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HOPF BIFURCATION ANALYSIS IN A SYSTEM FOR CANCER
VIROTHERAPY WITH EFFECT OF THE IMMUNE SYSTEM

A. ASHYANI (1), H.M. MOHAMMADINEJAD(2) AND O. RABIEIMOTLAGH (3)

Abstract. We consider a system of differential equations which is motivated bi-

ologically and simulates a cancer virotherapy. The existence of equilibrium points

and their local stability are studied using the characteristic equation. We investigate

Hopf bifurcation around the interior equilibrium point.

1. Introduction

Cancer is usually known by an unnatural growth in cell numbers which is called

tumor and sometimes causes to death. Hence, Finding an effective method for con-

trolling the growth rate of tumor always considered as a very important issue in

medical science. Many efforts have been done to promote therapeutic ways for can-

cer. Surgery is the oldest one but it also contains collateral effects so that it is

preferable that tumor is treated or controlled without surgery.

Cancer virotherapy is the new way which is used recently and it is effective in

treatment and it uses virus to damage tumor cells. This method of therapy has been

known in the early twentieth century. However, until 1949, serious experiments about

it can not be found [6, 8, 4]. In the first experiments, virus found in the nature were

used, but it failed because the immune system response damped the infection. Thus,

prevented the virus from destroying the cancer [6, 3, 9]. The next step was done
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by genetic researchers. They produced a new generation of viruses in the laboratory

which were capable for cancer virotherapy. The most important fact in the cancer

treatment is the fewer non-tumor cells destroyed, the better treatment it could be.

The best choice to achieve this goal is cancer virotherapy. These days, such viruses

are categorized as oncolytic viruses.

There is a kind of killer cells in body which is known as cytotoxic T lymphocytes

(CTL). It destroy foreign cells by knowing their special signals that have been sent

to immune system. Recognizing cancer cells by immune system tumor-specific CTL

starts to destroy them. Although, it may not damage all cancer cells, the cancer

virotherapy after injection virus-specific CTL starts to know viruses and try to kill

them. Therefore, both viruses and infected cells will be attacked by CTL. On the

other hand, it helps to immune system for knowing more tumor cells which have

not been recognized before. Then, tumor-specific CTL affects on both infected and

non-infected cells to kill them [2, 5].

Experimental observations show that the interaction between the oncolytic virus

and tumor might be too complicated. For this reason, it is almost impossible to

figure out a complete theory, for finding all relations and analyzing them using the

biological observations only. These convince researches to construct mathematical

models simulating the virotherapy for studying unknown aspects of the phenomenon.

Many of these effective models which are previously developed, based on system of

differential equations [13, 12, 11, 7].

In 2001 Wodarz proposed the following system [13, 12]:

ẋ = rx(1− x+ y

k
)− dx− βxy, ẏ = βxy + sy(1− x+ y

k
)− ay(1.1)

where y(t) and x(t) are the number of infected and non-infected cells, respectively.

Parameters s and r are the growth rate of infected and non-infected cells in a logistic
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model, respectively. Size of tumor of infected and non-infected tumor cells are con-

sidered to be limited by the carrying capacity k. If the total number of infected and

non-infected tumor cells becomes more than k, the patient will die. Because of this

fact we should have x + y < k. Parameter a is the death rate of infected cells by

virus, and d is the death rate of non-infected cells by the immune system. Finally,

β is the rate of viral infection spread in tumor cells. In the same article, Wodarz

presented the following system:

ẋ = rx(1− x+ y

k
)− dx− βxy − PtxZt,

ẏ = βxy + sy(1− x+ y

k
)− ay − PvyZv − PtyZt,

Żv = CvyZv − bZv,(1.2)

Żt = CtyZt(x+ y)− bZt.

This system contains four variables. Here, the number of virus-specific CTL and

tumor-specific CTL are denoted by Zv and Zt, respectively. The rate of virus-specific

CTL proliferate is CvyZv and the rate of killing the infected cells is PvyZv. Virus-

specific CTL will die at a rate bZv in the absence of infection. Tumor-specific CTL

propagates at a rate Ct on infected and non-infected cells (x + y). However, The

warning signal, which is led to knowing tumor, has been recognized to be more useful

in the presence of y virus. Finally, Tumor-specific CTL kills infected and non-infected

cells at a rate PtZt.

Wodarz introduced the System (1.2), but he did not present further mathematical

analysis or simulation for it. In 2014, we analyzed System (1.1) [1]. Although, we

know immune system response is an important factor which effect on virus therapy.

Thus, we want to improve System (1.1) by considering immune system response

with separate variable, which helped us to provide results that is closer than biology

happening. We consider both CTL responses in one variable because some structure
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of responses for virus-specific CTL and tumor-specific CTL are similar. In addition,

this assumption does not change the system and make its analysis easier by restricting

the system into a third dimensional model.

In this paper, we introduce the system for interaction between non-infected cells,

infected cells and CTL response as

ẋ = rx(1− x+ y

k
)− βxy − p1xz,(1.3)

ẏ = sy(1− x+ y

k
) + βxy − p2yz − ay,(1.4)

ż = c1xz + c2yz − bz.(1.5)

The non-infected cells death with response of the immune system is presented by

the term p1xz. Infected tumor cells die with two process. They die with infection

at a rate a and they die with response immune system which is given by the term

p2yz. On the other hand, CTL for tumor grows is presented by the term c1xz and

CTL for virus grows by the term c2yz. Moreover, in the absence of any infection,

the cells will die at a rate b. All the parameters of the system are non negative with

initial population conditions x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0. This paper is organized

as follows.

Section 2 contains the positivity and the boundedness of the model. In Section 3,

we investigate the conditions for existence at positive equilibrium points and stability

of important equilibrium points. We demonstrate the occurrence of Hopf bifurcation

in Section 4.In Section 5, we present the numerical results. Finally, we draw some

conclusion in Section 6.

