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A GENERALIZATION OF SLANT TOEPLITZ OPERATORS

GOPAL DATT (1) AND RITU AGGARWAL (2)

Abstract. We ask about the solutions of the equation λMzX = XMz2 , for gen-

eral complex number λ, which are referred as λ−slant Toeplitz operators. We com-

pletely solve this equation and discuss some algebraic as well as spectral properties

of λ−slant Toeplitz operators. The compactness of the compression of λ−slant

Toeplitz operators is also addressed.

1. Introduction

Let µ denote the normalized Lebesgue measure on the unit circle T (the boundary of

the unit disc D) and L2 the Hilbert space of all complex-valued measurable functions

f defined on T satisfying ∫
|f |2dµ <∞.

The inner product on L2 is given by 〈f, g〉 = 1
2π

2π∫
0

fgdθ for f, g ∈ L2 and {en : n ∈ Z},

where en(z) = zn for each z ∈ T, denotes the standard orthonormal basis of L2. The

Hardy space H2 of analytic functions in the open unit disc D is defined as

H2 = {f(z) =
∞∑
n=0

anz
n : ‖f‖2 =

∞∑
n=0

|an|2 <∞}.
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It is customary to identify the functions of H2 with the space of their boundary

functions (see [2,7,16]). The boundary functions correspond to those functions in L2

whose negative Fourier coefficients vanish. With this identification, H2 is a closed

subspace of L2. The space of all essentially bounded measurable functions on T is

denoted by L∞. Toeplitz operators on the space L2 are nothing but the operators in

the commutant of Mz, the bilateral shift and thus can be written as solutions to the

operator equation MzX = XMz. In the year 1911, Toeplitz [20] introduced Toeplitz

operators on the Hardy space H2, which are characterized by the operator equation

U∗XU = X, where U is the forward unilateral shift operator on the Hardy space H2.

The ideas and methods prevailing in the field of Toeplitz operators are a fascinating

illustration of the fruitful interplay between operator theory, complex analysis and

a Banach algebra. Barŕia and Halmos [3] studied a generalization of the equation

U∗XU = X and asked about the solutions of the equation U∗XU = λX, for general

complex number λ, the solutions of which are referred as λ−Toeplitz operators [6,

13, 14]. This problem was completely solved by S. Sun [19] in the year 1983, where

he proved that the only λ−Toeplitz operator for |λ| > 1 is the zero operator and the

equation U∗XU = λX has non-zero bounded solutions if and only if |λ| ≤ 1. There is

an interesting overlapping between λ−Toeplitz operators and Toeplitz-composition

operators (which are expressed as product of Teoplitz operators and composition

operators). In fact, λ−Toeplitz operators are described as Toeplitz-composition op-

erators for |λ| = 1 and are written as the sum of weighted composition operators and

their adjoint for |λ| < 1 (see [13, 14]). For the theory of composition and weighted

composition operators, we refer the reader to [5 and 15]. The essential spectrum and

spectrum of λ−Toeplitz operators for some specific symbols are computed by Ho in

[14]. The study is carried forward with the introduction of the notions of analytic

λ−Toeplitz and essentially λ−Toeplitz operators in [6], where spectral as well as

algebraic properties of these operators are explored.
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Ho [12] described the notion of slant Toeplitz operators on the space L2, which are

defined as operators whose matrix with respect to the standard orthonormal basis

{en : n ∈ Z} is given by



. . . · · · · · · · · · · · · · · ·

· · · a−2 a−3 · · · · · · · · ·

· · · a0 a−1 a−2 · · · · · ·

· · · · · · a1 a0 · · · · · ·

· · · · · · · · · · · · . . . · · ·

· · · · · · · · · · · · · · · . . .


,

where φ =
∑
n∈Z

anen ∈ L∞ with an = 〈φ, en〉, the nth-Fourier coefficient of φ. Equiva-

lently, slant Toeplitz operators on the space L2 are defined as Aφ = WMφ for φ ∈ L∞,

where We2n = en, We2n+1 = 0 for each n ∈ Z and Mφ is the Laurent operator on L2

induced by the symbol φ. Many authors have shown interest in the spectral proper-

ties of slant Toeplitz operators and tried to apply them to the theory of wavelets. The

smoothness of the wavelets is related to the spectral properties of the slant Toeplitz

operators (see [8], [11], [17], [18]). For example, the Besov regularity of solutions of

the refinement equation has been associated with the spectral radius of an associated

slant Toeplitz operator [21]. Slant Toeplitz operators are also characterized as the

solutions of the operator equation MzX = XMz2 [12]. Motivated by the approach

initiated by Halmos and Barŕia [3] and Sun [19], our interest is prompted in studying

