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FURTHER RESULTS ON THE UNIQUENESS OF MEROMORPHIC
FUNCTIONS AND THEIR DERIVATIVE COUNTERPART

SHARING ONE OR TWO SETS

ABHIJIT BANERJEE(1) AND BIKASH CHAKRABORTY(2)

Abstract. In this paper we prove a number of results concerning uniqueness of a

meromorphic function as well as its derivative sharing one or two sets. In particular,

we deal with the specific question raised in [18], [19], [20] and ultimately improve

the result of Banerjee-Bhattacharjee [4].

1. Introduction and Definitions

In this paper, we assume that readers familiar with the basic Nevanlinna theory([11]).

By C and N we mean the set of complex numbers and set of positive integers respec-

tively. Let f and g be two non-constant meromorphic functions and let a be a finite

complex number. We say that f and g share the value a CM (counting multiplici-

ties), provided that f −a and g−a have the same zeros with the same multiplicities.

Similarly, we say that f and g share the value a-IM (ignoring multiplicities), provided
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118 A. BANERJEE AND B. CHAKRABORTY

that f −a and g−a have the same set of zeros, where the multiplicities are not taken

into account. In addition we say that f and g share ∞ CM (IM), if 1/f and 1/g

share 0 CM (IM).

We now recall some well-known definitions in the literature of the uniqueness of

meromorphic functions sharing sets as it will be pertinent with the follow up discus-

sions.

Definition 1.1. For a non-constant meromorphic function f and any set S ⊂

C
⋃
{∞}, we define

Ef (S) =
⋃
a∈S

{(z, p) ∈ C× N | f(z) = a with multiplicity p},

Ef (S) =
⋃
a∈S

{z ∈ C | f(z) = a, counting without multiplicity}.

Two meromorphic functions f and g are said to share the set S counting multiplici-

ties(CM), if Ef (S) = Eg(S). They are said to share S ignoring multiplicities(IM), if

Ef (S) = Eg(S).

Definition 1.2. A set S ⊂ C
⋃
{∞} is called a unique range set for meromorphic

functions (in short, URSM), if for any two non-constant meromorphic functions f

and g the condition Ef (S) = Eg(S) implies f ≡ g.

Similarly we can define unique range set for entire functions( URSE).

Definition 1.3. A set S ⊂ C
⋃
{∞} is called a unique range set for meromorphic

functions ignoring multiplicities (in short, URSM-IM), if for any two non-constant

meromorphic functions f and g the condition Ef (S) = Eg(S) implies f ≡ g.

Similarly we can define unique range set for entire functions ignoring multiplicities

( URSE-IM).
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We further recall the notion of weighted sharing of sets appeared in the literature

in 2001 ([12]). As far as relaxations of the nature of sharing of the sets are concerned,

this notion has a remarkable influence.

Definition 1.4. ([12]) Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞}

we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m

is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we

say that f, g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k.

Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k. Also

we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)

respectively.

Definition 1.5. [12] Let S be a set of distinct elements of C ∪ {∞} and k be a

nonnegative integer or ∞. We denote by Ef (S, k), the set
⋃
a∈S

Ek(a; f). If Ef (S, k) =

Eg(S, k), then we say f , g share the set S with weight k.

Definition 1.6. ([13]) A polynomial P in C, is called a uniqueness polynomial for

meromorphic (entire) functions, if for any two non-constant meromorphic (entire)

functions f and g, P (f) ≡ P (g) implies f ≡ g. We say P is a UPM (UPE) in brief.

Definition 1.7. ([5], [9]) Let P (z) be a polynomial such that P
′
(z) has mutually t

distinct zeros given by d1, d2, . . . , dt with multiplicities q1, q2, . . . , qt respectively then

P (z) is said to satisfy critical injection property if P (di) 6= P (dj) for i 6= j where

i, j ∈ {1, 2, · · ·, t} .

From the definition it is obvious that P (z) is injective on the set of distinct zeros of

P
′
(z) which are known as critical points of P (z). Furthermore any polynomial P (z)

satisfying this property is called critically injective polynomial. Thus a critically

injective polynomial has at-most one multiple zero.
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To this end, we recall two definitions.

Definition 1.8. ([1]) Let z0 be a zero of f − a of multiplicity p and a zero of g − a

of multiplicity q. We denote by NL(r, a; f) the counting function of those a-points of

f and g where p > q ≥ 1, by N
1)
E (r, a; f) the counting function of those a-points of

f and g where p = q = 1 and by N
(2

E (r, a; f) the counting function of those a-points

of f and g where p = q ≥ 2, each point in these counting functions is counted only

once. In the same way we can define NL(r, a; g), N
1)
E (r, a; g), N

(2

E (r, a; g).