2. Positively and boundedness of the solutions

The positivity and boundedness of the system (1.3-1.5) are necessary to make the

system has biologically meaningful. Therefore, we study them first.
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Theorem 2.1. All the solutions of system (1.3-1.5) which starting in the R3
+ remain

positive. Also, they remain bounded in the region Ω ⊂ R3
+ defined by

Ω = {(x, y, z) ∈ R3
+|x ≤ k, x+ y ≤ k, x+ y +

p

c
z ≤ (r + s)k

m
}.

Proof. Equation (1.3) can be written as dx/x = φ1(x, y, z)dt, where

φ1(x, y, z) = r(1− x+y
k

)− βy − p1z. Then x(t) = x(0)e
∫ t
0 φ1(x,y,z)dt ≥ 0 for all t ≥ 0 as

x(0) ≥ 0. Equation (1.4) gives dy/y = φ2(x, y, z)dt, where

φ2(x, y, z) = s(1 − x+y
k

) + βx − p2z − a. Then y(t) = y(0)e
∫ t
0 φ2(x,y,z)dt ≥ 0 for all

t ≥ 0 as y(0) ≥ 0. Similarly, z(t) ≥ 0 for all t ≥ 0.

On the other hand, dx
dt
≤ rx(1 − x+y

k
) ≤ rx(1 − x

k
). Hence, we consider

dU/dt = rU(1− U
k

), with solving this differential equation we have U(t) = ( k
1−ekt0−rt ),

which gives lim sup
t→∞

U(t) = k. We know dx/dt ≤ dU/dt, so lim sup
t→∞

x(t) ≤ lim sup
t→∞

U(t).

Then, lim sup
t→∞

x(t) ≤ k. Simple calculations yield to

d

dt
(x+ y) = rx(1− x+ y

k
)− p1xz + sy(1− x+ y

k
)− p2yz − ay

≤ rx(1− x+ y

k
) + sy(1− x+ y

k
) ≤ δ(x+ y)(1− x+ y

k
)

where δ = max(r, s). Hence, similarly lim sup
t→∞

(x(t) + y(t)) ≤ k for all t ≥ 0.

Let W (t) = x(t) + y(t) + p
c
z(t) where p = min(p1, p2) and c = max(c1, c2). Then,

dW

dt
=

dx

dt
+
dy

dt
+
p

c

dz

dt
= rx(1− x+ y

k
)− p1xz + sy(1− x+ y

k
)− p2yz − ay

+
p

c
c1xz +

p

c
c2yz −

p

c
bz ≤ rx(1− x+ y

k
) + sy(1− x+ y

k
)− p

c
bz

≤ rx− r

k
x2 + sy − s

k
y2 − p

c
bz = rk − (

√
r

k
x−
√
rk)2 + sk

− (

√
s

k
y −
√
sk)2 − p

c
bz − rx− sy ≤ (r + s)k −mW
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where m = min(r, s, b). Therefore, lim sup
t→∞

(W (t)) ≤ (r + s)k/m. Thus, z is bounded

above and all the solutions of the system (1.3-1.5) that started in R3
+ either ap-

proaches, enter or remain in the subset of

Ω = {(x, y, z) ∈ R3
+|x ≤ k, x+ y ≤ k, x+ y +

p

c
z ≤ (r + s)k

m
}.

Since the solutions of the system (1.3-1.5) remain bounded in the positively invariant

region Ω, the model is well posed in the epidemiologically and mathematically senses.

�

3. Existence of equilibrium points and stability analysis

In this section, we study the stability of the equilibrium points.

3.1. Equilibrium points. System (1.3-1.5) always has two equilibrium points

E0 = (0, 0, 0) and E1 = (k, 0, 0). Other equilibrium points are given by

E2 = (0,
k(s− a)

s
, 0), E3 = (0,

b

c2
,
−bs+ c2k(s− a)

c2kp2
),

E4 = (
b

c1
, 0,

(c1k − b)r
c1kp1

), E5 = (
ar + βk(a− s)
β(βk + r − s)

,
r(βk − a)

β(βk + r − s)
, 0),

E6 = (
−(ac2kp1 − (b− c2k)(p2r − p1s)− bkp2β)

(c1 − c2)(p2r − p1s) + kβ(c1p2 − c2p1)

,
ac1kp1 − (b− c1k)(p2r − p1s)− bkp1β
(c1 − c2)(p2r − p1s) + kβ(c1p2 − c2p1)

,
a(c2r − c1(r + kβ)) + β(−c2kr + c1ks+ b(r − s+ kβ))

(c1 − c2)(p2r − p1s) + kβ(c1p2 − c2p1)
) := E∗ = (x∗, y∗, z∗).

Equilibrium point E0 means that the immune system cells, non-infected and infected

tumor cells do not exist. Hence, in biology it means that both non-infected and

infected cells damaged in the absence of immune system. Equilibrium point E1

means that only non-infected tumor cells remain and the tumor grows to its carrying

capacity, which shows the inefficiency of virotherapy. This equilibrium has been

known as infection-free equilibrium.
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The equilibrium points are biologically admissible if and only if all components

are positive. If s > a, E2 exists. Equilibrium point E3 exists if c2k(s − a) > bs.

Furthermore, E4 is meaningful if ck > b. For existence of equilibrium point E5 we

have the following.

Case1 If βk + r − s > 0, then the denominator of components of equilibrium point

E5 is positive. Thus, for positivity of components of E5, the numerators should be

positive. Therefore, ar + βk(a− s) > 0 and βk − a > 0.

Case2 If βk + r − s < 0, then the denominator of components of equilibrium point

E5 is negative. Thus, we want that numerators are negative. For this we have

ar + βk(a− s) < 0 and βk − a < 0.