the operator equation λMzX = XMz2 (which is same as λX = MzXMz2) for given

complex number λ. As the study of the equation λX = MzXMz2 is more or less

equivalent to the study of the equation MzXMz2 − X = λX so using the nomen-

clature methodology of [2] and [6], the solutions of the equation λMzX = XMz2

are named as “λ−slant Toeplitz operators”. The existence of non-zero λ− Toeplitz

operators is shown for |λ| ≤ 1 by Sun [19], whereas we show that the only λ−slant
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Toeplitz operator for |λ| 6= 1 is the zero operator. It may not be surprising to know

that λ−slant Toeplitz operators and slant Toeplitz operators can be more or less

connected through the classical slant Toeplitz operators if |λ| = 1. However, in this

case, λ−slant Toeplitz operators fall in the category of slant Toeplitz -composition

operators, i.e., operators which can be expressed as the product of slant Toeplitz

operators and composition operators. The study of slant weighted Toeplitz operators

was made in [1] and we extend some results similar to that known for slant weighted

Toeplitz operators to λ−slant Toeplitz operators. This paper also deals with the

spectral properties of λ−slant Toeplitz operators. Properties of compressions of λ−

slant Toeplitz operators to H2, the Hardy space of analytic functions, are also dis-

cussed. The algebra of all bounded operators on the Hilbert space L2 is denoted by

B(L2). We use the symbol K to represent the set of all compact operators on the

Hilbert space L2. If two operators A and B on L2 differ by a compact operator then

we write it as A = B Mod(K). The norm of an operator A in the Calkin algebra

B(L2)/K is denoted by ‖A‖e.

2. λ−slant Toeplitz operators

Slant Toeplitz operators are characterized as the operators satisfying the operator

equation MzX = XMz2 . Motivated by the direction initiated by Brown and Halmos

[3], we ask about the solutions of the equation λMzX = XMz2 , for general complex

number λ. We begin with the following definition.

Definition 2.1. For a fixed complex number λ, an operator X on L2 is said to be

λ−slant Toeplitz operator if it is a solution of the equation λMzX = XMz2 .

Evidently, λ−slant Toeplitz operators on L2 can be viewed as operators satisfying

〈Aem+2, en+1〉 = λ〈Aem, en〉 for m,n ∈ Z, for λ ∈ C. In order to solve the above

equation completely, we need the following lemma.
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Lemma 2.1. An operator X on L2 is a solution of the equation AX = XMz2 Mod(K)

if and only if X is compact and is of the form

X =
∞∑
n=0

AnKMz
2n

for some compact operator K, where ‖A‖ < 1.

Proof. Suppose that X satisfies AX = XMz2 Mod(K). Then AX −XMz2 = K, for

some K ∈ K. Hence AXMz
2 − X = KMz

2, i.e. AXMz
2 = XMod(K). In order to

show that X is compact, we show that ‖X‖e = 0. On contrary, if we assume that

‖X‖e 6= 0 then

‖X‖e = ‖X − AXMz
2 + AXMz

2‖e

= ‖KMz
2 + AXMz

2‖e

≤ ‖KMz
2‖e + ‖AXMz

2‖e

= ‖AXMz
2‖e

≤ ‖A‖e‖X‖e‖Mz
2‖e

< ‖X‖e,

which is an absurd. Thus, X is a compact operator.

Now define τ : B(L2) → B(L2) such that τ(X) = AXMz
2. This gives that

‖τ‖ ≤ ‖A‖ < 1. Therefore (I−τ) is invertible and (I−τ)−1 =
∞∑
n=0

τn. This on simple

calculations gives that X =
∞∑
n=0

τn(KMz
2), which means that X =

∞∑
n=0

AnKMz
2n for

some compact operator K.

Conversely, if X is compact and is of the form X =
∞∑
n=0

AnKMz
2n, for a compact

operator K, then simple calculations show that X satisfies AX = XMz2 Mod(K). �

Now, we use Lemma 2.1 to conclude the following, which helps us to solve the

equation λMzX = XMz2 for λ ∈ C.
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Theorem 2.1. If X is a solution of AX = XMz2, ‖A‖ < 1, then X = 0.

Proof. If AX = XMz2 then AXMz
2 − X = 0. Hence X is an eigenvector of τ and

invertibility of (I − τ) provides that X = 0. �

If λ ∈ C is such that |λ| < 1 then on replacing A by λMz in Theorem 2.1, we

obtain the following.

Corollary 2.1. If X is a solution of λMzX = XMz2, |λ| < 1 then X = 0.