Definition 1.9. ([1]) Let f , g share a value a IM. We denote by N∗(r, a; f, g) the

reduced counting function of those a-points of f whose multiplicities differ from the

multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).

In 1976 Gross([10], Question 6) proposed a problem concerning the uniqueness of

entire functions that share sets of distinct elements instead of values as follows :

Question A : Can one find two finite set Sj for j = 1, 2 such that any two non-

constant entire functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must be

identical ?

In ([10]), Gross also asked : “If the answer to Question 6 is affirmative, it would

be interesting to know how large both sets would have to be.”

Yi ([17]) and independently Fang-Xu ([7]) gave a positive answer to Question A.

In fact, Yi ([17]) proved that the smallest cardinalities of S1 and S2 are 1 and 3

respectively, where S1 and S2 are two finite sets such that any two non-constant

entire functions f and g satisfying E(Sj, f) = E(Sj, g) for j = 1, 2 must be identical.

And till today this is the best result.

Now it is natural to ask the following question :
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Question B :([18],[19],[20]) Can one find two finite sets Sj (j = 1, 2) such that any

two non-constant meromorphic functions f and g satisfying Ef (Sj,∞) = Eg(Sj,∞)

for j = 1, 2 must be identical ?

In 1994, Yi ([16]) proved that there exist two finite sets S1 (with 2 elements) and

S2 (with 9 elements) such that any two non-constant meromorphic functions f and

g satisfying Ef (Sj,∞) = Eg(Sj,∞) for j = 1, 2 must be identical.

In ([14]), Li-Yang proved that there exist two finite sets S1 (with 1 element) and

S2 (with 15 elements) such that any two non-constant meromorphic functions f and

g satisfying Ef (Sj,∞) = Eg(Sj,∞) for j = 1, 2 must be identical.

In ([6]), Fang-Guo proved that there exist two finite sets S1 (with 1 element) and

S2 (with 9 elements) such that any two non-constant meromorphic functions f and

g satisfying Ef (Sj,∞) = Eg(Sj,∞) for j = 1, 2 must be identical.

Also in 2002, Yi ([18]) proved that there exist two finite sets S1 (with 1 element)

and S2 (with 8 elements) such that any two non-constant meromorphic functions f

and g satisfying Ef (Sj,∞) = Eg(Sj,∞) for j = 1, 2 must be identical.

In 2008, the first author ([1]) improved the result of Yi ([18]) by relaxing the nature

of sharing the range sets by the notion of weighted sharing. He established that there

exist two finite sets S1 (with 1 element) and S2 (with 8 elements) such that any two

non-constant meromorphic functions f and g satisfying Ef (S1, 0) = Eg(S1, 0) and

Ef (S2, 2) = Eg(S2, 2) must be identical.

So the natural query would be whether there exists similar types of unique range

sets corresponding to the derivatives of two meromorphic functions. But in this

particular direction the number of results are scanty. The following uniqueness results

have been obtained when the derivatives of meromorphic functions sharing one or two

are studied by the researchers.
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Theorem A. ([8, 20]) Let S1 = {z : zn + azn−1 + b = 0} and S2 = {∞}, where a, b

are nonzero constants such that zn + azn−1 + b = 0 has no repeated root and n (≥ 7),

k be two positive integers. Let f and g be two non-constant meromorphic functions

such that Ef (k)(S1,∞) = Eg(k)(S1,∞) and Ef (S2,∞) = Eg(S2,∞) then f (k) ≡ g(k).

In 2010, Banerjee-Bhattacharjee ([3]) improved the above results in the following

way :

Theorem B. ([3]) Let Si, i = 1, 2 and k be given as in Theorem A. Let f and g

be two non-constant meromorphic functions such that Ef (k)(S1, 2) = Eg(k)(S1, 2) and

Ef (S2, 1) = Eg(S2, 1) then f (k) ≡ g(k).

Theorem C. ([3]) Let Si, i = 1, 2 be given as in Theorem A. Let f and g be

two non-constant meromorphic functions such that Ef (k)(S1, 3) = Eg(k)(S1, 3) and

Ef (S2, 0) = Eg(S2, 0) then f (k) ≡ g(k).

In 2011, Banerjee-Bhattacharjee ([4]) further improved the above results in the

following manner :

Theorem D. ([4]) Let Si, i = 1, 2 and k be given as in Theorem A. Let f and g

be two non-constant meromorphic functions such that Ef (k)(S1, 2) = Eg(k)(S1, 2) and

Ef (S2, 0) = Eg(S2, 0) then f (k) ≡ g(k).