Equilibrium E6 is called interior equilibrium point. It means that immune system

cells, non-infected and infected cells exist. This is compatible with what exactly

can be seen in reality. Hence, E6 is the most interesting equilibrium point from the

biological point of view. For existence of E6 we have:

Case1 If (c1−c2)(p2r−p1s)+kβ(c1p2−c2p1) > 0, then the denominator of components

of equilibrium point E6 is positive. For existence of E6, all components of E6 should

be positive. Therefore, all the numerators should be positive. Hence, we gain

−(ac2kp1 − (b− c2k)(p2r − p1s)− bkp2β) > 0,

ac1kp1 − (b− c1k)(p2r − p1s)− bkp1β > 0,

a(c2r − c1(r + kβ)) + β(−c2kr + c1ks+ b(r − s+ kβ)) > 0.

Case2 If (c1−c2)(p2r−p1s)+kβ(c1p2−c2p1) < 0, then the denominator of components

of equilibrium point E6 is negative. Thus, all the numerators should be negative.
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Hence, we get

−(ac2kp1 − (b− c2k)(p2r − p1s)− bkp2β) < 0,

ac1kp1 − (b− c1k)(p2r − p1s)− bkp1β < 0,

a(c2r − c1(r + kβ)) + β(−c2kr + c1ks+ b(r − s+ kβ)) < 0.

3.2. Stability analysis. We compute the variational matrix of the system (1.3-1.5)

at any point (x, y, z). Real part of eigenvalues of this matrix at any point determine

the local stability of equilibrium points. Variational matrix is given by J = (Jij)3×3,

where

J11 = r(1− (x+ y)/k)− (rx)/k − p1z − yβ, J12 = −(rx)/k − xβ, J13 = −p1x,

J21 = −(sy)/k + yβ, J22 = s(1− (x+ y)/k)− (sy)/k − a− p2z + xβ,

J23 = −p2y, J31 = c1z, J32 = c2z, J33 = c1x+ c2y − b.

At the equilibrium point E0, the eigenvalues of J are r , −b and s − a. Since r

is positive, equilibrium point E0 is always unstable. As a result, tumor will grow

and therapy is failed in the absence of immune response and virus. In the following

theorem, we study the local stability of the infection-free equilibrium.

Theorem 3.1. The infection-free equilibrium of the system (1.3-1.5) is unstable

for k > (a/β) or k > (b/c1) and locally asymptotically stable for k < (a/β) and

k < (b/c1).

Proof. The variational matrix of the system (1.3-1.5) at equilibrium point E1 is given

by

J(E1) =


−r −r − kβ −kp1

0 kβ − a 0

0 0 c1k − b

 .
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Therefore, the eigenvalues are −r, kβ − a, and kc1 − b. Because −r is negative,

stability of E1 depends on the signs of kβ − a and kc1 − b. When k > (a/β) or

k > (b/c1), equilibrium point E1 is unstable while it is asymptotically stable for

k < (a/β) and k < (b/c1). �

For local stability of interior equilibrium point we know that the characteristic

equation of the variational matrix J at E6 can be written as

Det(J − λI3) = λ3 + a2λ
2 + a1λ+ a0 = 0(3.1)

where

a0 = A3A5A7 − A2A6A7 − A3A4A8 + A1A6A8,

a1 = −(A2A4 − A1A5 + A3A7 + A6A8), a2 = −(A1 + A5),(3.2)

where (A1 − A8) are introduced below.

A1 =
r(ac2kp1 − (b− c2k)(p2r − p1s)− bkp2β)

k((c1 − c2)(p2r − p1s) + k(−c2p1 + c1p2)β)
,

A2 =
(r + kβ)(ac2kp1 − (b− c2k)(p2r − p1s)− bkp2β)

k((c1 − c2)(p2r − p1s) + k(−c2p1 + c1p2)β)
,

A3 =
p1(−ac2kp1 + (b− c2k)(p2r − p1s) + bkp2β)

(−c1 + c2)(p2r − p1s) + k(c2p1 − c1p2)β
,

A4 =
(s− kβ)(−ac1kp1 + (b− c1k)(p2r − p1s) + bkp1β)

k((c1 − c2)(p2r − p1s) + k(−c2p1 + c1p2)β)
,

A5 =
s(−ac1kp1 + (b− c1k)(p2r − p1s) + bkp1β)

k((c1 − c2)(p2r − p1s) + k(−c2p1 + c1p2)β)
,(3.3)

A6 =
p2(−ac1kp1 + (b− c1k)(p2r − p1s) + bkp1β)

(c1 − c2)(p2r − p1s) + k(−c2p1 + c1p2)β
,

A7 =
c1(a(c2r − c1(r + kβ)) + β(−c2kr + c1ks+ b(r − s+ kβ)))

(c1 − c2)(p2r − p1s) + k(−c2p1 + c1p2)β
,

A8 =
c2(a(c2r − c1(r + kβ)) + β(−c2kr + c1ks+ b(r − s+ kβ)))

(c1 − c2)(p2r − p1s) + k(−c2p1 + c1p2)β
.
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Hence, in the following theorem we present some conditions for local stability of

interior equilibrium point E6 = (x∗, y∗, z∗).

Theorem 3.2. Let a0, a1 and a2 be defined in (3.2). The interior equilibrium point

of the system (1.3-1.5) is locally asymptotically stable if a0 > 0 and a2a1 − a0 > 0.