Now, we consider the operator equation λMzX = XMz2 , where λ ∈ C is such that

|λ| > 1. It is clear that each solution of this equation is an eigenvector of the mapping

τ : B(L2)→ B(L2) defined as τ(X) = MzXMz2 , corresponding to the eigenvalue λ.

Since ||τ || ≤ 1 so λ with |λ| > 1 is in the resolvent set of τ and the corresponding

eigenvector is zero operator. This provides that the only solution of the operator

equation λMzX = XMz2 , where λ ∈ C with |λ| > 1, is the zero operator.

From above discussion we have observed that for λ, |λ| 6= 1, the operator equation

λMzX = XMz2 has zero solution only. We now claim the following.

Theorem 2.2. For λ ∈ C, |λ| = 1, the solutions of the operator equation λMzX =

XMz2 are always of the form X = DλA, where A is a slant Toeplitz operator and Dλ

is the composition operator on L2 induced by z 7→ λz, i.e, Dλf(z) = f(λz) for all

f ∈ L2.

Proof. Suppose X is an operator of the form DλA for some slant Toeplitz operator A.

Since MzDλ = λDλMz and A is a slant Toeplitz operator we get that λMzX = XMz2 .

Suppose that X is an operator satisfying λMzX = XMz2 . Premultiplying by Dλ

we get that MzDλX = DλXMz2 . Therefore, X = DλA for some slant Toeplitz

operator A. �

Since slant Toeplitz operators are always of the form Aφ(= WMφ), φ ∈ L∞, hence

in view of Theorem 2.2 for each φ in L∞ and λ in C with |λ| = 1, we have a λ−slant
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Toeplitz operator Aφ,λ = DλAφ. For φ =
∑
n∈Z

anen in L∞, the matrix representation

of λ−slant Toeplitz operator Aφ,λ with respect to the standard orthonormal basis

{en}n∈Z is 

. . . · · · · · · · · · · · · · · ·

· · · λ−1a−1 λ−1a−2 λ−1a−3 λ−1a−4 · · ·

· · · a1 a0 a−1 a−2 · · ·

· · · λa3 λa2 λa1 λa0 · · ·

· · · λ2a5 λ2a4 λ2a3 λ2a2 · · ·

· · · · · · · · · · · · · · · . . .


.

Since for |λ| 6= 1, the only λ−slant Toeplitz operator is the zero operator so through-

out our discussion we take |λ| = 1. It is clear that for |λ| = 1, φ ∈ L∞, we have

‖Aφ,λ‖ ≤ ‖φ‖∞.

For φ =
∑
n∈Z

anen ∈ L∞, λ ∈ C, the adjoint of Aφ,λ satisfies A∗φ,λ = (DλAφ)∗ = A∗φDλ

and for each i, j ∈ Z, 〈A∗φ,λej, ei〉 = 〈ej, Aφ,λei〉 = 〈ej,
∑
m∈Z

λma2m−iem〉 = λ
j
a2j−i. This

helps us to prove the following.

Theorem 2.3. Adjoint of a non-zero λ−slant Toeplitz operator is not a λ−slant

Toeplitz operator.

Proof. Let, if possible, A∗φ,λ be a non-zero λ−slant Toeplitz operator. Then for each

i, j ∈ Z,

λ〈A∗φ,λej, ei〉 = 〈A∗φ,λej+2, ei+1〉

⇒ λλ
j
a2j−i = λ

(j+2)
a2j−i+3

⇒ a2j−i = λ
3
a2j−i+3

This on substituting j = 0 provides that a0 = λ
3n
a3n, a1 = λ

3n
a3n+1 and a2 =

λ
3n
a3n+2 for each n ∈ Z. Since an → 0 as n → ∞, we get that a0 = a1 = a2 = 0.
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As a consequence φ = 0, which contradicts that A∗φ,λ is non-zero. This completes the

proof. �

In order to compute the norm of the λ−slant Toeplitz operator Aφ,λ, we prove the

following.

Lemma 2.2. Product of a λ−slant Toeplitz operator and its adjoint is a Laurent

operator.

Proof. Using [12, Proposition 5], we have Aφ,λA
∗
φ,λ = DλAφAφ

∗Dλ = DλMψDλ, where

ψ = W (|φ|2) =
∑
m∈Z
〈ψ, em〉em ∈ L∞. Now for each n ∈ Z,

DλMψDλen = λ
n
Dλ

∑
m∈Z

〈ψ, em〉em+n

= (
∑
m∈Z

〈ψ, em〉λmem)en.

Therefore Aφ,λA
∗
φ,λ = Mξλ , a Laurent operator with symbol ξλ in L∞ given by ξλ(z) =∑

n∈Z
〈ψ, en〉λnzn for z ∈ T. �

This lemma provides the following.

