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SOFT GROUP BASED ON SOFT ELEMENT

JAYANTA GHOSH(1), DHANANJOY MANDAL(2) AND T. K. SAMANTA(3)

Abstract. Using the notion of soft element [13], in this paper, we define a binary

operation on the set of all nonempty soft elements of a given soft set to introduce

soft groupoid. Then we give the definition of soft group based on soft elements

and establish necessary and sufficient conditions for a soft set to be a soft group.

Also we compare some properties like commutative property, cyclic property of soft

group with those of given parameter set and initial universe set.

1. Introduction

To deal with imprecise data, vague concepts in various fields like economics, en-

gineering, medical science and crucially in the area of artificial intelligence, many

concepts like fuzzy sets [14], rough sets [11], multi sets, soft sets [10] etc. have been

developed. Among them, soft set theory is more generalized tool to deal with uncer-

tainty because fuzzy sets, rough sets, multi sets etc. can be considered as particular

types of soft sets. So many research work have been done in the field of soft set

theory, also in hybrid structures of soft set theory with fuzzy set theory and rough

set theory [2]-[8] to deal with problems having different uncertainties. In 2007, Aktas

and Cagman [2] defined a soft group as a parameterized family of subgroups. Ex-

tending this notion of soft group, many authors also defined soft (ring, field, ideal),

fuzzy soft (group, ring, field, ideal) (see [1, 3, 5]) etc.
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In this paper, we consider the definition of soft element, given by Wardowski [13]

and define a binary operation on the set of all nonempty soft elements of a given

soft set with the help of a binary operation defined in a parameter set as well as

in a universal set. Then we give a condition in order that a soft set forms a soft

groupoid. Also we discuss various properties like soft identity element, soft inverse

element with suitable examples. Lastly we define soft group and compare some prop-

erties like commutative property, cyclic property of soft group with those of given

parameter set and initial universe set. Then we discuss the properties of union and

intersection of two soft groups with suitable examples.

2. Preliminaries

Throughout this paper unless otherwise stated, let U be the universal set, E the

set of parameters with respect to U and P (U) the power set of U. In this section,

we recall some basic definitions in soft set theory which will be needed in the sequel.

Definition 2.1. [10] Let A ⊆ E. A soft set FA on U is a set of the form

FA = {(e, F (e)) : e ∈ A}

where F is a mapping given by F : A→ P (U).

The collection of all soft sets on U will be denoted by S(U).

Definition 2.2. [4] Let A,B ⊆ E and FA, GB ∈ S(U). Then FA is called a soft

subset of GB, denoted by FA ⊆̃GB, if

(i) A ⊆ B,

(ii) F (e) ⊆ G(e) for all e ∈ A.

Definition 2.3. [12][9] Let FA and GB be two soft sets over a common universe U

and A, B ⊆ E.

(1) The intersection of FA and GB, denoted by FA ∩̃GB, is defined as the soft set
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HC , where C = A ∩B and H(e) = F (e) ∩G(e) for all e ∈ C.

(2) The union of FA and GB, denoted by FA ∪̃GB, is defined as the soft set HC ,

where C = A ∪B and ∀ e ∈ C,

H(e) = F (e), if e ∈ A \B,

= G(e), if e ∈ B \ A,

= F (e) ∪G(e), if e ∈ A ∩B.

Note 2.1. Let A, B ⊆ E and FA, GB ∈ S(U) such that FA ⊆̃GB. Then FA ∩̃GB =

FA and FA ∪̃GB = GB.

Example 2.1. [13] Let U = {u1, u2, u3, u4}, E = {p1, p2, p3} and A = {p1, p2},

B = {p1, p3}. For the soft sets of the form FA = {(p1, {u1, u2}), (p2, {u2, u3})},

GB = {(p1, {u1, u4}), (p3, {u3, u4})}, we have FA ∩̃GB = {(p1, {u1})} and

FA ∪̃GB = {(p1, {u1, u2, u4}), (p2, {u2, u3}), (p3, {u3, u4})}.

Definition 2.4. (i) For a soft set FA, the set Supp(FA) = {e ∈ A : F (e) 6= φ} is

called the support of the soft set FA;

(ii) A soft set FA is said to be non-null if Supp(FA) 6= φ, otherwise FA is called

null soft set;

(iii) A soft set FA is said to be full soft set if Supp(FA) = A.

The collection of all full soft sets on U will be denoted by Sf (U).

Definition 2.5. [13] Let A ⊆ E and FA ∈ S(U). We say that (e, {u}) is a nonempty

soft element of FA if e ∈ A and u ∈ F (e). The pair (e, φ), where e ∈ A, will be

called an empty soft element of FA. The fact that (e, {u}) is a soft element of FA

will be denoted by (e, {u}) ∈̃FA.

Note 2.2. We denote the set of all nonempty soft elements of FA by F •A . Also note

that a soft element (e, {u}) belongs to F •A will be denoted by (e, {u}) ∈̃F •A .
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Proposition 2.1. [13] For each FA ∈ S(U), the following holds:

FA =
⋃̃

(ei, {uj}) ∈̃FA

{(ei, {uj})}

Note 2.3. For each FA ∈ Sf (U), the following also holds:

FA =
⋃̃

(ei, {uj}) ∈̃F •A
{(ei, {uj})} .

