article is organized as follows. In Section 2, we review some of the

existing parametric and nonparametric generalized log-rank tests in the literature for

interval censored data. Section 3 is devoted to a simulation study of the tests studied

in Section 2. The empirical powers of the test are evaluated by means of a Monte

Carlo simulation and thereby the best tests are identified. Finally, in Section 4, we

study a real dataset.

2. Tests for comparing of several survival functions

Consider a survival study consists of a total of n independent subjects from k different

treatment groups. Also, suppose that there are nl subjects from group l, for l =

1, . . . , k, such that
∑k

l=1 nl = n. Let Ti denotes the survival time of interest for

subject i, i = 1, . . . , n, and that only interval censored data are available of the form

{(Li, Ri], zi; i = 1, . . . , n}

where (Li, Ri] denotes the interval to which Ti belongs and zi represents the k vector

of treatment indicators for the ith subject. Note that, if Li = Ri, then Ti is exactly

observed, whereas Li = 0 and Ri = ∞ indicates left and right censored, respectively.

Let Sl(t) denotes the survival function corresponds to the l-th treatment group. We

are interested to test the assumption that the k treatment groups have identical

survival functions, i.e.

(2.1) H0 : S1(t) = . . . = Sk(t) .
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Several parametric and nonparametric tests are available in the literature. Zhao and

Sun [6] proposed a nonparametric generalized log-rank test statistic given by

(2.2) Tglrt1 = UT
I V −

I UI ,

where UI =
∑m

j=1(djl − njldj/nj) and djl’s and njl’s are the natural estimates of the

numbers of failures and risks. The V − is the generalized inverse of the estimate of the

covariance matrix of UI . The test statistic Tglrt1 under the null hypothesis follows

approximately a χ2 distribution with (k − 1) degrees of freedom. See Zhao and Sun

[6] for details.

Sun and Zhao [8] proposed another generalized log-rank test procedure based on the

link function ζ and the statistic

UII =

n∑

i=1

zi

ζ{Ŝ(Li)} − ζ{Ŝ(Ri)}
Ŝ(Li) − Ŝ(Ri)

.

Several link functions may be used, however, a general link function in the form

ζ(x) = (x log z)xρ(1 − x)γ has the advantages that the users can select their own

constants ρ and γ based on the application. They showed that the test statistic

(2.3) Tglrt2 = UT
II,0 V −1

II,0 UII,0/n ,

has asymptotically a χ2 distribution with (k − 1) degree of freedom, where UII,0

denotes the first (k − 1) components of UII and VII,0 is the matrix after deleting the

last row and column of the estimated covariance matrix of UII/
√

n.

Zhao et. al. [9] proposed another generalized log-rank testing procedure for interval

censored data. The test statistic is given by

UIII =A
n∑

i=1

zi ei

ζ{Ŝ(Ri−)} − ζ{Ŝ(Ri)}
Ŝ(Ri−) − Ŝ(Ri)

+ B
n∑

i=1

zi (1 − ei)
ζ{Ŝ(Li)} − ζ{Ŝ(Ri)}

Ŝ(Li) − Ŝ(Ri)
,
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where ei is the indicator for the exactly observed observation, and A and B are the

diagonal coefficient matrices. They showed that the test statistic

(2.4) Tglrt3 = UT
III,0 V −1

III,0 UIII,0/n ,

has asymptotically a χ2 distribution with (k − 1) degrees of freedom. See Zhao et.

al. [9] for details.

Note that UI and UIII support data to be both interval censored and exactly observed

observations, whilst UII is devoted to just interval censored data. Moreover, UIII

reduces to UII when there is only interval censored data and no exact observed

observations.

A parametric method known as score test was proposed by Finkelstein [5] using the

proportional hazards regression model. The test statistic is given by

UIV =

n∑

i=1

m+1∑

j=1

{
zi log p̂j

∑m+1
r=j αirĝr∑

l αilĝl

− zi

log p̂j

1 − p̂j

αij ĝj∑
l αilĝl

} ,

where p̂j = Ŝ(sj)/Ŝ(sj − 1) and ĝj = Ŝ(sj−1)/Ŝ(sj). She showed that under the null

hypothesis of no differences between the survival curves test statistic

(2.5) Tscore = UT
IV V −1

IV UIV ,

has asymptotically a χ2 distribution with (k − 1) degrees of freedom. Note that

when there is no exact observed observations, UIV reduces to UII with link function

ζ(x) = x log x.

A simple procedure to handle the interval censored data is to transform the interval

censored data to a set of complete data by means of an imputation approach. One

common choice is to let Ti = Li+Ri

2
, that is the mid-point imputation. Alternatively,

one may consider Ti = Li, or Ti = Ri corresponding to the left end and right end

imputation methods, respectively. Upon imputation the interval censored data, the

existing methods for complete data may be employed to test the null hypothesis.
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In the next section, we compare the power of the above tests through a Monte Carlo

study.

