Jordan Journal of Mathematics and Statistics (JJMS) 9(3), 2016, pp 217-225

PASTING LEMMA FOR αgrw -CONTINUOUS FUNCTIONS

N. SELVANAYAKI (1) AND GNANAMBAL ILANGO (2)

Abstract. In this paper, some properties of αgrw -continuous functions are dis-

cussed and the notion of $\alpha grw\text{-}\mathrm{closed}$ graph is introduced.

1. Introduction

The Pasting lemma for continuous functions has applications in algebraic topology.

The continuous functions defined on closed sets of a locally finite covering of a topo-

logical space can be pasted to form a continuous function on the whole space. Several

mathematicians have established pasting lemmas for some stronger and weaker forms

of continuous functions. In this paper pasting lemma for αgrw -continuous functions

is proved and also αqrw -closed graph functions are introduced in topological spaces.

Throughout this paper, the space (X, τ) (or simply X) always means a topological

space on which no separation axioms are assumed unless explicitly stated. For a

subset A of a space X, cl(A), int(A) and X - A (or A^c) denote the closure of A, the

interior of A and the complement of A in X respectively.

2. Preliminaries

Definition 2.1. A subset A of a topological space (X, τ) is called

(1) regular open [12] if A = int(cl(A)) and regular closed if A = cl(int(A)).

2000 Mathematics Subject Classification. 54A05.

Key words and phrases. αgrw -closed sets, αgrw -continuous functions, αgrw -closed graph.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: Jan. 4, 2016

Accepted: July 3, 2016.

217

- (2) pre-open [7] if $A \subseteq int(cl(A))$ and pre-closed if $cl(int(A)) \subseteq A$
- (3) β -open [1] if $A \subseteq cl(int(cl(A)))$ and β -closed if $int(cl(int(A))) \subseteq A$.
- (4) α -open [8] if $A \subseteq int(cl(int(A)))$ and α -closed [6] if $cl(int(cl(A))) \subseteq A$

Definition 2.2. [3] A subset A of a space (X, τ) is called regular semi-open if there is a regular open set U such that $U \subseteq A \subseteq cl(U)$. The family of all regular semi-open sets of X is denoted by RSO(X).

Definition 2.3. [9] A subset A of a topological space (X, τ) is said to be $\alpha grw\text{-}closed$ if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi-open.

A subset A of a topological space (X, τ) is said to be $\alpha grw\text{-}open$ [11] if A^c is $\alpha grw\text{-}closed$.

The set of all αgrw -closed sets and αgrw -open sets are denoted by $\alpha grwC(X)$ and $\alpha grwO(X)$ respectively.

Definition 2.4. [6] A function $f:(X,\tau)\to (Y,\sigma)$ is said to be α -closed if f(U) is an α -closed set of (Y,σ) for every closed set U of (X,τ) .

Definition 2.5. [10] A function $f:(X,\tau)\to (Y,\sigma)$ is said to be αgrw -continuous if $f^{-1}(V)$ is an αgrw -closed set of (X,τ) for every closed set V of (Y,σ) .

Definition 2.6. [10] A function $f:(X,\tau)\to (Y,\sigma)$ is said to be αgrw -irresolute if $f^{-1}(V)$ is an αgrw -closed set of (X,τ) for every αgrw -closed set V of (Y,σ) .

Definition 2.7. [8] A topological space (X, τ) is an α -space if every α -closed subset of (X, τ) is closed in (X, τ) .

Definition 2.8. [5] A function $f:(X,\tau)\to (Y,\sigma)$ has an α -closed graph if for each $(x,y)\notin G(f)$, there exists an α -open set U and an open set V containing x and y respectively such that $(U\times cl(V))\cap G(f)=\emptyset$.

Lemma 2.1. [2] Let $A \subset Y \subset X$, where X is a topological space and Y is open subspace of X. If $A \in RSO(X)$, then $A \in RSO(Y)$.

3. αqrw -continuous functions

Definition 3.1. A function $f:(X,\tau)\to (Y,\sigma)$ is called regular semi-open* (resp. regular semi-closed*) if f(V) is regular semi-open(resp. regular semi-closed) in (Y,σ) for every regular semi-open(resp. regular semi-closed) set V in (X,τ) .

Definition 3.2. A function $f:(X,\tau)\to (Y,\sigma)$ is called regular semi-irresolute if $f^{-1}(V)$ is regular semi-open in (X,τ) for every regular semi-open V in (Y,σ) .