So far from the above discussions we see that for the two set sharing problems,

the best result has been obtained when one set contain 8 elements and the other

set contain 1 element. On the other hand, when derivatives of the functions are

considered then the cardinality of one set can further be reduced to 7. So it will be

natural query whether there can be a single result corresponding to uniqueness of

the function sharing two sets which can accommodate the derivative counterpart of

the main function as well under relaxed sharing hypothesis with smaller cardinalities
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than the existing results. This is the motivation of the paper. Our one result present

in the paper improves all the preceding theorems stated so far Theorems A-D in some

sense.

2. Main Results

Suppose for two positive integers m,n we shall denote by P (z) the following poly-

nomial.

P (z) = zn − 2n

n−m
zn−m +

n

n− 2m
zn−2m + c,(2.1)

where c is any complex number satisfying |c| 6= 2m2

(n−m)(n−2m)
and c 6= 0,−1− 2n

n−m
+ n

n−2m

2
.

Following theorems are the main results of the paper. In the first theorem we

consider the uniqueness of meromorphic functions and its derivatives counterpart

corresponding to single set sharing.

Theorem 2.1. Let n(≥ 1), m(≥ 1), k(≥ 0) be three positive integers such that

m,n has no common factors. Let S = {z : P (z) = 0} where the polynomial P (z) is

defined by 2.1. Let f and g be two non-constant meromorphic functions satisfying

Ef (k)(S, l) = Eg(k)(S, l). If one of the following conditions holds:

(1) l ≥ 2 and n > max{2m+ 4 + 4
k+1

, 4m+ 1},

(2) 1 = l and n > max{2m+ 4.5 + 4.5
k+1

, 4m+ 1},

(3) l = 0 and n > max{2m+ 7 + 7
k+1

, 4m+ 1}

then f (k) ≡ g(k).

Corollary 2.1. Let n(≥ 9), m(= 1), k ≥ 1 be three positive integers. Let S =

{z : P (z) = 0} where the polynomial P (z) is defined by 2.1. Let f and g be two non-

constant meromorphic functions satisfying Ef (k)(S, 2) = Eg(k)(S, 2). Then f (k) ≡ g(k).

For k = 0 in Theorem 2.1 we get the following :
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Corollary 2.2. Let n(≥ 1), m(≥ 1) be two positive integers having no common

factors. Let S = {z : P (z) = 0} where the polynomial P (z) is defined by 2.1. Let f

and g be two non-constant meromorphic functions satisfying Ef (S, l) = Eg(S, l). If

one of the following conditions holds:

(1) l ≥ 2 and n > max{2m+ 8, 4m+ 1},

(2) 1 = l and n > max{2m+ 9, 4m+ 1},

(3) l = 0 and n > max{2m+ 14, 4m+ 1}

then f ≡ g.

The next theorem focus on the two set sharing problem.

Theorem 2.2. Let n(> 4m+1), m(≥ 1), k(≥ 0) be three positive integers satisfying

gcd{m,n} = 1. Let S = {z : P (z) = 0} where the polynomial P (z) is defined by

2.1. Let f and g be two non-constant meromorphic functions satisfying Ef (k)(S, l) =

Eg(k)(S, l) and Ef (k)(0, q) = Eg(k)(0, q) where 0 ≤ q <∞. If

(1) l ≥ 3
2

+ 2
n−2m−1 + 1

(n−2m)q+n−2m−1 and

(2) n > 2m+ 4
k+1

+ 4
(k+1)(n−2m−1) + 2

(k+1)((n−2m)q+n−2m−1)

then f (k) ≡ g(k).

The following example shows that for the two set sharing case, choosing the set S1

with one element and S2 with two elements Theorem 2.2 ceases to hold.

Example 2.1. Let S1 = {a} and S2 = {b, c}. Choose f(z) = p(z) + (b − a)ez and

g(z) = q(z) + (−1)k(c − a)e−z, where p(z) and q(z) are polynomial of degree k with

the coefficient of zk in p(z) and q(z) is equal to a
k!

.

Clearly Ef (k)(Sj) = Eg(k)(Sj) for j = 1, 2 but f (k) 6≡ g(k).

Corollary 2.3. Let n(≥ 8), m(= 1) be two positive integers. Let S = {z : P (z) =

0} where the polynomial P (z) is defined by 2.1. Let f and g be two non-constant

meromorphic functions satisfying
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(1) Ef (S, 3) = Eg(S, 3) and Ef (0, 0) = Eg(0, 0), or

(2) Ef (S, 2) = Eg(S, 2) and Ef (0, 1) = Eg(0, 1)

then f ≡ g.