Proof. According to Routh-Herwitz criterion of stability, the necessary and the suffi-

cient conditions to all roots of characteristic equation (3.1) to be negative real parts

are a2 > 0, a0 > 0, and a2a1 − a0 > 0. It is clear that a2 > 0. Thus, the interior

equilibrium point E6 is locally asymptotically stable if a0 > 0 and a2a1− a0 > 0. �

4. Hopf bifurcation

In this section, we find the conditions for existence of Hopf bifurcation at the

interior equilibrium point E6. First we linearized equation (1.3-1.5) in E6. Let

u1(t) = x(t) − x∗, u2(t) = y(t) − y∗, and u3(t) = z(t) − z∗. It leads us to E6 to

be the origin. Then (1.3-1.5) can be written as

u̇1 = A1u1 + A2u2 + A3u3 −
u1
k

(r(u1 + u2) + kp1u3 + ku2β),

u̇2 = A4u1 + A5u2 + A6u3 −
u2
k

(s(u1 + u2) + kp2u3 − ku1β),(4.1)

u̇3 = A7u1 + A8u2 + (c1u1 + c2u2)u3

where (A1 − A8) are introduced in (3.3). The linearization of (4.1) at (0, 0) is

u̇1 = A1u1 + A2u2 + A3u3, u̇2 = A4u1 + A5u2 + A6u3, u̇3 = A7u1 + A8u2

with the characteristic equation λ3 + a2λ
2 + a1λ + a0 = 0, where a2 = −(A1 + A5),

a1 = −(A2A4−A1A5+A3A7+A6A8), and a0 = A3A5A7−A2A6A7−A3A4A8+A1A6A8.

If a0 = a1a2, we have a pair of imaginary eigenvalues λ1,2 = ±i√a1. In this

case, λ3 = −a2 is the real eigenvalue. Thus let ε = a0 − a1a2 and using the Im-

plicit Function Theorem, we have λ1,2 = −ε
2(a1+a22)

± i(√a1 + ε
√
a1a2

2a1(a1+a22)
) + o(ε2) and
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λ3 = −a2 − ε
a1+a22

+ o(ε2). Furthermore, if ε = 0, we may have Hopf bifurcation. On

the other hand, solving a2, a1 and a0 with respect to A1, A2 and A3 respectively, we

get

A1 = −A5 − a2, A2 = −A5
2 + A3A7 + A6A8 + a1 + A5a2

A4

, and

A3 = −A5
2A6A7 − A4A5A6A8 + A6

2A7A8 − A4a0 + A6A7a1 + A5A6A7a2

A4A5A7 + A6A7
2 − A4

2A8

+
A4A6A8a2

A4A5A7 + A6A7
2 − A4

2A8

.

In this case, we have 2-dimensional center manifold and afterwards by projecting this

system on the center manifold we gain 2-dimensional system. First, we use the below

transformation to get the standard system;
U1

U2

U3

 = P−1


u1

u2

u3

 , and P =


P1 P2 P3

P4 P5 P6

1 0 1


where

P1 =
A5A6A7A8 − A4A6A

2
8 − A4A8a1

(−A5A7 + A4A8)2 + A2
7a1

, P4 = −A5A6A
2
7 − A4A6A7A8 − A4A7a1

(−A5A7 + A4A8)2 + A2
7a1

,

P3 = − −A6A8 + A5a2 + a22
A5A7 − A4A8 + A7a2

, P2 = −
√
a1(A

2
5A7 − A4A5A8 + A6A7A8 + A7a1)

(−A5A7 + A4A8)2 + A2
7a1

,

P5 = −
√
a1(−A4A5A7 − A6A

2
7 + A2

4A8)

(−A5A7 + A4A8)2 + A2
7a1

, P6 = − A6A7 − A4a2
A5A7 − A4A8 + A7a2

.

Therefore, system (4.1) transforms into the following standard form;

U̇1 = −
√
a1U2 +G1(U1, U2, U3),

U̇2 =
√
a1U1 +G2(U1, U2, U3),(4.2)

U̇3 = −a2U3 +G3(U1, U2, U3)
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where

G1(U1, U2, U3) =
1

k
(
(P1 − P3)P5 + P2(P6 − P4)

)(k((P2P6 − P3P5)(U1 + U3)

× (c1(P1U1 + P2U2 + P3U3) + c2(P4U1 + P5U2 + P6U3))
)

+ P2(P4U1 + P5U2 + P6U3)(kp2(U1 + U3) + s((P1 + P4)U1

+ (P2 + P5)U2 + (P3 + P6)U3)− k(P1U1 + P2U2 + P3U3)β)

− P5(P1U1 + P2U2 + P3U3)(kp1(U1 + U3) + r((P1 + P4)U1

+ (P2 + P5)U2 + (P3 + P6)U3) + k(P4U1 + P5U2 + P6U3)β)
)
,

G2(U1, U2, U3) =
1

k
(
(P1 − P3)P5 + P2(P6 − P4)

)(k((P3P4 − P1P6)(U1 + U3)

× (c1(P1U1 + P2U2 + P3U3) + c2(P4U1 + P5U2 + P6U3))
)

+ (P1 − P3)(P4U1 + P5U2 + P6U3)(−kp2(U1 + U3)

− s((P1 + P4)U1 + (P2 + P5)U2 + (P3 + P6)U3)

+ k(P1U1 + P2U2 + P3U3)β) + (P4 − P6)(P1U1 + P2U2 + P3U3)

× (kp1(U1 + U3) + r((P1 + P4)U1

+ (P2 + P5)U2 + (P3 + P6)U3) + k(P4U1 + P5U2 + P6U3)β)
)
,

G3(U1, U2, U3) =
1

k
(
(P1 − P3)P5 + P2(P6 − P4)

)(k((P1P5 − P2P4)(U1 + U3)

× (c1(P1U1 + P2U2 + P3U3) + c2(P4U1 + P5U2 + P6U3))
)

+ P5(P1U1 + P2U2 + P3U3)(kp1(U1 + U3) + r((P1 + P4)U1

+ (P2 + P5)U2 + (P3 + P6)U3) + k(P4U1 + P5U2 + P6U3)β)