Example 2.2. Let U = {u1, u2}, E = {e1, e2, e3} and FA ∈ Sf (U) be of the

form FA = {(e2, {u1, u2}), (e3, {u2})}. Hence all the soft elements of FA are

(e2, {u1}), (e2, {u2}), (e2, φ), (e3, {u2}), (e3, φ). Then the soft elements of F •A are

(e2, {u1}), (e2, {u2}), (e3, {u2}). Therefore

FA = {(e2, {u1})} ∪̃ {(e2, {u2})} ∪̃ {(e2, φ)} ∪̃ {(e3, {u2})} ∪̃ {(e3, φ)}

= {(e2, {u1})} ∪̃ {(e2, {u2})} ∪̃ {(e3, {u2})}

=
⋃̃

(ei, {uj}) ∈̃F •A
{(ei, {uj})} .

Now let GB ∈ S(U) be of the form GB = {(e1, φ), (e2, {u1, u2})}. Then the soft

elements of G •B are (e2, {u1}), (e2, {u2}).

Therefore {(e2, {u1})} ∪̃ {(e2, {u2})} = {(e2, {u1, u2})} 6= GB.

3. Soft groupoid

Throughout this section, let (E, ◦) and (U, ∗) be two groupoids and A ⊆ E. Also

let FA ∈ Sf (U), i.e., FA be a full soft set on U, i.e., for each parameter e ∈ A, there

exists at least one nonempty soft element of FA. We define a binary composition ∗̃

on F •A by

(3.1) (ei, {uk}) ∗̃ (ej, {ul}) = (ei ◦ ej, {uk ∗ ul})

for all (ei, {uk}), (ej, {ul}) ∈̃F •A .

F •A is said to be closed under the binary composition ∗̃ if and only if
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(ei ◦ ej, {uk ∗ ul}) ∈̃F •A for all (ei, {uk}), (ej, {ul}) ∈̃F •A i.e., if and only if

ei ◦ ej ∈ A and uk ∗ ul ∈ F (ei ◦ ej) for all (ei, {uk}), (ej, {ul}) ∈̃F •A .

Definition 3.1. If F •A is closed under the binary composition ∗̃, then the algebraic

system (F •A , ∗̃) is said to be a soft groupoid over (E, U).

Theorem 3.1. Let FA ∈ Sf (U). Then (F •A , ∗̃) forms a soft groupoid over (E, U)

if and only if

(i)A is a subgroupoid of E, i.e., ei ◦ ej ∈ A for all ei, ej ∈ A and

(ii) for ei, ej ∈ A, uk ∈ F (ei), ul ∈ F (ej) ⇒ uk ∗ ul ∈ F (ei ◦ ej).

Proof. Suppose (F •A , ∗̃) is a soft groupoid over (E, U). Let ei, ej ∈ A. Since FA ∈

Sf (U), there exist some uk, ul ∈ U such that (ei, {uk}), (ej, {ul}) ∈̃F •A . Hence

(ei, {uk}) ∗̃ (ej, {ul}) ∈̃F •A . This implies (ei ◦ ej, {uk ∗ ul}) ∈̃F •A ⇒ ei ◦ ej ∈ A and

uk ∗ ul ∈ F (ei ◦ ej), by Definition 2.5. Therefore A is a subgroupoid of E and for

ei, ej ∈ A, uk ∈ F (ei), ul ∈ F (ej) ⇒ uk ∗ ul ∈ F (ei ◦ ej).

Conversely, suppose that the given two conditions hold. Now let (ei, {uk}), (ej, {ul})

∈̃F •A . This implies that ei, ej ∈ A and uk ∈ F (ei), ul ∈ F (ej).

By hypothesis (i), ei, ej ∈ A⇒ ei ◦ ej ∈ A.

By hypothesis (ii), uk ∈ F (ei), ul ∈ F (ej)⇒ uk ∗ ul ∈ F (ei ◦ ej).

Therefore (ei ◦ ej, {uk ∗ ul}) ∈̃F •A . So, F •A is closed under the binary composition

∗̃. Hence (F •A , ∗̃) forms a soft groupoid over (E, U). �

Example 3.1. Let (E, ◦) be the klein’s 4-group and (U, ∗) the symmetric group S3,

where E = {e1, e2, e3, e4} be the set of parameters and U the set of all permuta-

tions on the set {1, 2, 3} i.e., U = {ρ0, ρ1, ρ2, ρ3, ρ4, ρ5}, where ρ0 = the identity

permutation, ρ1 = (1, 2, 3), ρ2 = (1, 3, 2), ρ3 = (2, 3), ρ4 = (1, 3), ρ5 = (1, 2). Take

A = {e1, e3} and define a soft set F : A→ P (U) by F (e1) = {ρ0, ρ1, ρ2}, F (e3) =

{ρ3, ρ4, ρ5}. So, the soft elements of FA are (e1, φ), (e1, {ρ0}), (e1, {ρ1}), (e1, {ρ2}),
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(e3, φ), (e3, {ρ3}), (e3, {ρ4}), (e3, {ρ5}). Hence the elements of F •A are (e1, {ρ0}),

(e1, {ρ1}), (e1, {ρ2}), (e3, {ρ3}), (e3, {ρ4}), (e3, {ρ5}). Then the binary composition

∗̃ on F •A is given by

(ei, {ρk}) ∗̃ (ej, {ρl}) = (ei ◦ ej, {ρk ∗ ρl})

for all (ei, {ρk}), (ej, {ρl}) ∈̃F •A .