Corollary 2.4. Let n(≥ 6), m(= 1) and k ≥ 1 be two positive integers. Let S =

{z : P (z) = 0} where the polynomial P (z) is defined by 2.1. Let f and g be two non-

constant meromorphic functions satisfying Ef (k)(S, 3) = Eg(k)(S, 3) and Ef (k)(0, 0) =

Eg(k)(0, 0). Then f (k) ≡ g(k).

Remark 2.1. Corollary 2.4 shows that there exists two sets S1 (with 1 element) and

S2 (with 6 elements) such that when derivatives of any two non-constant meromorphic

functions share them with finite weight yields f (k) ≡ g(k) thus improve Theorem D in

the direction of Question B.

The following two examples show that specific form of choosing the set S1 with

five elements and S2 = {0} Corollary 2.4 ceases to hold.

Example 2.2. Let f(z) = 1
(
√
αβγ)k−1 e

√
αβγ z and g(z) = (−1)k

(
√
αβγ)k−1 e

−
√
αβγ z (k ≥ 1) and

S = {α
√
β, α
√
γ, β
√
γ, γ
√
β,

√
(αβγ)}, where α, β and γ are three nonzero distinct

complex numbers. Clearly Ef (k)(S) = Eg(k)(S) and Ef (k)(0) = Eg(k)(0) but f (k) 6≡ g(k).

Example 2.3. Let f(z) = 1
ck
ecz and g(z) = ω4f(z) and S = {ω4, ω3, ω2, ω, 1}, where

ω is the non-real fifth root of unity and c is a non-zero complex number. Clearly

Ef (k)(S) = Eg(k)(S) and Ef (k)(0) = Eg(k)(0) but f (k) 6≡ g(k).

Remark 2.2. However the following question is still inevitable from the Corollary

2.4 and Example 2.2 that

Whether there exists two suitable sets S1 (with 1 element) and S2 (with 5 elements)

such that when derivatives of any two non-constant meromorphic functions share

them with finite weight yield f (k) ≡ g(k) ?
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3. Lemmmas

We define

F = − (f (k))n−2m((f (k))2m− 2n
n−m

(f (k))m+ n
n−2m

)

c
, G = − (g(k))n−2m((g(k))2m− 2n

n−m
(g(k))m+ n

n−2m
)

c
,

where n(≥ 1), m(≥ 1) and k(≥ 0) are non-negative integers. Henceforth we shall

denote by H and Φ the following two functions

H = (
F
′′

F ′
− 2F

′

F − 1
)− (

G
′′

G′
− 2G

′

G− 1
)

and

Φ =
F
′

F − 1
− G

′

G− 1
.

Let T (r) = max{T (r, f (k)), T (r, g(k))} and S(r) = o(T (r)).

Lemma 3.1. The polynomial

P (z) = zn − 2n

n−m
zn−m +

n

n− 2m
zn−2m + c

is a critically injective polynomial having only simple zeros when |c| 6= 0, 2m2

(n−m)(n−2m)
.

Proof. Since

P ′(z) = nzn−2m−1(zm − 1)2,

P is critically injective, because

(1) P (0) = P (α) where αm = 1 gives α = 0 which is a contradiction, and

(2) P (β) = P (γ) where βm = 1, γm = 1, gives βn = γn.

Now as gcd{m,n} = 1, so there exist integers s, t such that ms+ nt = 1.

Thus β = βms+nt = γms+nt = γ.

For the second part if P (α) = P ′(α) = 0 then either α = 0 or αm = 1.

If α = 0 then P (α) = c, which is not zero by assumption.

If αm = 1 then P (α) = αn(1− 2n
n−m + n

n−2m) + c = 0.

As |α| = 1 so |c| = 2m2

(n−m)(n−2m)
which is not possible by assumption. �
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Lemma 3.2. ([9]) Suppose that P (z) is a monic polynomial without multiple zero

whose derivatives has mutually distinct t zeros given by d1, d2, . . . , dt with multiplic-

ities q1, q2, . . . , qt respectively. Also suppose that P (z) is critically injective. Then

P (z) will be a uniqueness polynomial if and only if∑
1≤l<m≤k

q
l
qm >

t∑
l=1

q
l
.

In particular the above inequality is always satisfied whenever t ≥ 4. When t = 3

and max{q1, q2, q3} ≥ 2 or when t = 2, min{q1, q2} ≥ 2 and q1 + q2 ≥ 5 then also the

above inequality holds.