Theorem 2.4. For φ ∈ L∞ and λ ∈ C, ‖Aφ,λ‖ =
√
‖ξλ‖∞, where ξλ(z) =

∑
n∈Z
〈ψ, en〉λnzn.

Proof. Proof follows as a consequence of Lemma 2.2 and the fact that ‖Aφ,λ‖2 =

‖Aφ,λA∗φ,λ‖. �

It is apparent to see that the sum of two λ−slant Toeplitz operators is a λ−slant

Toeplitz operator. However, the following properties of λ−slant Toeplitz operators,

which are known for slant Toeplitz operators (see [12], [1]), can be proved without

any extra efforts.

Proposition 2.1. Let λ ∈ C with |λ| = 1.

(a) The mapping φ 7→ Aφ,λ from L∞ into B(L2) is linear and one-one.
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(b) The set of all λ−slant Toeplitz operators is weakly closed and hence strongly closed.

(c) For an unimodular complex number µ, DµλAφ,λ is a µ−slant Toeplitz operator.

(d) A λ−slant Toeplitz operator Aφ,λ for φ ∈ L∞ is compact if and only if φ = 0.

(e) For unimodular φ in L∞, Aφ,λ is a coisometry.

In Proposition 2.1 (e), we have shown that for unimodular φ ∈ L∞, Aφ,λ is always a

coisometry. For the general φ ∈ L∞, we characterize the coisometry of Aφ,λ in terms

of φ in the following form.

Theorem 2.5. Let λ = eιθ̂, θ̂ ∈ [0, 2π[. Then Aφ,λ is coisometry if and only if

|φ( θ
2
)|2 + |φ( θ+2π

2
)|2 = 2 for a.e. θ ∈ [0, 2π[.

Proof. For f ∈ L2,

||A∗φ,λf ||22 = ||MφW
∗Dλf ||22

=

2π∫
0

|φ(θ)|2|f(−θ̂ + 2θ)|2 dθ
2π

=
1

2

4π∫
0

|φ(
θ

2
)|2|f(−θ̂ + θ)|2 dθ

2π

=
1

2

2π∫
0

{|φ(
θ

2
)|2 + |φ(

θ + 2π

2
)|2}|f(−θ̂ + θ)|2 dθ

2π

= ||Mψf̂ ||22

where ψ(θ) = {1
2
{|φ( θ

2
)|2 + |φ( θ+2π

2
)|2}}1/2 and f̂ = Dλf . As a consequence, Aφ,λ is

coisometry if and only if |ψ| = 1 a.e. on T, equivalently, {|φ( θ
2
)|2 + |φ( θ+2π

2
)|2} = 2

for a.e. θ ∈ [0, 2π[. �

Now we find that the only hyponormal λ−slant Toeplitz operator on L2 is the zero

operator.
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Theorem 2.6. A λ−slant Toeplitz operator Aφ,λ is hyponormal if and only if φ = 0.

Proof. Suppose λ−slant Toeplitz operator Aφ,λ is hyponormal. Then for all f ∈ L2,

||Aφ,λf || ≥ ||A∗φ,λf ||. On substituting f = e0 in above inequality, we have
∑
n∈Z
|a2n|2 ≥∑

n∈Z
|an|2, which implies that a2n−1 = 0 for all n ∈ Z. Now on substituting f = e1 in

the inequality, we find
∑
n∈Z
|a2n−1|2 ≥

∑
n∈Z
|a2−n|2, which yields that a2−n = 0 for all

n ∈ Z. Thus φ = 0.

Converse is obvious. �

As a consequence of Theorem 2.6 and the fact that an isometry is always hyponor-

mal, the set of λ−slant Toeplitz operators does not contain an isometry.

We now raise the following questions about the product of a λ−slant Toeplitz

operator with operators of other classes.

(1) Is the product of a λ−slant Toeplitz operator with a slant Toeplitz operator, a

λ−slant Toeplitz operator?

(2) What happens if we replace a slant Toeplitz operator by a Laurent operator in

(1)?

We first provide a characterization for the product AψAφ,λ to be a λ−slant Toeplitz

operator, where φ, ψ ∈ L∞, for which we need the following.

Lemma 2.3. For φ ∈ L∞, WAφ,λ is a λ−slant Toeplitz operator if and only if φ = 0.