Here, it is easy to verify that ρk ∗ ρl ∈ F (ei ◦ ej) for all (ei, {ρk}), (ej, {ρl}) ∈̃F •A .

Hence (F •A , ∗̃ ) is a soft groupoid.

Theorem 3.2. If (F •A , ∗̃ ) is a soft groupoid over (E, U) then
⋃

ei∈A F (ei) is a

subgroupoid of U.

Proof. Since for each ei ∈ A, F (ei) ⊆ U, then
⋃

ei ∈A F (ei) ⊆ U. Let uk, ul ∈⋃
ei∈A F (ei). This implies that ∃ ei, ej ∈ A such that uk ∈ F (ei), ul ∈ F (ej). Then

by Theorem 3.1, uk∗ul ∈ F (ei◦ej). Since A is a subgroupoid of E, then ei◦ej ∈ A.

Hence uk ∗ ul ∈
⋃

ei ∈A F (ei). So,
⋃

ei∈A F (ei) is a subgroupoid of U. �

Remark 1. The converse of Theorem 3.2 may not be true, which is justified by the

following Example.

Example 3.2. Let E = {e1, e2, e3, e4} be the group as in Example 3.1 and (U, .)

the abelian group, where U = {1, ω, ω2}, the set of all cube roots of unity. Take

A = {e1, e2} and define a soft set F : A → P (U) by F (e1) = {1, ω}, F (e2) =

{ω2}. So, the elements of F •A are (e1, {1}), (e1, {ω}), (e2, {ω2}). Then the binary

composition ∗̃ on F •A is given by (ei, {ωk}) ∗̃ (ej, {ωl}) = (ei ◦ ej, {ωk . ωl }) for all

(ei, {ωk}), (ej, {ωl}) ∈̃F •A . Here (e1, {ω}) ∗̃ (e1, {ω}) = (e1, {ω2}) ˜6∈F •A . So, F •A is

not closed under the binary composition ∗̃. Hence (F •A , ∗̃) is not a soft groupoid but

A is a subgroupoid of E and
⋃

ei∈A F (ei) = {1, ω, ω2} is a subgroupoid of U.
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Definition 3.2. Let (F •A , ∗̃ ) be a soft groupoid over (E, U), where the binary

composition ∗̃ is defined in equation 3.1. Then ∗̃ is said to be

(i) commutative if (ei, {uj}) ∗̃ (ek, {ul}) = (ek, {ul}) ∗̃ (ei, {uj});

(ii) associative if

[(ei, {uj}) ∗̃ (ek, {ul})] ∗̃ (em, {un}) = (ei, {uj}) ∗̃ [(ek, {ul}) ∗̃ (em, {un})]

for all (ei, {uj}), (ek, {ul}), (em, {un}) ∈̃F •A .

Definition 3.3. A soft element (e, {u}) ∈̃F •A is said to be a soft identity

element in a soft groupoid (F •A , ∗̃ ) if for all (ei, {uj}) ∈̃F •A ,

(e, {u}) ∗̃ (ei, {uj}) = (ei, {uj}) = (ei, {uj}) ∗̃ (e, {u}).

Theorem 3.3. Let (F •A , ∗̃ ) be a soft groupoid over (E, U).

(i) If the composition ◦ on A and the composition ∗ on U are associative (com-

mutative) then the composition ∗̃ on F •A is associative (commutative).

(ii) If F •A contains the soft identity element (e, {u}) then e is the identity element

of A and u is the identity element of
⋃

ei∈A F (ei).

Proof. Since the binary composition ∗̃ on F •A is given by

(ei, {uk}) ∗̃ (ej, {ul}) = (ei ◦ ej, {uk ∗ ul})

for all (ei, {uk}), (ej, {ul}) ∈̃F •A .

(i) It is easy to verify that ∗̃ is associative and commutative on F •A .