Lemma 3.3. F and G are defined as earlier. Then F ≡ G gives f (k) ≡ g(k) when

k ≥ 0 and n ≥ 2m+ 4.

Proof. F ≡ G implies P (f (k)) = P (g(k)).

Since P is critically injective polynomial having no multiple zeros and

P ′(z) = nzn−2m−1(zm − 1)2, t = m+ 1.

So when n ≥ 2m+ 4 we have by the Lemma 3.2 that f (k) ≡ g(k). �

Lemma 3.4. F and G are defined as earlier, then FG 6≡ 1 for k ≥ 0 and n ≥ 5.

Proof. On contrary, suppose FG ≡ 1

Then by Mokhon’ko’s Lemma([15]), T (r, f (k)) = T (r, g(k)) +O(1).

Then

(f (k))n−2m
2m∏
i=1

((f (k))− γi)(g(k))n−2m
2m∏
i=1

((g(k))− γi) = c2,(3.1)

where γi (i=1,2,...,2m) are the roots of the equation z2m − 2n
n−mz

m + n
n−2m = 0.

Let z0 be a γi point of f (k) of order p. Then z0 is a pole of g of order q such that

p = n(1 + k)q ≥ n. So

N(r, γi; f
(k)) ≤ 1

n
N(r, γi; f

(k)).
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Again let z0 be a zero of f (k) of order t. Then z0 is a pole of g of order s such that

(n− 2m)t = ns(1 + k).

Thus t > s(1+k) and 2ms(1+k) = (n−2m)(t−s(1+k)) ≥ (n−2m). Consequently

(n− 2m)t = ns(1 + k) gives t ≥ n
2m
. So

N(r, 0; f (k)) ≤ 2m

n
N(r, 0; f (k)).

again

N(r,∞; f (k)) ≤ N(r, 0; g(k)) +
2m∑
i=0

N(r, γi; g
(k))

≤ 2m

n
N(r, 0; g(k)) +

1

n

2m∑
i=0

N(r, γi; g
(k))

≤ 4m

n
T (r, g(k)) +O(1).

Now by using the Second Fundamental Theorem we get

2mT (r, f (k))(3.2)

≤ N(r,∞; f (k)) +N(r, 0; f (k)) +
2m∑
i=0

N(r, γi; f
(k)) + S(r, f (k))

≤ 4m

n
T (r, f (k)) +

2m

n
T (r, f (k)) +

2m

n
T (r, f (k)) + S(r, f (k)),

which is a contradiction as n ≥ 5. �

Lemma 3.5. ([2]) If F and G share (1, l) where 0 ≤ l <∞ then

N(r, 1;F )+N(r, 1;G)−N1
E(r, 1, F )+(l− 1

2
)N∗(r, 1;F,G) ≤ 1

2
(N(r, 1;F )+N(r, 1;G)).

Lemma 3.6. Let F , G, Φ be defined previously and F 6≡ G. If f (k) and g(k) share

(0, q) where 0 ≤ q <∞ and F , G share (1, l), then

{(n− 2m)q + n− 2m− 1} N(r, 0; f (k) |≥ q + 1)

≤ N(r,∞; f (k)) +N(r,∞; g(k)) +N∗(r, 1;F,G) + S(r).
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Similar expressions hold for g also.

Proof. Case-1 Φ = 0

Then by integration we get

F − 1 = A(G− 1)

where A is non-zero constant. Since F 6≡ G, we have A 6= 1. Thus 0 is an e.v.P. of

f (k) and g(k) and hence the lemma follows immediately.

Case-2 Φ 6= 0

Let z0 be a zero of f (k) of order t(≥ q + 1). Then it is a zero of F of order atleast

(q+1)(n−2m) and hence z0 is the zero of Φ of order at least q(n−2m)+n−2m−1.

Thus

{(n− 2m)q + n− 2m− 1} N(r, 0; f (k) |≥ q + 1)

≤ N(r, 0; Φ)

≤ T (r,Φ) +O(1)

≤ N(r,∞; Φ) + S(r)

≤ N(r,∞; f (k)) +N(r,∞; g(k)) +N∗(r, 1;F,G) + S(r).

�

Lemma 3.7. Let H be defined previously. If H ≡ 0 and n ≥ 4m+2 with gcd{m,n} =

1, then f (k) ≡ g(k) for any integer k ≥ 0.

Proof. In this case F and G share (1,∞).