Proposition 3.1. If A is αgrw -closed in a α -space (X, τ) and if $f: (X, \tau) \to (Y, \sigma)$ is regular semi-irresolute and α -closed, then f(A) is αgrw -closed in (Y, σ) .

Proof. Let U be any regular semi-open in (Y, σ) such that $f(A) \subseteq U$. Then $A \subseteq f^{-1}(U)$ and by assumption, $\alpha cl(A) \subseteq f^{-1}(U)$. This implies $f(\alpha cl(A)) \subseteq U$ and $f(\alpha cl(A))$ is α -closed. Now, $\alpha cl(f(A)) \subseteq \alpha cl(f(\alpha cl(A))) = f(\alpha cl(A)) \subseteq U$. Therefore $\alpha cl(f(A)) \subseteq U$ and hence f(A) is αgrw -closed in (Y, σ) .

Remark 1. The following examples show that no assumption of the above proposition can be removed.

Example 3.1. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$, $Y = \{p, q, r\}$ and $\sigma = \{\emptyset, \{p\}, \{r\}, \{p, r\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a) = p, f(b) = f(c) = r and f(d) = q. Then the function f is regular semi-irresolute and α -closed but $A = \{a\}$ is not an αgrw -closed in a α -space (X, τ) and so f(A) is not an αgrw -closed set in (Y, σ) .

Example 3.2. In Example 3.1, let $f:(X,\tau)\to (Y,\sigma)$ be defined by f(a)=f(c)=r, f(b)=p and f(d)=q. Then $A=\{a,c\}$ is $\alpha grw\text{-}closed, f$ is $\alpha \text{-}closed$ and X is

 α -space but f is not regular semi-irresolute and so f(A) is not an αgrw -closed set in (Y, σ) .

Example 3.3. In Example 3.1, let $f:(X,\tau) \to (Y,\sigma)$ be defined by f(a) = f(d) = p and f(b) = f(c) = r. Then $A = \{a,d\}$ is α -replaced, f is regular semi-irresolute and X is α -space but f is not α -closed and so f(A) is not an α -grw-closed set in (Y,σ) .

Example 3.4. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$, $Y = \{p, q, r\}$ and $\sigma = \{\emptyset, \{p\}, \{r\}, \{p, r\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a) = p, f(b) = f(d) = r and f(c) = q. Then the function f is regular semi-irresolute, f is α -closed and $A = \{d\}$ is αgrw -closed but X is not α -space and so f(A) is not an αgrw -closed set in (Y, σ) .

Theorem 3.1. Let f be an αgrw -continuous and regular semi-closed* function from a space (X, τ) to an α -space (Y, σ) . Then f is an αgrw -irresolute function.

Proof. Let A be an αgrw -open subset in (Y, σ) and let F be any regular semi-closed set in (X, τ) such that $F \subseteq f^{-1}(A)$. Then $f(F) \subseteq A$. Since f is regular semi-closed*, f(F) is regular semi-closed. Therefore $f(F) \subseteq \alpha int(A)$ by Theorem 3.1 [11] and so $F \subseteq f^{-1}(\alpha int(A))$. Since f is αgrw -continuous and Y is an α -space, $f^{-1}(\alpha int(A))$ is αgrw -open in (X, τ) . Thus $F \subseteq \alpha int(f^{-1}(\alpha int(A)) \subseteq \alpha int(f^{-1}(A))$ and so $f^{-1}(A)$ is αgrw -open in (X, τ) by Theorem 3.1 [11]. The proof is similar for αgrw -closed set.

Remark 2. The following examples show that no assumption of the above theorem can be removed.

Example 3.5. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$, $Y = \{p, q, r\}$ and $\sigma = \{\emptyset, \{q\}, \{p, q\}, \{q, r\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a) = f(b) = r, f(c) = q and f(d) = p. Then the function f is αgrw -continuous and Y is α -space but f is not regular semi-closed* and so f is not αgrw -irresolute.

Example 3.6. Let $X = Y = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be an identity map. Then the function f is αgrw -continuous and regular semi-closed* but Y is not an α -space and so f is not αgrw -irresolute.

Example 3.7. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$, $Y = \{p, q, r\}$ and $\sigma = \{\emptyset, \{p\}, \{r\}, \{p, r\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a) = f(d) = p, f(b) = r and f(c) = q. Then the function f is regular semi-closed* and Y is α -space but f is not αgrw -continuous and so f is not αgrw -irresolute.

Corollary 3.1. If $f:(X,\tau)\to (Y,\sigma)$ is αgrw -continuous and regular semi-closed* and if A is αgrw -closed (or αgrw -open) subset of an α -space (Y,σ) , then $f^{-1}(A)$ is αgrw -closed (or αgrw -open) in (X,τ) .