Proof. If part of the result is obvious. We prove the reverse part. For, suppose that

WAφ,λ is a λ−slant Toeplitz operator. Then

λ〈WAφ,λej, ei〉 = 〈WAφ,λej+2, ei+1〉

⇒ λ〈DλAφej, e2i〉 = 〈DλAφej+2, e2i+2〉

⇒ 〈Aφej, e2i〉 = λ〈Aφej+2, e2i+2〉

⇒ a4i−j = λa4i−j+2
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Put i = 0, we get a−j = λa2−j for each j ∈ Z. This implies that a0 = λna2n and

a1 = λna2n+1. Since an → 0 as n→∞, we get that a0 = a1 = 0. Therefore φ = 0. �

Theorem 2.7. Let φ, ψ ∈ L∞. Then AψAφ,λ is a λ−slant Toeplitz operator if and

only if ψ(λz2)φ(z) = 0.

Proof. Suppose φ, ψ ∈ L∞. Then AψAφ,λ = WMψDλWMφ = WDλ Mψ(λz)WMφ =

WDλWMψ(λz2)Mφ(z) = WAψ(λz2)φ(z),λ. So the product is λ−slant Toeplitz operator

if and only if ψ(λz2)φ(z) = 0. �

The next result gives a precise answer to question (1) and provides an affirmative

answer to it once either a symbol (φ or ψ) belongs to the space generated by

{e2n : n ∈ Z}. Then we have that WMφWMψ = WMφψ (proved in [12]) and this

serves a great help to prove the following.

Theorem 2.8. Let φ, ψ ∈ L∞ be such that either φ or ψ is h(z2) for some h ∈ L∞.

Then Aφ,λAψ = Aφψ,λ.

Proof. Suppose φ = h(z2) or ψ = h(z2) for some h ∈ L∞. Then

Aφ,λAψ = DλW (φψ) = DλWMφψ = DλAφψ = Aφψ,λ. �

Now, we consider question (2) and find that it always admits of the positive answer

i.e. the product of a λ−slant Toeplitz operator and a Laurent operator is always a

λ−slant Toeplitz operator.

Theorem 2.9. MφAψ,λ and Aψ,λMφ are always λ−slant Toeplitz operators for

φ, ψ ∈ L∞. Further, MφAψ,λ = Aψ,λMφ if and only if φ(λz2)ψ(z) = φ(z)ψ(z).

Proof. Using the definition of λ−slant Toeplitz operators, we have λMz(MφAψ,λ) =

(MφAψ,λ)Mz2 and λMz(Aψ,λMφ) = (Aψ,λMφ)Mz2 for φ, ψ ∈ L∞. Thus both MφAψ,λ

and Aψ,λMφ are λ−slant Toeplitz operators. Now, Mφ(z)Aψ(z),λ = Mφ(z)DλWMψ(z) =

DλMφ(λz)WMψ(z) = DλWMφ(λz2)Mψ(z) =Aφ(λz2)ψ(z),λ andAψ(z),λMφ(z) = DλWMψ(z)Mφ(z)
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= DλWMψ(z)φ(z) = Aφ(z)ψ(z),λ. Further, Mφ(z)Aψ(z),λ = Aψ(z),λMφ(z) if and only if

Aφ(λz2)ψ(z),λ = Aφ(z)ψ(z),λ if and only if φ(λz2)ψ(z) = φ(z)ψ(z). �

We have answered the question (1), but on looking slant Toeplitz operators as

1−slant Toeplitz operators, it becomes genuine to know about a more general case.

When does the product of two λ−slant Toeplitz operators become a λ−slant

Toeplitz operator?

We observe the following, which helps to answer our query.

Lemma 2.4. Let φ ∈ L∞. Then DλWAφ,λ is a λ−slant Toeplitz operator if and only

if φ = 0.

Proof. We need to prove one way only. For, suppose DλWAφ,λ is a λ−slant Toeplitz

operator. Then for integers i, j, we have λ〈DλWAφ,λ ej, ei〉 = 〈DλWAφ,λej+2, ei+1〉.

This gives 〈
∑
k

λka2k−jek, e2i〉 = 〈
∑
λk a2k−j−2ek, e2i+2〉 or a4i−j = λ2a4i−j+2 for each

i, j ∈ Z. Hence, if i = 0 then we get a−j = λ2a−j+2 for each j ∈ Z. This means that

a0 = λ2na2n and a1 = λ2na2n+1 for all n ∈ Z. This provide that a0 = a1 = 0 and

hence φ = 0. �

Now, we answer our query in the following form.

Theorem 2.10. The product of two λ−slant Toeplitz operators is a λ−slant Toeplitz

operator if and only if the product is zero.

Proof. Let φ, ψ ∈ L∞ and Aφ,λ and Aψ,λ be two λ−slant Toeplitz operators. Now

Aφ,λAψ,λ = DλWMφDλWMψ

= DλWDλMφ(λz)WMψ(z)

= DλWDλWMφ(λz2)ψ(z)

= DλWAφ(λz2)ψ(z),λ.