3. Monte Carlo Power Study

In this section, we assess the the power of the tests discussed in the last section

by means of Monte Carlo simulations. In particular, we compare the power of the

Finkelstein [5], Zhao and Sun [6] and Sun and Zhao [8] test procedures as well as the

imputation method. The empirical significance level is also calculated to check the

validity of the test procedures. All the simulations were carried out in R using the

pseudo-random generator in that software package.

We used the algorithm proposed by Kiani and Arasan [14] to generate interval cen-

sored data. A two-sample comparison with n = 50 and n = 100 subjects in each pop-

ulation was considered. The interval censored survival times (Li, Ri] for i = 1, . . . , n

were generated from the exponential distributions with means (hazards) exp(α) and

exp(α + β) corresponding to the first and second population, respectively. The ex-

ponential parameters were set to be α = 2.0 and β = −0.8,−0.4, 0.0, 0.2, 0.4 and 0.8.

Note that β represents the difference between the two populations and β = 0 will

assess the empirical size of the tests. This is the underlying distribution considered

by Zhao and Sun [6], Sun and Zhao [8] and Zhao et. al. [9].

The significance level of all tests was set at 0.05 and 5000 replications were considered

in the Monte Carlo simulations.

We used the glrt R package to perform the nonparametric generalized log-rank tests

and the parametric score test. In the tables we have denoted the generalized log-rank

tests proposed by Zhao and Sun [6] and Sun and Zhao [8] by “glrt1” and “glrt2”,

respectively, and the score test proposed by Finkelstein [5] by “score”.

Tables 1 and 2 present empirical rejection probabilities for testing the equality of the

two exponential survival models, exp(α) and exp(α+β) for various subject attendance
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Table 1. Estimated power and size when n = 50 and α = 0.05 for

various subjects attendance probabilities.

Subjects attendance probability (q)

β Test ρ γ 0.5 0.75 0.9

-0.8

glrt1 - - 0.9636 0.9676 0.9728

glrt2

0 0 0.9666 0.9660 0.9708

1 0.9322 0.9298 0.9266

1 0 0.6792 0.6700 0.6802

1 0.8478 0.8376 0.8436

Score - - 0.9738 0.9720 0.9760

Imputation - - 0.9700 0.9732 0.9746

-0.4

glrt1 - - 0.4810 0.5078 0.5112

glrt2

0 0 0.4867 0.4968 0.4982

1 0.4123 0.4150 0.4132

1 0 0.2228 0.2234 0.2290

1 0.3181 0.3182 0.3180

Score - - 0.5166 0.5270 0.5278

Imputation - - 0.4804 0.4876 0.4938

0.0

glrt1 - - 0.0542 0.0558 0.0556

glrt2

0 0 0.0562 0.0534 0.0518

1 0.0526 0.0526 0.0510

1 0 0.0468 0.0486 0.0474

1 0.0570 0.0518 0.0518

Score - - 0.0628 0.0636 0.0634

Imputation - - 0.0506 0.0520 0.0516

0.4

glrt1 - - 0.4756 0.4864 0.4860

glrt2

0 0 0.4696 0.4762 0.4730

1 0.3932 0.3986 0.3866

1 0 0.2192 0.2142 0.2136

1 0.3062 0.2970 0.2934

Score - - 0.5044 0.5048 0.5026

Imputation - - 0.5070 0.5086 0.5096

0.8

glrt1 - - 0.9734 0.9742 0.9756

glrt2

0 0 0.9722 0.9728 0.9732

1 0.9320 0.9314 0.9284

1 0 0.6716 0.6634 0.6640

1 0.8388 0.8310 0.8308

Score - - 0.9784 0.9784 0.9784

Imputation - - 0.9718 0.9714 0.9757
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Table 2. Estimated power and size when n = 100 and α = 0.05 for

various subjects attendance probabilities.