Now by integration we have

F =
AG+B

CG+D
,(3.3)

where A,B,C,D are constant satisfying AD −BC 6= 0.
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Thus by Mokhon’ko’s Lemma ([15])

T (r, f (k)) = T (r, g(k)) + S(r).(3.4)

As AD − BC 6= 0, so A = C = 0 never occur. Thus we consider the following

cases:

Case-1 AC 6= 0

In this case

F − A

C
=

BC − AD
C(CG+D)

.(3.5)

So,

N(r,
A

C
;F ) = N(r,∞;G).

Now by using the Second Fundamental Theorem and (3.4), we get

nT (r, f (k)) +O(1) = T (r, F )

≤ N(r,∞;F ) +N(r, 0;F ) +N(r,
A

C
;F ) + S(r, F )

≤ N(r,∞; f (k)) +N(r, 0; f (k)) + 2mT (r, f (k)) +N(r,∞; g(k)) + S(r, f (k))

≤ (2m+ 1 +
2

k + 1
)T (r, f (k)) + S(r, f (k)),

which is a contradiction as n ≥ 4m+ 2.

Case-2 AC = 0

Subcase-2.1 A = 0 and C 6= 0

In this case B 6= 0 and

F =
1

γG+ δ
,

where γ = C
B

and δ = D
B

.

If F has no 1-point, then by using the Second Fundamental Theorem and (3.4),
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we get

T (r, F )

≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 1;F ) + S(r, F )

≤ N(r,∞; f (k)) +N(r, 0; f (k)) + 2mT (r, f (k)) + S(r, f (k))

≤
2m+ 1 + 1

k+1

n
T (r, F ) + S(r, F ),

which is a contradiction as n ≥ 4m+ 2.

Thus γ + δ = 1 and γ 6= 0.

So,

F =
1

γG+ 1− γ
,

From above we get N(r, 0;G+ 1−γ
γ

) = N(r,∞;F ).

If γ 6= 1, by using the Second Fundamental Theorem and (3.4), we get

T (r,G)

≤ N(r,∞;G) +N(r, 0;G) +N(r, 0;G+
1− γ
γ

) + S(r,G)

≤ N(r,∞; g(k)) +N(r, 0; g(k)) + 2mT (r, g(k)) +N(r,∞; f (k)) + S(r, g(k))

≤
2m+ 1 + 2

k+1

n
T (r, F ) + S(r, F ),

which is a contradiction as n ≥ 4m+ 2.

Thus γ = 1 and FG ≡ 1 which is not possible by Lemma 3.4.

Subcase-2.2 A 6= 0 and C = 0

In this case D 6= 0 and

F = λG+ µ,

where λ = A
D

and µ = B
D

.

If F has no 1 point, then similarly as above we get a contradiction.

Thus λ+ µ = 1 with λ 6= 0.
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Clearly N(r, 0;G+ 1−λ
λ

) = N(r, 0;F ).

Let λ 6= 1 and ξ =
(1− 2n

n−m
+ n

n−2m
)

c
. Then F + ξ = (f (k) − 1)3Qn−3(f

(k)),

where Qn−3(1) 6= 0 and Qn−3(z) is a (n− 3) degree polynomial.

If 1−λ
λ
6= ξ, then by using the Second Fundamental Theorem and (3.4), we get

2T (r,G)

≤ N(r,∞;G) +N(r, 0;G) +N(r, 0;G+
1− λ
λ

) +N(r, 0;G+ ξ) + S(r,G)

≤ N(r,∞; g(k)) +N(r, 0; g(k)) + 2mT (r, g(k)) +N(r, 0; f (k)) + 2mT (r, f (k))

+ N(r, 1; g(k)) + (n− 3)T (r, g(k)) + S(r, g(k))

≤
4m+ n+ 1

k+1

n
T (r,G) + S(r,G),

which is a contradiction as n ≥ 4m+ 2.

If 1−λ
λ

= ξ, then λG = F − λξ. As c 6= −1− 2n
n−m

+ n
n−2m

2
so λ 6= −1.

Now applying the Second Fundamental Theorem and (3.4), we get

2T (r, F )

≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 0;F − λξ) +N(r, 0;F + ξ) + S(r, F )

≤ N(r,∞; f (k)) +N(r, 0; g(k)) + 2mT (r, g(k)) +N(r, 0; f (k)) + 2mT (r, f (k))

+ N(r, 1; f (k)) + (n− 3)T (r, f (k)) + S(r, g(k))

≤
4m+ n+ 1

k+1

n
T (r, F ) + S(r, F ),

which is a contradiction as n > 4m+ 1.