A GENERALIZATION 85

In view of above lemma, DλWAφ(λz2)ψ(z),λ is a λ−slant Toeplitz operator if and only

if φ(λz2)ψ(z) = 0. So the product of two λ−slant Toeplitz operators is λ−slant

Toeplitz operator if and only if the product is zero. �

An immediate information that we receive from this theorem is that the class of

λ−slant Toeplitz operators neither form an algebra nor contain any non-zero idem-

potent operator.

3. Spectrum of λ−slant Toeplitz operators

It is shown in Theorem 2.2 that each λ−slant Toeplitz operator, |λ| = 1, is induced

by a slant Toeplitz operator on multiplying by a unitary composition operator and

as a consequence there is a one-one correspondence between the class the λ− slant

Toeplitz operators and the class of slant Toeplitz operators. In this section, our aim

is to investigate information about the spectrum of λ−slant Toeplitz operators. We

also prove that the spectrum of λ−slant Toeplitz operator contains a closed disc for

an invertible symbol in L∞, which is a well known result in case of slant Toeplitz

operators [12, Proposition 10]. For an operator A on a Hilbert space, σ(A), σp(A)

and Π(A) are used to denote the spectrum, the point spectrum and the approximate

spectrum of A respectively. The kernel and range of the operator A are denoted by

N(A) and R(A) respectively. To achieve the task, we prove the following lemma.

Lemma 3.1. If φ is invertible in L∞ then σp(Aϕ,λ) = σp(Aφ(z2),λ), where

ϕ =
∑
n∈Z
〈φ, en〉λnen.

Proof. Let µ ∈ σp(Aϕ,λ). Then there exists a non-zero f ∈ L2 such that Aϕ,λf = µf

i.e. Aϕf = µDλf . Write F = ϕf . Invertibility of φ in L∞ and the fact that

ϕ(z) = φ(λz) for each z ∈ T provide that ϕ is invertible in L∞. Due to this, F is a
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non-zero element in L2. Using the fact that WMφ(z2) = MφW (see [12]), we have

Aφ(z2),λF = DλWMφ(z2)ϕf

= DλMφAϕf

= µDλMφDλf.

A simple computation shows that DλMφDλ = Mϕ. Therefore Aφ(z2),λF = µϕf = µF

and hence µ ∈ σp(Aφ(z2),λ).

Also, if we suppose that µ ∈ σp(Aφ(z2),λ) and 0 6= g ∈ L2 satisfying Aφ(z2),λg = µg,

equivalently, Aφ(z2)g = µDλg then by applying the arguments as used above, we find

that G = ϕ−1g is a non-zero element in L2 and Aϕ,λG = DλAϕϕ
−1g = DλWg =

DλMφ−1MφWg = DλMφ−1W (φ(z2)g) = µDλMφ−1Dλg = µG. Therefore µ is in

σp(Aϕ,λ). This completes the proof. �

For φ ∈ L∞, we have Mϕ = DλMφDλ, where ϕ =
∑
n∈Z
〈φ, en〉λnen. This provides

that

MϕDλW = DλMφW

= DλWMφ(z2)

= DλAφ(z2)

= Aφ(z2),λ

A common well known result about any operators A and B on a Hilbert space is that

σ(AB) ∪ {0} = σ(BA) ∪ {0}. We utilize these facts to conclude the following.

Theorem 3.1. For φ ∈ L∞, σ(Aϕ,λ) = σ(Aφ(z2),λ), where ϕ =
∑
n∈Z
〈φ, en〉λnen,

equivalently, ϕ(z) = φ(λz) for each z ∈ T.

Proof. Let φ ∈ L∞ and ϕ =
∑
n∈Z
〈φ, en〉λnen. Now Aϕ,λ = DλAϕ = (DλW )Mϕ so

σ(Aϕ,λ) ∪ {0} = σ(Mϕ(DλW )) ∪ {0} = σ(Aφ(z2),λ) ∪ {0}. Further, we find that
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σ(Aφ(z2),λ) always contains 0. For, the closure of range of A∗φ(z2),λ

i.e. R(A∗φ(z2),λ) = R(W ∗DλMϕ) ⊆ R(W ∗), which is the closed linear subspace gener-

ated by {e2n : n ∈ Z}. As a consequence, N(Aφ(z2),λ) 6= 0 and 0 is an eigenvalue of

Aφ(z2),λ so that 0 ∈ σ(Aφ(z2),λ).

Proof completes once we prove that σ(Aϕ,λ) also contains 0. For this, we consider

two cases.