− P2(P4U1 + P5U2 + P6U3)(kp2(U1 + U3) + s((P1 + P4)U1

+ (P2 + P5)U2 + (P3 + P6)U3)− k(P1U1 + P2U2 + P3U3)β)
)
.
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By the existence theorem in the center manifold theory [10], there exists a center

manifold which can be expressed locally as

W c(0) = {(U1, U2, U3) ∈ R3|U3 = h(U1, U2), |U3| < δ, h(0, 0) = 0, Dh(0, 0) = 0}

for δ sufficiently small. We now compute W c(0). Assume that h(U1, U2) have the

following form:

U3 = h(U1, U2) = b1U
2
1 + b2U

2
2 + b3U1U2 + o(U1, U2).(4.3)

Based on the invariance of W c(0) under the dynamics of (4.2), the center manifold

must satisfy

N (U1, U2) = −a2h(U1, U2) +G3(U1, U2, h(U1, U2))

− ∂h

∂U1

(U1, U2)
(
−
√
a1U2 +G1(U1, U2, h(U1, U2))

)
(4.4)

− ∂h

∂U2

(U1, U2)
(√

a1U1 +G2(U1, U2, h(U1, U2))
)
.
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Substituting (4.3) into (4.4) and equating terms of like powers to zero, we obtain

b1 = − 1

2a2

(
2b3
√
a1 +

(
2((−A8c1 + A7c2)(A

2
5A

2
7 − 2A4A5A7A8 + A2

4A
2
8 + A2

7a1)

× (A5A6A7 − A4(A6A8 + a1))
2 + (1/k)A8(−A4A5A7 − A6A

2
7 + A2

4A8)

× (−A5A6A7 + A4(A6A8 + a+ 1))(A2
5A

2
7kp1 + A2

4A
2
8kp1 − A5A7(2A4A8kp1

+ A6(A7r − A8r + A7kβ)) + A2
7kp1a1 + A4(A7r − A8r + A7kβ)(A6A8 + a1))

− (1/k)A7(A5A6A7 − A4(A6A8 + a1))(A
2
5A7 − A4A5A8 + A7(A6A8 + a1))

× (A2
5A

2
7kp2 + A2

4A
2
8kp2 − A5A7(2A4A8kp2 + A6(A7s− A8s+ A8kβ))

+ A2
7kp2a1 + A4(A7s− A8s+ A8kβ)(A6A8 + a1)))(A5A7 − A4A8 + A7a2)

)/
((−A4A5A7 − A6A

2
7 + A2

4A8)(A
2
5A

2
7 − 2A4A5A7A8 + A2

4A
2
8

+ A2
7a1)

2(a1 + a22))
)
,

b2 = −(1/(2
√
a1))

(
b3a2 +

(√
a1(−A4A8 + A7(A5 + a2))(((A5A7 − A4A8)

2 + A2
7a1)

× (A2
5A7c1 + A2

4A8c2 + A6A7(A8c1 − A7c2)− A4A5(A8c1 + A7c2) + A7c1a1)

× (A5A6A7 − A4(A6A8 + a1))− (A7(A5A6A7 − A4(A6A8 + a1))(A
2
5A7

− A4A5A8 + A7(A6A8 + a1))(−(A2
4A8 − A4A5(A7 + A8) + A7(A

2
5 − A6A7

+ A6A8 + a1))s+ (A2
5A7 − A4A5A8 + A7(A6A8 + a1))kβ))/k − (A8(−A7(A4A5

+ A6A7) + A2
4A8)(−A5A6A7 + A4(A6A8 + a1))(A

2
4A8(r + kβ)− A4A5((A7

+ A8)r + A7kβ) + A7((A
2
5 − A6A7 + A6A8 + a1)r − A6A7kβ)))/k − ((A4A5A7

+ A6A
2
7 − A2

4A8)(A
2
5A7 − A4A5A8 + A7(A6A8 + a1))(A

2
5A

2
7kp1 + A2

4A
2
8kp1

+ A2
7a1kp1 + A4(A6A8 + a1)(A7r − A8r + A7kβ)− A5A7(2A4A8kp1 + A6(A7r

− A8r + A7kβ))))/k + ((A4A5A7 + A6A
2
7 − A2

4A8)(A
2
5A7 − A4A5A8 + A7(A6A8
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+ a1))(A
2
5A

2
7kp2 + A2

4A
2
8kp2 + A2

7a1kp2 + A4(A6A8 + a1)(A7s− A8s+ A8kβ)

− A5A7(2A4A8kp2 + A6(A7s− A8s+ A8kβ))))/k)
)/

((−A7(A4A5 + A6A7)

+ A2
4A8)((A5A7 − A4A8)

2 + A2
7a1)

2(a1 + a22)) + 1/a2
√
a1
(
2b3
√
a1 + (2(−A4A8

+ A7(A5 + a2))((−A8c1 + A7c2)((A5A7 − A4A8)
2 + A2

7a1)(A5A6A7 − A4(A6A8

+ a1))
2 + (A8(−A7(A4A5 + A6A7) + A2

4A8)(−A5A6A7 + A4(A6A8 + a1))

× (A2
5A

2
7kp1 + A2

4A
2
8kp1 + A2

7a1kp1 + A4(A6A8 + a1)(A7r − A8r + A7kβ)

− A5A7(2A4A8kp1 + A6(A7r − A8r + A7kβ))))/k − 1/kA7(A5A6A7 − A4(A6A8

+ a1))(A
2
5A7 − A4A5A8 + A7(A6A8 + a1))(A

2
5A

2
7kp2 + A2

4A
2
8kp2 + A2

7a1kp2

+ A4(A6A8 + a1)(A7s− A8s+ A8kβ)− A5A7(2A4A8kp2 + A6(A7s− A8s

+ A8kβ)))))
/

((−A7(A4A5 + A6A7) + A2
4A8)((A5A7

− A4A8)
2 + A2

7a1)
2(a1 + a22))