(ii) Since (F •A , ∗̃ ) is a soft groupoid, then by Theorem 3.2, A is a subgroupoid of E

and
⋃

ei∈A F (ei) is a subgroupoid of U. Suppose (e, {u}) ∈̃F •A be the soft identity

element i.e., for all (ei, {uj}) ∈̃F •A , we have

(e, {u}) ∗̃ (ei, {uj}) = (ei, {uj}) = (ei, {uj}) ∗̃ (e, {u})

⇒ (e ◦ ei, {u ∗ uj}) = (ei, {uj}) = (ei ◦ e, {uj ∗ u})

⇒ e ◦ ei = ei = ei ◦ e and u ∗ uj = uj = uj ∗ u.
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Since (ei, {uj}) is arbitrary, ei ∈ A and uj ∈ F (ei) ⊆
⋃

ei∈A F (ei) are arbitrary. So,

e ∈ A and u ∈ F (e) are identity element of A and
⋃

ei∈A F (ei) respectively. �

Remark 2. The converse of Theorem 3.3 (ii) may not be true. If e is the identity

element of A and u is the identity element of
⋃

ei∈A F (ei), then (e, {u}) may not

be the soft identity element of F •A , because u may not belong to F (e).

Example 3.3. Let E = {e1, e2} and U = {0, 1, 2, 3, 4, 5}, the classes of residues

of integers modulo 6. The composition table of ◦ on E is given by

◦ e1 e2

e1 e1 e2

e2 e2 e2

Then (E, ◦) is a commutative monoid with e1 as the identity element and (U, ×6)

the commutative monoid with 1 as the identity element, where ×6 is the multipli-

cation modulo 6. Take A = E and define a soft set F : A → P (U) by F (e1) =

{2, 4}, F (e2) = {1, 2, 4}. So, the soft elements of F •A are (e1, {2}), (e1, {4}), (e2, {1}),

(e2, {2}), (e2, {4}). The binary composition ∗̃ on F •A is given by

(ei, {uj}) ∗̃ (ek, {ul}) = (ei ◦ ek, {uj ×6 ul})

for all (ei, {uj}), (ek, {ul}) ∈̃F •A . Here it is easy to verify that F •A is a commutative

soft groupoid with respect to ∗̃ without soft identity element. We also note that e1

is the identity element of A and 1 is the identity element of U but (e1, {1}) ˜6∈F •A .
The converse of Theorem 3.3 (ii) can also be true if we add an additional condition

to the hypothesis of this Theorem 3.3 (ii) and it is given by the following Theorem.

Theorem 3.4. Let (F •A , ∗̃ ) be a soft groupoid over (E, U). If e is the identity

element of A and u is the identity element of
⋃

ei∈A F (ei) such that u ∈ F (e), then

(e, {u}) is the soft identity element of F •A .
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Proof. Since e, u are identity elements of A,
⋃

ei∈A F (ei) respectively and u ∈ F (e),

then (e, {u}) ∈̃F •A . Hence it is easy to prove that (e, {u}) is the soft identity element

of F •A . �

Definition 3.4. Let (F •A , ∗̃ ) be a soft groupoid with soft identity element (e, {u}).

A soft element (ei, {uj}) ∈̃F •A is said to be invertible if there exists a soft element

(e
′
i, {u′j}) ∈̃F •A such that (ei, {uj}) ∗̃ (e

′
i, {u′j}) = (e, {u}) = (e

′
i, {u′j}) ∗̃ (ei, {uj}).

Then (e
′
i, {u′j}) is called the soft inverse of (ei, {uj}).

The soft inverse of a soft element (ei, {uj}) ∈̃F •A is denoted by (ei, {uj})−1.

Definition 3.5. (i) A soft groupoid (F •A , ∗̃ ) is said to be a soft semigroup if ∗̃ is

associative;

(ii) A soft semigroup (F •A , ∗̃ ) containing soft identity element is said to be a soft

monoid.

Theorem 3.5. (i) If a soft groupoid (F •A , ∗̃ ) contains a soft identity element, then

that element is unique.

(ii) In a soft monoid (F •A , ∗̃ ), if a soft element (ei, {uk}) be invertible then it has

a unique soft inverse.

Proof. Proofs are same as classical algebra. �

Theorem 3.6. Let (F •A , ∗̃ ) be a soft groupoid with soft identity element (e, {u}). If

a soft element (ei, {uj}) ∈̃F •A is invertible then ei is invertible in E and uj ∈ F (ei)

is invertible in U.

Proof. Suppose (ei, {uj}) ∈̃F •A is invertible. Then there exist a soft element (e
′
i, {u

′
j})

∈̃F •A such that (ei, {uj}) ∗̃ (e
′
i, {u

′
j}) = (e, {u}) = (e

′
i, {u′j}) ∗̃ (ei, {uj})

⇒ (ei ◦ e
′
i, {uj ∗ u

′
j}) = (e, {u}) = (e

′
i ◦ ei, {u

′
j ∗ uj})

⇒ ei ◦ e
′
i = e = e

′
i ◦ ei and uj ∗ u

′
j = u = u

′
j ∗ uj.
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Since (e, {u}) is the soft identity element of F •A , then by Theorem 3.3, e is the

identity element of A and u is the identity element of
⋃

ei∈A F (ei).

Hence ei ◦ e
′
i = e = e

′
i ◦ ei ⇒ ei is invertible in A ⊆ E and

uj ∗ u
′
j = u = u

′
j ∗ uj ⇒ uj is invertible in

⋃
ei∈A F (ei) ⊆ U. �

Note 3.1. In a soft groupoid (F •A , ∗̃ ) with soft identity element, if a soft element

(ei, {uj}) is invertible then (ei, {uj})−1 = (e−1i , {u−1j }).