Case(1) : Let φ be invertible in L∞. By applying Lemma 3.1,

0 ∈ σp(Aφ(z2),λ) = σp(Aϕ,λ). Hence 0 ∈ σ(Aϕ,λ).

Case(2) : Let φ be non-invertible element of L∞. The set of all invertible elements

in L∞ is dense in L∞ hence we get a sequence < φn > of invertible elements in L∞

satisfying ‖φn−φ‖∞ → 0 as n→∞. Now for each n ∈ N, define ϕn(z) = φn(λz) and

ϕ(z) = φ(λz) for z ∈ T. Then ‖ϕn−ϕ‖∞ = ‖φn−φ‖∞ → 0 as n→∞. On applying

Lemma 3.1 to each φn, we have 0 ∈ σp(Aϕn,λ). Hence, for each n ∈ N, we can find

a non-zero element fn in L2 such that Aϕn,λfn = 0. Without loss of generality, we

can assume that ‖fn‖ = 1. Also, ‖Aϕ,λfn‖ ≤ ‖Aϕ,λfn − Aϕn,λfn‖ ≤ ‖ϕ − ϕn‖ → 0

as n→∞. This yields that 0 ∈ Π(Aϕ,λ) and hence 0 ∈ σ(Aϕ,λ). This completes the

proof. �
Our next result for λ−slant Toeplitz operators, |λ| = 1, is a motivation of the result

[12, Proposition 10] that shows the containment of a closed disc in the spectrum of a

slant Toeplitz operator.

Theorem 3.2. For any invertible φ in L∞, σ(Aϕ,λ) contains a closed disc, where

ϕ =
∑
n∈Z
〈φ, en〉λnen.

Proof. Let µ be any non-zero complex number. As φ is invertible in L∞ so is φ−1.

Now suppose that (A∗
φ
−1

(z2),λ
− µI) is onto. Then for each f ∈ L2, we have

(A∗
φ
−1

(z2),λ
− µI)f = Mφ−1(z2)W

∗Dλf − µ(Pef ⊕ Pof)

= µW ∗Mφ−1(µ−1Dλ −MφW )f ⊕ (−µPof),
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where Pe is the projection on the closed span of {e2n : n ∈ Z} in L2 and Po = (I−Pe)

is the projection on the closed span of {e2n−1 : n ∈ Z}. Now, pick 0 6= g0 in Po(L
2).

Being (A∗
φ
−1

(z2),λ
−µI) is onto, on using the computation made above, we find f ∈ L2

such that

g0 = µW ∗Mφ−1(µ−1Dλ −MφW )f ⊕ (−µPof).

Since g0 ∈ Po(L
2), we have µW ∗Mφ−1(µ−1Dλ − MφW )f = 0. This on using the

facts that, µ 6= 0, W is coisometry (i.e. WW ∗ = I) and Mφ−1 is invertible, gives

that (µ−1Dλ −MφW )f = 0. This shows that 0 = (µ−1I − DλMφW )f = (µ−1I −

DλWMφ(z2))f = (µ−1I − Aφ(z2),λ)f . This implies that µ−1 ∈ σp(Aφ(z2),λ). Now

(A∗
φ
−1

(z2),λ
−µI) is onto (in fact invertible) for each µ ∈ ρ(A∗

φ
−1

(z2),λ
), the resolvent of

A∗
φ
−1

(z2),λ
, so on applying Lemma 3.1, we get that

{µ−1 : µ ∈ ρ(A∗
φ
−1

(z2),λ
)} ⊆ σp(Aφ(z2),λ) = σp(Aϕ,λ) ⊆ σ(Aϕ,λ),

where ϕ =
∑
n∈Z
〈φ, en〉λnen. As spectrum of any operator is compact it follows that

σ(Aϕ,λ) contains a disc of eigenvalues of Aϕ,λ. �

Remark 1. Radius of closed disc contained in σ(Aϕ,λ) is 1
r(Aϕ−1,λ)

, where r(A) denotes

the spectral radius of the operator A. For,

max{|λ−1| : λ ∈ ρ(A∗
φ
−1

(z2),λ
)} =

1

min{|λ| : λ ∈ ρ(A∗
φ
−1

(z2),λ
)}

= (r(A∗
φ
−1

(z2),λ
))−1

= (r(A
φ
−1

(z2),λ
))−1

= (r(Aϕ−1,λ))
−1.