Corollary 3.2. Let $(X, \tau), (Z, \eta)$ be a topological spaces and (Y, σ) be an α -space. If $f: (X, \tau) \to (Y, \sigma)$ is αgrw -continuous and regular semi-closed* and $g: (Y, \sigma) \to (Z, \eta)$ is αgrw -continuous then $g \circ f: (X, \tau) \to (Z, \eta)$ is αgrw -continuous.

Proof. Let F be any closed set in (Z, η) . Since g is αgrw -continuous, $g^{-1}(F)$ is αgrw -closed. By assumption and by Theorem 3.1, $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is αgrw -closed in (X, τ) and so $g \circ f$ is αgrw -continuous.

Proposition 3.2. Let $f:(X,\tau)\to (Y,\sigma)$ is αgrw -continuous then for each point x in X and each open set V in Y with $f(x)\in V$, there is an αgrw -open set U in X such that $x\in U$ and $f(U)\subseteq V$.

Proof. Let V be an open set in (Y, σ) and let $f(x) \in V$. Then $x \in f^{-1}(V) \in \alpha grwO(X)$, since f is αgrw -continuous. Let $U = f^{-1}(V)$. Then $x \in U$ and $f(U) \subseteq V$.

Remark 3. The converse of the above proposition need not be true as seen from the following example.

Example 3.8. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$, $Y = \{p, q, r, s\}$ and $\sigma = \{\emptyset, \{p\}, \{q\}, \{p, q\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a) = p, f(b) = q and f(c) = r. Then for each point x in X and each open set V in Y with $f(x) \in V$, there is an αgrw -open set U in X such that $x \in U$ and $f(U) \subseteq V$ but f is not αgrw -continuous.

The following theorem is the Pasting lemma for αgrw -continuous functions.

Theorem 3.2. Let $X = A \cup B$, where A and B are αgrw -closed and regular open in X. Let $f: (A, \tau_A) \to (Y, \sigma)$ and $g: (B, \tau_B) \to (Y, \sigma)$ be αgrw -continuous such that f(x) = g(x) for every $x \in A \cap B$. Then the combination $f \nabla g: (X, \tau) \to (Y, \sigma)$ defined by $(f \nabla g)(x) = f(x)$ if $x \in A$ and $(f \nabla g)(x) = g(x)$ if $x \in B$ is αgrw -continuous.

Proof. Let U be any closed set in Y. Then $(f\nabla g)^{-1}(U) = [(f\nabla g)^{-1}(U) \cap A] \cup [(f\nabla g)^{-1}(U) \cap B] = f^{-1}(U) \cup g^{-1}(U) = C \cup D$, where $C = f^{-1}(U)$ and $D = g^{-1}(U)$. Since f is αgrw -continuous, we have C is αgrw -closed in (A, τ_A) and also since A is αgrw -closed and regular open in X, C is αgrw -closed in X by Proposition 7 [4]. Similarly, D is αgrw -closed in X and by Theorem 3.19[9], $(f\nabla g)^{-1}(U) = C \cup D$ is αgrw -closed in X. Hence $f\nabla g$ is αgrw -continuous.

Definition 3.3. A function $f:(X,\tau)\to (Y,\sigma)$ has an αgrw -closed graph if for each $(x,y)\notin G(f)$, there exists an αgrw -open set U and an open set V containing x and y respectively such that $(U\times cl(V))\cap G(f)=\emptyset$.

Example 3.9. Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{a\}, X\}$ and $Y = \{p, q, r\}$ with topology $\sigma = P(Y)$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a) = p, f(b) = q and f(c) = r. Then f has an αgrw -closed graph.

Proposition 3.3. A function with α -closed graph has an α grw-closed graph.

Proof. Let $f:(X,\tau)\to (Y,\sigma)$ has an α -closed graph. Then there exists an α -open set U and an open set V containing x and y respectively if for each $(x,y)\in G(f)$ such that $(U\times cl(V))\cap G(f)=\emptyset$. Since every α -open set is an αgrw -open set[9]. Therefore U is an α -open set. Hence f has an αgrw -closed graph.

Remark 4. The converses of the above proposition need not be true in general. In Example 3.9, the function f has an αgrw -closed graph but not has an α -closed graph.

Lemma 3.1. The function $f:(X,\tau)\to (Y,\sigma)$ has an αgrw -closed graph if and only if for each $(x,y)\in X\times Y$ such that $f(x)\neq y$, there exist an αgrw -open set U and an open set V containing x and y respectively, such that $f(U)\cap cl(V)=\emptyset$.