Remark 3. Converse of the Theorem 3.6 is not necessarily true. In a soft groupoid

(F •A , ∗̃ ) with soft identity element, if ei is invertible in E and uj ∈ F (ei) is invert-

ible in U then (ei, {uj}) ∈̃F •A is not necessarily invertible in F •A .

Example 3.4. Let E = {e1, e2} and U be the set of all 2 × 2 real non-singular

matrices such that (E, ◦), (U, .) be two groups, where the composition ′. ′ is the

matrix multiplication and the composition ′ ◦ ′ is given by:

◦ e1 e2

e1 e1 e2

e2 e2 e1

Define a soft set F : E → P (U) by F (e1) = {I2, A, A2, A3, · · · } and

F (e2) = {A, A2, A3, · · · }, where A =

 2 0

0 2

 and I2 =

 1 0

0 1

.

So, the soft elements of F •E are (e1, {I2}), (e1, {A}), (e1, {A2}), · · · ,

(e2, {A}), (e2, {A2}), (e2, {A3}), · · · Obviously, (F •E , ∗̃) is a soft groupoid with soft

identity element (e1, {I2}). Also e2, A are invertible in E, U, respectively. Suppose

(e2, {A}) is invertible in F •E . Then by Note 3.1, soft inverse of (e2, {A}) must be

(e−12 , {A−1}). But e−12 = e2 and A−1 =

 1/2 0

0 1/2

. Hence A−1 6∈ F (e−12 ), i.e.,

(e−12 , {A−1}) ˜6∈F •E . Therefore (e2, {A}) is not invertible in F •E .
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Converse of the Theorem 3.6 can also be true if we add an additional condition

with the hypothesis of this theorem 3.6 and it is given by the following Theorem.

Theorem 3.7. Let (F •A , ∗̃ ) be a soft groupoid with soft identity element (e, {u}). If

ei ∈ A is invertible in A and uj ∈ F (ei) is invertible in U such that u−1j ∈ F (e−1i )

then (ei, {uj}) ∈̃F •A is invertible in F •A .

Proof. Since u−1j ∈ F (e−1i ), (e−1i , {u−1j }) ∈̃F •A and it is easy to prove that (e−1i , {u−1j })

is the soft inverse of (ei, {uj}) ∈̃F •A . �

4. Soft group

In this section, let (E, ◦), (U, ∗) be two groups, A, B ⊆ E and FA, GB ∈ Sf (U).

Here we define a soft group based on the concept of soft element and discuss some of

the properties of a soft group.

Definition 4.1. A soft groupoid (F •A , ∗̃ ) over (E,U) is said to be a soft group if

(i) ∗̃ is associative,

(ii) there exists a soft element (e, {u}) ∈̃F •A such that

(e, {u}) ∗̃ (ei, {uj}) = (ei, {uj}) ∗̃ (e, {u}) = (ei, {uj})

for all (ei, {uj}) ∈ F •A ,

(iii) for each soft element (ei, {uj}) ∈̃F •A , there exists a soft element (e
′
i, {u

′
j}) ∈̃F •A

such that (ei, {uj}) ∗̃ (e
′
i, {u

′
j}) = (e

′
i, {u

′
j}) ∗̃ (ei, {uj}) = (e, {u}).

Here (e, {u}) is said to be the soft identity element and the soft element (e
′
i, {u

′
j})

is said to be the soft inverse of (ei, {uj}).

Note 4.1. By Theorem 3.3, ∗̃ is associative on F •A . Hence condition (i) of Definition

4.1 can be omitted. Therefore the soft groupoid (F •A , ∗̃) is said to form a soft group

if and only if the conditions (ii) and (iii) hold.
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Example 4.1. Let E = U = Z, the set of all integers. Then (E, +) and (U, +)

are two groups, where + is the usual addition of integers. Define a soft set F : E →

P (U) by F (e) = {...,−4, −2, 0, 2, 4, ...}, when e is an even integer;

F (e) = {...,−5, −3, −1, 1, 3, 5, ...}, when e is an odd integer.

Then F •E forms a soft commutative group with respect to ∗̃, where ∗̃ is given by

(ei, {uk}) ∗̃ (ej, {ul}) = (ei + ej, {uk + ul}) for all (ei, {uk}), (ej, {ul}) ∈̃F •E. Here

(0, {0}) is the soft identity element.

Theorem 4.1. If (F •A , ∗̃ ) is a soft group over (E, U) then

(i)A is a subgroup of E, and

(ii)
⋃

ei∈A F (ei) is a subgroup of U.

Proof. By Theorem 3.1 and Theorem 3.2, A,
⋃

ei∈A F (ei) are subgroupoids of E, U

respectively. Since (F •A , ∗̃ ) is a soft group, then it contains the soft identity element,

say (e, {u}). Then by Theorem 3.3, e is the identity element of A and u is the

identity element of
⋃

ei∈A F (ei).