))
,

b3 =
(√

a1(A5A7 − A4A8 + A7a2)
(
− (2/k)(r − s+ kβ)a1(−A3

4A5A
2
8 + A2

7(A
2
5

+ A6A8 + a1)(A
2
5 + A6(−A7 + A8) + a1)− A4A5A7(2A6A

2
8 + A2

5(A7 + 2A8)

+ (A7 + 2A8)a1) + A2
4A8(A

2
5(2A7 + A8) + A7(A6A8 + a1)))

− 2

−A4A5A7 − A6A2
7 + A2

4A8

((−A8c1 + A7c2)(A
2
5A

2
7 − 2A4A5A7A8 + A2

4A
2
8

+ A2
7a1)(A5A6A7 − A4(A6A8 + a1))

2 +
A8

k
(−A4A5A7 − A6A

2
7 + A2

4A8)

× (−A5A6A7 + A4(A6A8 + a1))(A
2
5A

2
7kp1 + A2

4A
2
8kp1 − A5A7(2A4A8kp1

+ A6(A7r − A8r + A7kβ)) + A2
7kp1a1 + A4(A7r − A8r + A7kβ)(A6A8 + a1))

− A7

k
(A5A6A7 − A4(A6A8 + a1))(A

2
5A7 − A4A5A8 + A7(A6A8 + a1))(A

2
5A

2
7kp2

+ A2
4A

2
8kp2 − A5A7(2A4A8kp2 + A6(A7s− A8s+ A8kβ)) + A2

7kp2a1 + A4(A7s

− A8s+ A8kβ)(A6A8 + a1)))−
1

−A4A5A7 − A6A2
7 + A2

4A8

((A2
5A

2
7

− 2A4A5A7A8 + A2
4A

2
8 + A2

7a1)(A
2
5A7c1 + A2

4A8c2 + A6A7(A8c1 − A7c2)
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− A4A5(A8c1 + A7c2) + A7c1a1)(A5A6A7 − A4(A6A8 + a1))

− −A4A5A7 − A6A
2
7 + A2

4A8

k
(−A2

5A7 + A4A5A8 − A7(A6A8 + a1))(A
2
5A

2
7kp1

+ A2
4A

2
8kp1 − A5A7(2A4A8kp1 + A6(A7r − A8r + A7kβ)) + A2

7kp1a1 + A4(A7r

− A8r + A7kβ)(A6A8 + a1)) +
−A4A5A7 − A6A

2
7 + A2

4A8

k
(−A2

5A7 + A4A5A8

− A7(A6A8 + a1))(A
2
5A

2
7kp2 + A2

4A
2
8kp2 − A5A7(2A4A8kp2 + A6(A7s− A8s

+ A8kβ)) + A2
7kp2a1 + A4(A7s− A8s+ A8kβ)(A6A8 + a1))

− A8(−A4A5A7 − A6A
2
7 + A2

4A8)

k
(−A5A6A7 + A4(A6A8 + a1))(A

2
4A8(r + kβ)

− A4A5(A8r + A7(r + kβ)) + A7(A
2
5r − A6A7r + A6A8r − A6A7kβ + ra1))

− (A7/k)(A5A6A7 − A4(A6A8 + a1))(A
2
5A7 − A4A5A8 + A7(A6A8 + a1))

× (−A2
4A8s+ A4A5(A7s+ A8(s− kβ)) + A7(A6A7s− A6A8s+ A6A8kβ

+ A2
5(−s+ kβ)− sa1 + kβa1)))a2

))/
((A2

5A
2
7 − 2A4A5A7A8 + A2

4A
2
8 + A2

7a1)
2

× (a1 + a22)(4a1 + a22))

Finally, by substituting (4.3) into (4.2) we obtain the vector field reduced to the

center manifold by

U̇1 = −
√
a1U2 + η1U1U2 + η2U

2
1 + η3U

2
2 ,

U̇2 =
√
a1U1 + θ1U1U2 + θ2U

2
1 + θ3U

2
2(4.5)

where

η1 = −
(√

a1(−A4A8 + A7(A5 + a2))
( −1

−A4A8 + A7(A5 + a2)
((A5A7 − A4A8)

2

+ A7c1a1) + A2
7a1)(A

2
5A7c1 + A2

4A8c2 + A6A7(A8c1 − A7c2)− A4A5(A8c1

+ A7c2)(A6((A5A7 − A4A8)
2 + A2

7a1) + A7(A5A6A7 − A4(A6A8 + a1))a2

+ (A4A5A7 + A6A
2
7 − A2

4A8)a
2
2) +

1

k

(
A7(A5A6A7 − A4(A6A8 + a1))(A

2
5A7
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− A4A5A8 + A7(A6A8 + a1))(−(A2
4A8 − A4A5(A7 + A8) + A7(A

2
5 − A6A7

+ A6A8 + a1))s+ (A2
5A7 − A4A5A8 + A7(A6A8 + a1))kβ) + A8(−A7(A4A5

+ A6A7) + A2
4A8)(−A5A6A7 + A4(A6A8 + a1))(A

2
4A8(r + kβ)− A4A5((A7

+ A8)r + A7kβ) + A7((A
2
5 − A6A7 + A6A8 + a1)r − A6A7kβ)) + (A4A5A7

+ A6A
2
7 − A2

4A8)(A
2
5A7 − A4A5A8 + A7(A6A8 + a1))(A

2
5A

2
7kp1 + A2

4A
2
8kp1

+ A2
7a1kp1 + A4(A6A8 + a1)(A7r − A8r + A7kβ)− A5A7(2A4A8kp1 + A6(A7r

− A8r + A7kβ)))− (A4A5A7 + A6A
2
7 − A2

4A8)(A
2
5A7 − A4A5A8 + A7(A6A8

+ a1))(A
2
5A

2
7kp2 + A2

4A
2
8kp2 + A2

7a1kp2 + A4(A6A8 + a1)(A7s− A8s+ A8kβ)