Thus λ = 1 and F ≡ G. Consequently by Lemma 3.3, f (k) ≡ g(k) . �

4. Proof of the theorems

Proof of Theorem2.1 . It is clear that N(r,∞; f (k)) ≤ 1
k+1

N(r,∞; f (k)).

Case-1 H 6≡ 0
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Clearly F ′ = −n
c
(f (k))n−2m−1((f (k))m − 1)2(f (k+1)),

and G′ = −n
c
(g(k))n−2m−1((g(k))m − 1)2(g(k+1)).

Now by simple calculations,

N(r,∞;H)

≤ N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N(r,∞;F )

+ N(r,∞;G) +N∗(r, 1;F,G) +N0(r, 0;F ′) +N0(r, 0;G′),

where N0(r, 0;F ′) is the reduced counting function of zeros of F ′ which is not zeros

of F (F − 1). Thus

N(r,∞;H)(4.1)

≤ N(r, 0; f (k)) +N(r, 0; g(k)) +N(r, 0; ((g(k))m − 1))

+ N(r, 0; ((f (k))m − 1)) +N(r,∞; f (k)) +N(r,∞; g(k))

+ N∗(r, 1;F,G) +N0(r, 0; f (k+1)) +N0(r, 0; g(k+1)),

where N0(r, 0; f (k+1)) is the reduced counting function of zeros of f (k+1) which is not

zeros of f (k)((f (k))m − 1) and (F − 1).

Clearly

N(r, 1;F | = 1) = N(r, 1;G| = 1) ≤ N(r,∞;H).(4.2)
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Now by using the Second Fundamental Theorem, (4.1), (4.2) and Lemma 3.5 we get

(n+m)(T (r, f (k)) + T (r, g(k)))(4.3)

≤ N(r,∞; f (k)) +N(r, 0; f (k)) +N(r,∞; g(k)) +N(r, 0; g(k))

+ N(r, 1;F ) +N(r, 1;G) +N(r, 0; (f (k))m − 1) +N(r, 0; (g(k))m − 1)

− N0(r, 0, f
(k+1))−N0(r, 0, g

(k+1)) + S(r, f (k)) + S(r, g(k))

≤ 2{N(r,∞; f (k)) +N(r,∞; g(k))}+ 2{N(r, 0; f (k)) +N(r, 0; g(k))

+ N(r, 0; ((g(k))m − 1)) +N(r, 0; ((f (k))m − 1))}+N(r, 1;F ) +N(r, 1;G)

− N(r, 1;F | = 1) +N∗(r, 1;F,G) + S(r, f (k)) + S(r, g(k)).

(
n

2
−m)(T (r, f (k)) + T (r, g(k)))(4.4)

≤ 2{N(r,∞; f (k)) +N∗(r,∞; g(k)) +N(r, 0; f (k)) +N(r, 0; g(k))}

+ (
3

2
− l)N∗(r, 1;F,G) + S(r, f (k)) + S(r, g(k)).

That is

(
n

2
−m− 2− 2

k + 1
)(T (r, f (k)) + T (r, g(k)))(4.5)

≤ (
3

2
− l)N∗(r, 1;F,G) + S(r, f (k)) + S(r, g(k)).

Subcase-1.1 l ≥ 2

We get a contradiction from (4.5) when n > 2m+ 4 + 4
k+1

.

Subcase-1.2 l = 1



FURTHER RESULTS ON THE UNIQUENESS OF MEROMORPHIC FUNCTIONS ... 135

In this case

N∗(r, 1;F,G) = NL(r, 1;F ) +NL(r, 1;G)

≤ 1

2
(N(r, 0; f (k+1)|f (k) 6= 0) +N(r, 0; g(k+1)|g(k) 6= 0))

≤ 1

2
(N(r,∞; f (k)) +N(r, 0; f (k)) +N(r,∞; g(k)) +N(r, 0; g(k)))

+ S(r, f (k)) + S(r, g(k))

≤ 1

2
(1 +

1

k + 1
)(T (r, f (k)) + T (r, g(k))) + S(r, f (k)) + S(r, g(k)).

Thus (4.5) becomes

(
n

2
−m− 2− 2

k + 1
)(T (r, f (k)) + T (r, g(k)))(4.6)

≤ 1

4
(1 +

1

k + 1
)(T (r, f (k)) + T (r, g(k))) + S(r, f (k)) + S(r, g(k)),

which is a contradiction when n > 2m+ 4.5 + 4.5
k+1

.