Subjects attendance probability (q)

β Test ρ γ 0.5 0.75 0.9

-0.8

glrt1 - - 0.9998 0.9996 1.0000

glrt2

0 0 0.9998 0.9996 1.0000

1 0.9984 0.9980 0.9988

1 0 0.9196 0.9230 0.9258

1 0.9858 0.9868 0.9880

Score - - 0.9998 0.9996 1.0000

Imputation - - 1.0000 0.9996 1.0000

-0.4

glrt1 - - 0.7702 0.7894 0.7934

glrt2

0 0 0.7802 0.7854 0.7872

1 0.7054 0.7056 0.7026

1 0 0.3820 0.3740 0.3744

1 0.5300 0.5304 0.5282

Score - - 0.7904 0.7976 0.7890

Imputation - - 0.7852 0.7904 0.7962

0.0

glrt1 - - 0.0508 0.0506 0.0514

glrt2

0 0 0.0518 0.0500 0.0502

1 0.0510 0.0508 0.0492

1 0 0.0526 0.0546 0.0526

1 0.0494 0.0516 0.0516

Score - - 0.0562 0.0552 0.0534

Imputation - - 0.0536 0.0546 0.0536

0.4

glrt1 - - 0.7974 0.8022 0.8026

glrt2

0 0 0.7964 0.7982 0.7988

1 0.7046 0.7084 0.7094

1 0 0.3996 0.3902 0.3900

1 0.5398 0.5342 0.5280

Score - - 0.8086 0.8112 0.8116

Imputation - - 0.7928 0.8006 0.8018

0.8

glrt1 - - 1.0000 1.0000 1.0000

glrt2

0 0 1.0000 1.0000 1.0000

1 0.9996 0.9990 0.9992

1 0 0.9290 0.9252 0.9268

1 0.9840 0.9822 0.9830

Score - - 1.0000 1.0000 1.0000

Imputation - - 0.9998 1.0000 1.0000
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probabilities, q when n = 50 and n = 100, respectively. We considered q = 0.5, 0.75

and 0.9. For example, q = 0.5 means that a subject has a 50 − 50 chance to attend

the next visit, whilst q = 0.9 shows a high probability for the subject to attend the

next visit. Two values zero and one were considered for the link function parameters

ρ and γ. Note that since all of the generated data are in the form of interval censored

and there is no exactly observed observations, the “glrt3” method is equivalent to the

“glrt2” and hence is omitted from the study. We found that the three imputation

methods, left end, middle and right end points produce very close powers, and the

mid-point method shows a little better performance in compare to the other two

methods. Hence, we only give the results of the mid-point imputation approach.

Obviously, for large values of q, the subject attendance probability, the difference in

power for the three imputation approaches is negligible since in this case the finite

intervals are narrow.

Note that when β = 0, the two models are the same and the rejection probabilities

give the empirical significance level of the tests. It is observed that all tests maintain

the level of significance at the nominal level. Moreover, as one would expect all

the estimated powers for n = 100 in Table 2 are greater than their corresponding

powers for n = 50 in Table 1. Also, the empirical powers in both tables, increases

as the value of the subject attendance probability increases. This is due to narrower

intervals when the value of q is high and hence more information will be available of

the true value of the survival times Ti within each interval.

The values in Tables 1 and 2 reveal that the Finkelstein score test outperform the

other tests almost in all cases. However, with larger value of the sample size, say

n = 100, “glrt1” test due to Zhao and Sun [6] performs as good as the score test

specifically when the distance between the two models becomes larger. In all cases,

“glrt2” test with the link function parameters (ρ, γ) = (1, 0) give the worst result in

compare to the other tests. Surprisingly, the simple mid-point imputation method
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performs very well and give the empirical powers that are very closed to the score

test specifically with n = 100.

4. Illustrative Example

In this section, we study a real dataset to illustrate the generalized log-rank tests

discussed in Section 2. The data was first considered by Pakyari and Abolhassani [15]

and consist of a group of 207 children that were examined periodically to determine

the time of their first permanent moral tooth decay in Urmia at the north-east of

Iran. Using the Palmer notation they have studied the first permanent molar tooth

number 6 in each quadrant. This tooth is usually emerges at the age of 6 to 7. The

age of the patients approximately ranged from 3 to 14 years of which 46.8% were

male and 53.2% were female.

Comparison of the time of the first permanent molar tooth decay between boys and

girls are of interest. Table 3 gives the p-values of the tests discussed in Section 2. It

is observed that all the tests support the null hypothesis of no difference between the

time of the first permanent moral tooth decay in boys and girls.

Figure 1 shows the nonparametric maximum likelihood estimate of the survival func-

tions for each treatment group of the tooth data. This figure also supports the

equality of survival function of boys and girls.

Concluding Remarks and Future works

As one of the anonymous reviewers suggests it would be nice to do a simulation

study when the observation process is a time sequence with certain probability of

missing. In this way one may mimic the clinical trial setting.
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Table 3. p-values of the equality of survival curves tests for the first

moral tooth data.

Test ρ γ p-value

glrt1 - - 0.5457

glrt2

0 0 0.4805

1 0.5543

1 0 0.5587

1 0.4804

Score - - 0.4676

Imputation - - 0.3422
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Figure 1. NPLME survival curve estimates from the first moral tooth data.
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