(i) Now let ei ∈ A. Since FA ∈ Sf (U), (ei, {uj}) ∈̃F •A for some uj ∈ U. Since each

(ei, {uj}) ∈̃F •A is invertible, then by Theorem 3.6, ei ∈ A is invertible in A. There-

fore A is a subgroup of E.

(ii) Suppose uk ∈
⋃

ei∈A F (ei). Then uk ∈ F (el) for some el ∈ A. Hence (el, {uk}) ∈̃

F •A . Since (el, {uk}) is invertible, then by Theorem 3.6, uk is invertible in
⋃

ei∈A F (ei).

Therefore
⋃

ei∈A F (ei) is a subgroup of U. �

Example 4.2. In Example 3.1, we see that (E, ◦), (U, ∗) are two groups and it is easy

to verify that (e1, {ρ0}) is the soft identity element of (F •A , ∗̃ ). Also it can be checked

that (e1, {ρ0})−1 = (e1, {ρ0}), (e1, {ρ1})−1 = (e1, {ρ2}), (e1, {ρ2})−1 = (e1, {ρ1}),

(e3, {ρ3})−1 = (e3, {ρ3}), (e3, {ρ4})−1 = (e3, {ρ4}), (e3, {ρ5})−1 = (e3, {ρ5}). There-

fore (F •A , ∗̃ ) is a soft group. Moreover A is a subgroup of E and
⋃

ei∈A F (ei) = U

is a subgroup of U.
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Remark 4. The converse of Theorem 4.1 may not be true, which is justified by the

following example.

Example 4.3. Continuing Example 3.2, we can see that A,
⋃

ei∈A F (ei) = {1, w, w2}

are subgroups of E, U respectively. But F •A is not a soft groupoid with respect to ∗̃.

Theorem 4.2. Let FA ∈ Sf (U). Then (F •A , ∗̃) is a soft group over (E, U) if and

only if the following conditions hold:

(i) A is a subgroup of E;

(ii) for each ei, ej ∈ A, uk ∈ F (ei), ul ∈ F (ej)⇒ uk ∗ ul ∈ F (ei ◦ ej);

(iii) for each ei ∈ A, uk ∈ F (ei)⇒ u−1k ∈ F (e−1i ).

Proof. At first suppose that (F •A , ∗̃ ) is a soft group over (E,U). Then by the The-

orem 4.1 and Theorem 3.1, conditions (i) and (ii) hold respectively. Since each soft

element (ei, {uk}) ∈̃F •A have a soft inverse, by Note 3.1, (ei, {uk})−1 = (e−1i , {u−1k })

∈̃F •A ⇒ u−1k ∈ F (e−1i ). Hence for each ei ∈ A, uk ∈ F (ei) ⇒ u−1k ∈ F (e−1i ), i.e.,

condition (iii) holds.

Conversely, let the given three conditions hold. We have to prove that (F •A , ∗̃ ) is a

soft group over (E,U). By Theorem 3.1, conditions (i), (ii) implies that (F •A , ∗̃ ) is a

soft groupoid over (E,U). Since ◦, ∗ are associative on E, U respectively, then by

Theorem 3.3, ∗̃ is associative on F •A . Suppose e, u are identity elements of E, U

respectively. By condition (iii), for each ei ∈ A, uk ∈ F (ei)⇒ u−1k ∈ F (e−1i ). Hence

by condition (ii), uk ∗u−1k ∈ F (ei ◦e−1i ) ⇒ u ∈ F (e). So, by Theorem 3.4, (e, {u}) is

the soft identity element of F •A . For each (ei, {uk}) ∈̃F •A , (ei, {uk}) ∗̃ (e−1i , {u−1k }) =

(ei ◦ e−1i , {uk ∗ u−1k }) = (e, {u}). Hence (e−1i , {u−1k }) is the soft inverse of the soft

element (ei, {uk}) ∈̃F •A . Therefore (F •A , ∗̃ ) is a soft group over (E,U). �

Theorem 4.3. Let FA ∈ Sf (U). Then (F •A , ∗̃) is a soft group over (E, U) if and

only if the following conditions hold:
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(i) A is a subgroup of E;

(ii) for each ei, ej ∈ A, uk ∈ F (ei), ul ∈ F (ej)⇒ uk ∗ u−1l ∈ F (ei ◦ e−1j ).

Note 4.2. If (E, ◦), (U, ∗) be two commutative groups then the soft group (F •A , ∗̃ )

is also commutative.

Definition 4.2. Let (F •A , ∗̃ ) be a soft group over (E, U). For all positive integer

n, we define the integral power of each soft element (ei, {uj}) ∈̃F •A by

(ei, {uj})n = (ei, {uj}) ∗̃ (ei, {uj}) ∗̃ · · · ∗̃ (ei, {uj}) (n factors) = (eni , {unj });

(ei, {uj})−n = (ei, {uj})−1 ∗̃ (ei, {uj})−1 ∗̃ · · · ∗̃ (ei, {uj})−1 (n factors) = (e−ni , {u−nj });

and (ei, {uj})0 = (e, {u}), where (e, {u}) is the soft identity element of (F •A , ∗̃ ).