Proof. Necessity. Let for each $(x,y) \in X \times Y$ such that $f(x) \neq y$. Then there exist an αgrw -open set U and an open set V containing x and y, respectively, such that $(U \times cl(V)) \cap G(f) = \emptyset$, since f has an αgrw -closed graph. Hence for each $x \in U$ and $y \in cl(V)$ with $y \neq f(x)$, we have $f(U) \cap cl(V) = \emptyset$.

Sufficiency. Let $(x,y) \notin G(f)$. Then $y \neq f(x)$ and so there exist an αgrw -open set U and an open set V containing x and y, respectively, such that $f(U) \cap cl(V) = \emptyset$. This implies, for each $x \in U$ and $y \in cl(V)$, $f(x) \neq y$. Therefore $(U \times cl(V)) \cap G(f) = \emptyset$. Hence f has an αgrw -closed graph.

Theorem 3.3. If f is an αgrw -continuous function from a space X into a Hausdorff space Y, then f has an αgrw -closed graph.

Proof. Let $(x,y) \notin G(f)$. Then $y \neq f(x)$. Since Y is Hausdorff space, there exist two disjoint open sets V and W such that $f(x) \in W$ and $y \in V$. Since f is αgrw -continuous, there exists an αgrw -open set U such that $x \in U$ and $f(U) \subseteq W$ by Proposition 3.2. Thus $f(U) \subseteq Y - cl(V)$. Therefore $f(U) \cap cl(V) = \emptyset$ and so f has an αgrw -closed graph.

Theorem 3.4. If f is a surjective function with an αgrw -closed graph from a space X onto a space Y, then Y is Hausdorff.

Proof. Let y_1 and y_2 be two distinct points in Y. Then there exists a point $x_1 \in X$ such that $f(x_1) = y_1 \neq y_2$. Thus $(x_1, y_2) \notin G(f)$. Since f has an αgrw -closed graph, there exist an αgrw -open set U and an open set V containing x_1 and y_2 , respectively, such that $f(U) \cap cl(V) = \emptyset$ and so $f(x_1) \notin cl(V)$. Hence Y is Hausdorff.

Proposition 3.4. The space X is Hausdorff if and only if the identity mapping $f: X \to X$ has an αgrw -closed graph.

Proof. Obvious from Theorem 3.3 and 3.4.

References

- [1] M.E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., **12**(1983), 77-90.
- [2] S. S. Benchalli and R.S. Wali, On RW-closed sets in topological spaces, Bull. Malaysian. Math. Sci. Soc., (2) 30(2) (2007), 99-110.
- [3] D. E. Cameron, Properties of S-closed spaces, Proc. Amer Math. Soc. 72(1978), 581-586.
- [4] Ennis Rosas, N. Selvanayaki and Gnanambal Ilango, A note on αgrw-closed sets, Euro. J. Pure and Appl. Math.9(1)(2016), 27-33.
- [5] I. A. Hasanein, Topological applications on some supraopen sets, Ph. D. Thesis, Assiut University (1982).
- [6] A. S. Mashhour, I. A. Hasanein and S.N. El-Deeb, α-continuous and α-open mappings, Acta. Math. Hungar. 41(1983), 213-218.
- [7] A. S. Mashhour, M. E. Abd. El-Monsef and S. N. El-Deeb, On pre continuous mappings and weak pre-continuous mappings, Proc. Math, Phys. Soc. Eqipt., 53 (1982), 47-53.
- [8] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15(1965), 961-970.
- [9] N. Selvanayaki and Gnanambal Ilango, On α -generalized regular weakly closed sets in topological spaces, Scientia Magna, 9(1)(2013), 52-58.
- [10] N. Selvanayaki and Gnanambal Ilango, On α-generalized regular weakly continuous functions in topological spaces, Bull. Kerala Math. Asso., 11(1) (2014), 103-112.

- [11] N. Selvanayaki and Gnanambal Ilango, Quasi αgrw -open maps in topological spaces, Jordan J. Math. Stat., **8(2)** (2015), 169 -177.
- [12] M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41(1937), 374-481.
- (1) Department of Mathematics, Akshaya College of Engineering and Technology, Coimbatore, Tamil Nadu, India.

 $E ext{-}mail\ address: selvanayaki.nataraj@gmail.com}$

(2) Department of Mathematics, Government Arts College, Coimbatore, Tamilnadu, India.

 $E ext{-}mail\ address: gnanamilango@yahoo.co.in}$