− A5A7(2A4A8kp2 + A6(A7s− A8s+ A8kβ)))
)))/

(2(−A7(A4A5 + A6A7)

+ A2
4A8)((A5A7 − A4A8)

2 + A2
7a1)

2(a1 + a22)),

η2 = −
(

(−A4A8 + A7(A5 + a2))
( 1

A4A8 − A7(A5 + a2)

(
(A8c1 − A7c2)((A5A7

− A4A8)
2 + A2

7a1)(−A5A6A7 + A4(A6A8 + a1))(A6((A5A7 − A4A8)
2 + A2

7a1)

+ A7(A5A6A7 − A4(A6A8 + a1))a2 + (A4A5A7 + A6A
2
7 − A2

4A8)a
2
2)
)

− 1

k

(
A8(−A7(A4A5 + A6A7) + A2

4A8)(−A5A6A7 + A4(A6A8 + a1))(A
2
5A

2
7kp1

+ A2
4A

2
8kp1 + A2

7a1kp1 + A4(A6A8 + a1)(A7r − A8r + A7kβ)− A5A7(2A4A8kp1

+ A6(A7r − A8r + A7kβ))) + A7(A5A6A7 − A4(A6A8 + a1))(A
2
5A7 − A4A5A8

+ A7(A6A8 + a1))(A
2
5A

2
7kp2 + A2

4A
2
8kp2 + A2

7a1kp2 + A4(A6A8 + a1)(A7s

− A8s+ A8kβ)− A5A7(2A4A8kp2 + A6(A7s− A8s+ A8kβ)))
)))/

((−A7(A4A5A6A7) + A2
4A8)((A5A7 − A4A8)

2 + A2
7a1)

2(a1 + a22)),

η3 = −
(
a1(A

2
5A7 − A4A5A8 + A7(A6A8 + a1))(A

2
4A8 − A4A5(A7 + A8)

+ A7(A
2
5 − A6A7 + A6A8 + a1))(−A4A8 + A7(A5 + a2))(r − s+ kβ)

)/
(((A5A7 − A4A8)

2 + A2
7a1)

2(a1 + a22)k),
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θ1 =
−(−A4A8 + A7(A5 + a2))

(−A7(A4A5 + A6A7) + A2
4A8)((A5A7 − A4A8)2 + A2

7a1)
2(a1 + a22)

(
((A5A7

− A4A8)
2 + A2

7a1)(A
2
5A7c1 + A2

4A8c2 + A6A7(A8c1 − A7c2)− A4A5(A8c1

+ A7c2) + A7c1a1)(−A5A6A7 + A4(A6A8 + a1))a2 +
1

k(−A4A8 + A7(A5 + a2))

×
(

(A7(A5A6A7 − A4(A6A8 + a1))(−A4A7A8(A5a1 + (2A2
5 + A6A8 + a1)a2

+ 2A5a
2
2) + A2

4A
2
8(a1 + a2(A5 + a2)) + A2

7((A
2
5 + a1)a2(A5 + a2) + A6A8(−a1

+ A5a2)))(−(A2
4A8 − A4A5(A7 + A8) + A7(A

2
5 − A6A7 + A6A8 + a1))s+ (A2

5A7

− A4A5A8 + A7(A6A8 + a1))kβ))− (A8(−A7(A4A5 + A6A7) + A2
4A8)

× (−A5A6A7 + A4(A6A8 + a1))(A4A8a2 + A7(a1 − A5a2))(A
2
4A8(r + kβ)

− A4A5((A7 + A8)r + A7kβ) + A7((A
2
5 − A6A7 + A6A8 + a1)r − A6A7kβ)))

+ ((−A7(A4A5 + A6A7) + A2
4A8)(A

2
5A7 − A4A5A8 + A7(A6A8 + a1))(A4A8a2

+ A7(a1 − A5a2))(A
2
5A

2
7kp1 + A2

4A
2
8kp1 + A2

7a1kp1 + A4(A6A8 + a1)(A7r − A8r

+ A7kβ)− A5A7(2A4A8kp1 + A6(A7r − A8r + A7kβ)))) + (−A7(A4A5 + A6A7)

+ A2
4A8)(−A4A7A8(A5a1 + (2A2

5 + A6A8 + a1)a2 + 2A5a
2
2) + A2

4A
2
8(a1 + a2(A5

+ a2)) + A2
7((A

2
5 + a1)a2(A5 + a2) + A6A8(−a1 + A5a2)))(A

2
5A

2
7kp2 + A2

4A
2
8kp2

+ A2
7a1kp2 + A4(A6A8 + a1)(A7s− A8s+ A8kβ)− A5A7(2A4A8kp2 + A6(A7s

− A8s+ A8kβ)))
))
,

θ2 = −
(

(−A4A8 + A7(A5 + a2))
(

(A8c1 − A7c2)((A5A7 − A4A8)
2 + A2

7a1)(A5A6A7

− A4(A6A8 + a1))
2a2 +

1

(−A4A8 + A7(A5 + a2))k

(
A8(−A7(A4A5 + A6A7)