Definition 4.3. Let (F •A , ∗̃ ) be a soft group over (E, U). The order of a soft

element (ei, {uj}) ∈̃F •A , denoted by O(ei, {uj}), is the least positive integer n such

that (ei, {uj})n = (e, {u}), where (e, {u}) is the soft identity element of F •A . If such

positive integer exist then (ei, {uj}) is said to be of finite order otherwise (ei, {uj})

is said to be of infinite order.

Theorem 4.4. Let (F •A , ∗̃ ) be a soft group over (E, U). Then for any soft element

(ei, {uj}) ∈̃F •A ,

O(ei, {uj}) = lcm[O(ei), O(uj) ].

Proof. Let O(ei, {uj}) = k, O(ei) = m, O(uj) = n and lcm(m,n) = l. Also let,

(e, {u}) be the soft identity element of F •A . Then by Theorem 3.3, e is the identity el-

ement of A and u is the identity element of U. Hence (ei, {uj})k = (e, {u}), (ei)
m =

e and (uj)
n = u. Now lcm(m,n) = l ⇒ m|l and n|l ⇒ ∃ positive integers m1, n1

such that l = mm1, l = nn1. Therefore (ei, {uj})l = (eli, {ulj}) = (emm1
i , {unn1

j }) =

((emi )m1 , {(unj )n1}) = (em1 , {un1}) = (e, {u}). Since k is the order of (ei, {uj}),

then k| l.

Again (ei, {uj})k = (e, {u})⇒ (ei)
k = e, (uj)

k = u.
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Hence (ei)
k = e and O(ei) = m⇒ m|k.

Similarly, (uj)
k = u and O(uj) = n⇒ n|k.

Therefore m|k, n|k ⇒ l|k. Hence k|l, l|k ⇒ k = l. �

Definition 4.4. A soft group (F •A , ∗̃ ) over (E, U) is said to form a soft cyclic group

if there exists a soft element (a, {v}) ∈̃F •A such that each soft element of F •A can

be expressed in the form (a, {v})m for some integer m. The soft element (a, {v})

is then called a generator of the soft cyclic group (F •A , ∗̃).

Theorem 4.5. Let (F •A , ∗̃ ) be a soft cyclic group over (E, U) with generator

(a, {v}). Then a is a generator of A and v is a generator of
⋃

ei∈A F (ei).

Proof. Proof is straightforward. �

Remark 5. The Converse of Theorem 4.5 may not be true. If a is a generator of A

and v is a generator of
⋃

ei∈A F (ei), then (a, {v}) may not be a generator of F •A ,

because v may not belong to F (a). This fact is justified by the following example.

Example 4.4. Let E = {e1, e2} and U = Z2, the classes of residues of integers

modulo 2, where (E, ◦) be a group defined in Example 3.4 and U be a group with

respect to +2, addition (modulo 2). Take A = E and define a soft set F : A→ P (U)

by F (e1) = {0, 1} and F (e2) = {0}. Then F •A = {(e1, 0), (e1, 1), (e2, 0)}. Here A

is a cyclic group, generated by e2 and
⋃

ei∈A F (ei) = U is a cyclic group, generated

by 1 but (F •A, ∗̃) is a soft group which is not cyclic because (e2, 1) ˜6∈F •A.
We now evaluate the intersection and union of F •A & G •B in the following example.

Example 4.5. Let U = {u1, u2, u3, u4, u5}, E = {e1, e2, e3, e4} and FA, GB ∈

Sf (U) be defined by FA = {(e1, {u1, u2}), (e2, {u2, u3})}, GB = {(e1, {u3, u4}),

(e2, {u3, u5}), (e3, {u1, u5})}. Then FA ∩̃GB = {(e1, ∅), (e2, {u3})}, FA ∪̃GB =

{(e1, {u1, u2, u3, u4}), (e2, {u2, u3, u5}), (e3, {u1, u5})}, and
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F •A = {(e1, {u1}), (e1, {u2}), (e2, {u2}), (e2, {u3})},

G •B = {(e1, {u3}), (e1, {u4}), (e2, {u3}), (e2, {u5}), (e3, {u1}), (e3, {u5})},

F •A ∩ G •B = {(e2, {u3})},

F •A ∪ G •B = {(e1, {u1}), (e1, {u2}), (e1, {u3}), (e1, {u4}), (e2, {u2}), (e2, {u3}),

(e2, {u5}), (e3, {u1}), (e3, {u5})},

(FA ∩̃GB)• = {(e2, {u3})},

(FA ∪̃GB)• = {(e1, {u1}), (e1, {u2}), (e1, {u3}), (e1, {u4}), (e2, {u2}), (e2, {u3}),

(e2, {u5}), (e3, {u1}), (e3, {u5})}.

Thus , (FA ∪̃GB)• = F •A ∪ G •B, (FA ∩̃GB)• = F •A ∩ G •B.

Moreover we see that FA ∪̃GB ∈ Sf (U) but FA ∩̃GB 6∈ Sf (U).