Subcase-1.3 l = 0

In this case

N∗(r, 1;F,G) = NL(r, 1;F ) +NL(r, 1;G)

≤ (N(r, 0; f (k+1)|f (k) 6= 0) +N(r, 0; g(k+1)|g(k) 6= 0))

≤ (N(r,∞; f (k)) +N(r, 0; f (k)) +N(r,∞; g(k)) +N(r, 0; g(k)))

+ S(r, f (k)) + S(r, g(k))

≤ (N(r,∞; f (k)) +N(r, 0; f (k)) +N(r,∞; g(k)) +N(r, 0; g(k)))

+ S(r, f (k)) + S(r, g(k))

≤ (1 +
1

k + 1
)(T (r, f (k)) + T (r, g(k))) + S(r, f (k)) + S(r, g(k)).
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Thus (4.5) becomes

(
n

2
−m− 2− 2

k + 1
)(T (r, f (k)) + T (r, g(k)))(4.7)

≤ 3

2
(1 +

1

k + 1
)(T (r, f (k)) + T (r, g(k))) + S(r, f (k)) + S(r, g(k)),

which is a contradiction when n > 2m+ 7 + 7
k+1

.

Case-2 H ≡ 0

From the Lemma 3.7 we obtained f (k) ≡ g(k) when n ≥ 4m+ 2. �

Proof of Theorem2.2 . Case-1 H 6≡ 0

Then clearly F 6≡ G.

As f and g share (0, q), we have

N(r,∞;H)(4.8)

≤ N(r,∞; f (k)) +N(r,∞; g(k)) +N(r, 0; ((g(k))m − 1))

+ N(r, 0; ((f (k))m − 1)) +N∗(r, 0; f (k), g(k))

+ N∗(r, 1;F,G) +N0(r, 0; f (k+1)) +N0(r, 0; g(k+1)),

where N0(r, 0; f (k+1)) is the reduced counting function of zeros of f (k+1) which is not

zeros of f (k)((f (k))m − 1) and (F − 1).

Now using the Second Fundamental Theorem, (4.2), (4.8) and Lemma 3.5 we get
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(
n

2
−m)(T (r, f (k)) + T (r, g(k)))(4.9)

≤ 2N(r, 0; f (k)) +N∗(r, 0; f (k), g(k)) + 2{N(r,∞; f (k)) +N(r,∞; g(k))}

+ (
3

2
− l)N∗(r, 1;F,G) + S(r, f (k)) + S(r, g(k))

≤ 2N(r, 0; f (k)) +N(r, 0; f (k)| ≥ q + 1) + 2{N(r,∞; f (k)) +N(r,∞; g(k))}

+ (
3

2
− l)N∗(r, 1;F,G) + S(r, f (k)) + S(r, g(k)).

Thus by the help of Lemma 3.6 we have

(
n

2
−m− 2

k + 1
)(T (r, f (k)) + T (r, g(k)))(4.10)

≤ 2N(r, 0; f (k)) +N(r, 0; f (k)| ≥ q + 1) + (
3

2
− l)N∗(r, 1;F,G)

+ S(r, f (k)) + S(r, g(k))

≤ (
2

(k + 1)(n− 2m− 1)
+

1

(k + 1)((n− 2m)q + n− 2m− 1)
){T (r, f (k))

+ T (r, g(k))}+ (
2

n− 2m− 1
+

1

(n− 2m)q + n− 2m− 1
+

3

2
− l)N∗(r, 1;F,G)

+ S(r, f (k)) + S(r, g(k)).

Thus when l ≥ 3
2

+ 2
n−2m−1 + 1

(n−2m)q+n−2m−1 ,

and n > 2m+ 4
k+1

+ 4
(k+1)(n−2m−1) + 2

(k+1)((n−2m)q+n−2m−1) ,

we get a contradiction from (4.10).

Case-2 H ≡ 0

From the Lemma 3.7 we obtained f (k) ≡ g(k) when n ≥ 4m+ 2. �
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[19] H.X.Yi and W.R.Lü, Meromorphic functions that share two sets II, Acta Math. Sci. Ser.B

Engl. Ed., 24(2004) (1), 83-90.

[20] H.X.Yi and W.C.Lin, Uniqueness of Meromorphic Functions and a Question of Gross, Kyung-

pook Math. J., 46(2006), 437-444.

(1) Department of Mathematics, University of Kalyani, West Bengal 741235, India.

E-mail address: abanerjee kal@yahoo.co.in, abanerjee kal@rediffmail.com

(2) Department of Mathematics, University of Kalyani, West Bengal 741235, India.

E-mail address: bikashchakraborty.math@yahoo.com, bikashchakrabortyy@gmail.com