+ A2
4A8)(−A5A6A7 + A4(A6A8 + a1))(A4A8a2 + A7(a1 − A5a2))(A

2
5A

2
7kp1

+ A2
4A

2
8kp1 + A2

7a1kp1 + A4(A6A8 + a1)(A7r − A8r + A7kβ)− A5A7(2A4A8kp1

+ A6(A7r − A8r + A7kβ))) + A7(A5A6A7 − A4(A6A8 + a1))(−A4A7A8(A5a1

+ (2A2
5 + A6A8 + a1)a2 + 2A5a

2
2) + A2

4A
2
8(a1 + a2(A5 + a2)) + A2

7((A
2
5 + a1)a2
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× (A5 + a2) + A6A8(−a1 + A5a2)))(A
2
5A

2
7kp2 + A2

4A
2
8kp2 + A2

7a1kp2 + A4(A6A8

+ a1)(A7s− A8s+ A8kβ)− A5A7(2A4A8kp2 + A6(A7s− A8s+ A8kβ)))
))/

((−A7(A4A5 + A6A7) + A2
4A8)
√
a1((A5A7 − A4A8)

2 + A2
7a1)

2(a1 + a22)),

θ3 =
−√a1

(((A5A7 − A4A8)2 + A2
7a1)

2(a1 + a22)k)

(
(−A2

5A7 + A4A5A8 − A7(A6A8

+ a1))(A4A8a2 + A7(a1 − A5a2))(A
2
4A8(r + kβ)− A4A5((A7 + A8)r + A7kβ)

+ A7((A
2
5 − A6A7 + A6A8 + a1)r − A6A7kβ))− (−A4A7A8(A5a1 + (2A2

5

+ A6A8 + a1)a2 + 2A5a
2
2) + A2

4A
2
8(a1 + a2(A5 + a2)) + A2

7((A
2
5 + a1)a2(A5 + a2)

+ A6A8(−a1 + A5a2)))(A
2
4A8s+ A7(A

2
5 − A6A7 + A6A8 + a1)s− A7(A

2
5 + A6A8

+ a1)kβ + A4A5(−(A7 + A8)s+ A8kβ))
)
.

At the bifurcation point, System (4.5) becomesU̇1

U̇2

 =

 0 −√a1
√
a1 0

U1

U2

+

f 1(U1, U2)

f 2(U1, U2)


where

f 1(U1, U2) = η1U1U2 + η2U
2
1 + η3U

2
2 and f 2(U1, U2) = θ1U1U2 + θ2U

2
1 + θ3U

2
2 .

The coefficient a(0) ≡ a is given by

a =
1

16

(
f 1
U1U1U1

+ f 1
U1U2U2

+ f 2
U1U1U2

+ f 2
U2U2U2

)
+

1

16
√
a1

(
f 1
U1U2

(f 1
U1U1

+ f 1
U2U2

)− f 2
U1U2

(f 2
U1U1

+ f 2
U2U2

)− f 1
U1U1

f 2
U1U1

+ f 1
U2U2

f 2
U2U2

)
.

Therefore, a = 1
8
√
a1

(
η1(η2 + η3) − θ1(θ2 + θ3) − 2η2θ2 + 2η3θ3

)
6= 0. Hence, from

Hopf bifurcation theory in [10] we get Hopf bifurcation. Also, the periodic orbit is

asymptotically stable for a < 0 and unstable for a > 0.
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5. Numerical simulation

In this section, we carry out some numerical simulations to verify the previous

results. Suppose that

r = 1.1, β = 1, s = 1, k = 0.7, a = 0.47484,

b = 0.1, p1 = 1, p2 = 2, c1 = 2, c2 = 0.1.(5.1)

In this case, E6 = (0.02468, 0.50642, 0.00937) and System (1.3-1.5) is given as

ẋ = 1.1x(1− x+ y

0.7
)− xy − xz,

ẏ = y(1− x+ y

0.7
) + xy − 2yz − 0.47484y,

ż = 2xz + 0.1yz − 0.1z.

Furthermore, restricted system to the center manifold is approximately given by

U̇1 = −
√

0.00675U2 + 0.77552U1U2 − 0.00471U2
1 + 0.00471U2

2 ,

U̇2 =
√

0.00675U1 + 1.87642U1U2 + 0.17083U2
1 − 0.17078U2

2 .

Thus a0 = a1a2 ≈ 0.00445, λ1,2 ≈ ±i0.08217 and λ3 = −0.65920. In this case

a = −0.00013. Therefore, we have Hopf bifurcation that bifurcating periodic orbit is

stable. Thus, E6 is unstable. These results are presented in Figures 1 and 2).
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Figure 1. Components of the solution U1(t) and U2(t) with param-

eters given in (5.1).

Figure 2. The bifurcating periodic solution.

6. Conclusion

In this paper, we consider a virus therapy for cancer and analyze stability of equi-

librium points of this system. Equilibrium E0 is unstable. It means that with this

therapy, tumor does not completely destroy. Thus, we look for on other equilibrium

points. Infection-free equilibrium point E1 exists and may be stable. Stability of E1

is not useful because it means that non-infected tumor cells exist then therapy fails.

We note that the interior equilibrium point E6 is the most interesting equilibrium

point from the biological point of view since its existence means that both of the
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non-infected and infected tumor cells and CTL exist. Its stability means that the

tumor growth is controlled in a way that it can not reach to the carrying capacity

k. Hence, under the conditions of the parameters in theorem 3.2, it means that with

this therapy we could control the size of the tumor which is x + y, but tumor exists

and not completely wasted. In addition, we noted that when a0 = a1a2, we have Hopf

bifurcation in E6. Moreover, theorem 3.2 means this equilibrium point is unstable.

Hence, existence of Hopf bifurcation is not useful because Hopf cycle means that the

size of tumor cells decreases. Exactly when we suppose that therapy is useful, tumor

size increases, and this behavior repeated (See Figure 2). Although, this behavior

means when we suppose that tumor treated, after some times we see that tumor

grows. Thus, patient will die. Therefore, we attempted that value of parameters

must be controlled in the way that we have not Hopf cycle.
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