The conclusions of the above example will be generalized in the following proposi-

tion and its proof is being omitted as it is straightforward.

Proposition 4.1. For each FA, GB ∈ Sf (U),

(i) (FA ∪̃GB)• = F •A ∪ G •B (ii) (FA ∩̃GB)• = F •A ∩ G •B.

Note 4.3. For FA, GB ∈ Sf (U), FA ∪̃GB ∈ Sf (U), but FA ∩̃GB may not belong to

Sf (U).

Theorem 4.6. Let F •A and G •B be two soft groups over (E, U) with respect to binary

composition ∗̃. If FA ∩̃GB ∈ Sf (U) and A ∩ B 6= ∅, then (FA ∩̃GB)• = F •A ∩ G •B

is a soft group over (E, U).

Proof. Since F •A , G
•
B are two soft groups over (E, U), then A, B are subgroups of

E. Therefore A ∩B is a subgroup of E. Let FA ∩̃GB = HC , then C = A∩B and

H(e) = F (e) ∩G(e), ∀ e ∈ C. Since FA ∩̃GB ∈ Sf (U), H(e) 6= ∅ for all e ∈ A ∩ B.

Now let, ei, ej ∈ A∩B, and uk ∈ H(ei), ul ∈ H(ej). This implies that ei, ej ∈ A, B

and uk ∈ F (ei), G(ei) and ul ∈ F (ej), G(ej). Now F •A is a soft group over (E, U),

and ei, ej ∈ A, uk ∈ F (ei), ul ∈ F (ej) ⇒ ei ◦ ej ∈ A, uk ∗ ul ∈ F (ei ◦ ej) (by
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Theorem 4.2). Similarly, G •B is a soft group over (E, U), and ei, ej ∈ B, uk ∈

G(ei), ul ∈ G(ej) ⇒ ei ◦ ej ∈ B, uk ∗ ul ∈ G(ei ◦ ej). Hence ei ◦ ej ∈ A ∩ B

and uk ∗ ul ∈ F (ei ◦ ej) ∩ G(ei ◦ ej) = H(ei ◦ ej). Again by Theorem 4.2, ei ∈

A, uk ∈ F (ei) ⇒ u−1k ∈ F (e−1i ) and ei ∈ B, uk ∈ G(ei) ⇒ u−1k ∈ G(e−1i ). Therefore

u−1k ∈ F (e−1i ) ∩ G(e−1i ) = H(e−1i ). Hence by the Theorem 4.2, H •C is a soft group

over (E, U). Therefore (FA ∩̃GB)• = F •A ∩ G •B is a soft group over (E, U). �

Theorem 4.7. Let F •A and G •B be two soft groups over (E, U) with respect to

binary composition ∗̃. Then (FA ∪̃GB)• = F •A ∪ G •B forms a soft group over (E, U)

if FA ⊆̃GB, or GB ⊆̃FA.

Proof. Proof follows by Note 2.1. �

Example 4.6. In Example 3.1, let B = {e1, e2} and define a soft set G : B → P (U)

by G(e1) = {ρ0, ρ1, ρ2}, G(e2) = {ρ3, ρ4, ρ5}. Then the soft elements of G •B are

(e1, {ρ0}), (e1, {ρ1}), (e1, {ρ2}), (e2, {ρ3}), (e2, {ρ4}), (e2, {ρ5}). Then it is easy to

verify that (G •B, ∗̃ ) is a soft group over (E, U).

Now let FA ∩̃GB = HC . Then C = {e1} and H(e1) = F (e1)∩G(e1) = {ρ0, ρ1, ρ2}.

Therefore (FA ∩̃GB)• = H •C = {(e1, {ρ0}), (e1, {ρ1}), (e1, {ρ2})} is a soft group

with respect to ∗̃.

Let FA ∪̃GB = JC . Then C = A∪B = {e1, e2, e3} and J(e1) = {ρ0, ρ1, ρ2}, J(e2) =

{ρ3, ρ4, ρ5}, J(e3) = {ρ3, ρ4, ρ5}. Therefore J •C = {(e1, {ρ0}), (e1, {ρ1}), (e1, {ρ2}),

(e2, {ρ3}), (e2, {ρ4}), (e2, {ρ5}), (e3, {ρ3}), (e3, {ρ4}), (e3, {ρ5})}. Here (FA ∪̃GB)• =

J •C is not a soft group with respect to ∗̃ because (e2, {ρ4}) ∗̃ (e3, {ρ5}) = (e2 ◦

e3, {ρ4 ∗ ρ5}) = (e4, {ρ1}) 6∈ J •C . Also note that neither FA ⊆̃GB nor GB ⊆̃FA.

Again let D = {e1} and define a soft set K : D → P (U) by K(e1) = {ρ0}. There-

fore K•D = {(e1, {ρ0})}. Obviously, (K•D, ∗̃ ) is a soft group. Moreover KD ⊆̃FA.

Therefore (FA ∩̃KD)• = K •D and (FA ∪̃KD)• = F •A are soft groups.
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