Thus the radius of closed disc contained in σ(Aϕ,λ) is 1
r(Aϕ−1 ,λ)

. Since spectral radius

of an operator is the radius of smallest disc containing its spectrum so we get that

1
r(Aϕ−1 ,λ)

≤ r(Aϕ,λ).
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For unimodular φ ∈ L∞, ||Anϕ,λ||2 = ||Anϕ,λA∗nϕ,λ|| = ||I|| = 1, so that r(Aϕ,λ) = 1

(using Gelfand formula for spectral radius). Hence, if |φ| = 1, then σ(Aϕ,λ) = D, the

closed unit disc.

4. Compressions of λ−slant Toeplitz operators

We denote the compression of a λ−slant Toeplitz operator A to H2 by B. Then

by the definition of compression we have B = PA|H2 , that is, BP = PAP , where

P is the orthogonal projection of L2 onto H2. The fact that a non-zero λ−slant

Toeplitz operator, |λ| = 1, is always of the form Aφ,λ for φ ∈ L∞, provides that

B = Bφ,λ = PDλAφ|H2 . Since PDλ = DλP , we further have B = DλBφ, where Bφ

is the compression of slant Toeplitz operator Aφ to H2. Also φ → Bφ is one-one, so

φ → Bφ,λ is also one-one. It is interesting to obtain an equation characterizing the

compressions of λ−slant Toeplitz operators in the following form.

Theorem 4.1. An operator B on H2 is the compression of a λ−slant Toeplitz oper-

ator if and only if λB = U∗BU2, where U is the forward unilateral shift.

Proof. Suppose B is compression of a λ−slant Toeplitz operator. Then B = DλBφ

for some φ in L∞. Now U∗BU2 = U∗DλBφU
2 = λDλU

∗Bφ U
2 = λDλBφ = λB.

Conversely, suppose that B is an operator satisfying λB = U∗BU2. Then λDλB =

DλU
∗BU2 = λU∗DλBU

2. Since |λ| = 1 we get DλB = U∗DλBU
2. So DλB is

compression of a slant Toeplitz operator [22]. So DλB = Bφ for some φ in L∞. Thus

B = DλBφ for some φ in L∞. �

We now talk about the compactness of compression of a λ−slant Toeplitz operators.

For this, we first prove the following and only the outlines of the proof are given as

one can refer [22] for the details of the techniques used.

Lemma 4.1. Let |λ| = 1 and φ ∈ L∞. Then we have the following:
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(1) WB∗φ,λ = DλTψ, where ψ(z) = Wφ(λz).

(2) If φ or ψ is analytic then Bφ,λTψ = Bφψ,λ.

(3) If φ or ψ is analytic then Bφ,λB
∗
ψ,λ is a Toeplitz operator.

(4) If φ is analytic then TψBφ,λ is again compression of a λ−slant Toeplitz oper-

ator.

Proof. Proof of (1) follows asWB∗φ,λ = WPA∗φDλ|H2 = PMWφDλ|H2 =DλP MWφ(λz)|H2 =

DλTψ, where ψ(z) = Wφ(λz).

Proof of (2) follows using the fact that BφTψ = Bφψ when either of φ or ψ is analytic

[22].

On simple computation we find that if φ or ψ is analytic then Bφ,λB
∗
ψ,λ = DλTWφψ

Dλ|H2 = PDλMWφψDλ|H2 = PMξ|H2 = Tξ, where ξ(z) = Wφψ(λz). This completes

the proof of (3).

Now for (4), if φ is analytic then TψBφ,λ = PDλMψ(λz)Bφ|H2 = Dλ Bψ(λz2)φ(z) =

Bψ(λz2)φ(z),λ. Hence the result. �

Now the information gathered here provides that the only compact Bφ,λ is the zero

operator, which is very common result known for various classes of operators, like,

Laurent operators [10], Toeplitz operators [4], slant Toeplitz operators [12].

Theorem 4.2. Bφ,λ is compact if and only if φ = 0.

Proof. Proof of one part is obvious. For the converse, suppose Bφ,λ is compact.

Then WB∗φ,λ is compact. So by part (1) of above lemma, DλTψ is compact, where

ψ(z) = Wφ(λz). But Dλ is unitary hence Tψ is compact and so ψ = 0, that is,

Wφ(λz) = 0. This means that Wφ = 0. Therefore a2n = 〈φ, e2n〉 = 〈Wφ, en〉 = 0 for

all n ∈ Z.

Now we use Lemma 4.1(2) that provides the compactness Bφz,λ if Bφ,λ is compact.

As a consequence WB∗φz,λ and hence DλTψ is compact, where ψ(z) = W (φz)(λz).
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This implies ψ = W (φz) = 0. Therefore 〈W (φz), en〉 = 0, which implies 〈φz, e2n〉 = 0.

Thus a−2n−1 = 0 for all n ∈ Z. Hence φ = 0. �
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