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NEIGHBORHOOD OF A CLASS OF ANALYTIC

FUNCTIONS WITH NEGATIVE COEFFICIENTS
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DERIVATIVE OPERATOR

HAZHA ZIRAR

ABSTRACT. By making use of the familiar concept of neighborhoods of analytic

functions, we prove several inclusion relations associated with the (n, δ)-neighborhoods

of various subclasses of starlike and convex functions of complex order defined by the

generalized Ruscheweyh derivative involving a general fractional derivative operator.

Special cases of some of these inclusion relations are shown to yield known results.

INTRODUCTION

Let A(n) denote the class of functions f(z) of the form

———————————————————————————————-
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f(z) = z −
∞∑

k=n+1

akz
k(ak ≥ 0;n ∈ N = {1, 2, 3, ...}), (1)

which are analytic in the open unit disk

U = {z ∈ C : |z| < 1}.

Following [4, 8], we define the (n, δ)-neighborhood of a function f(z) ∈ A(n) by

Nn,δ(f) = {g ∈ A(n) : g(z) = z −
∞∑

k=n+1

bkz
kand

∞∑
k=n+1

k|ak − bk| ≤ δ}. (2)

In particular, for the identity function

e(z) = z,

we immediately have

Nn,δ(e) = {g ∈ A(n) : g(z) = z −
∞∑

k=n+1

bkz
kand

∞∑
k=n+1

k|bk| ≤ δ}. (3)

The main object of the present paper is to investigate the (n, δ)-neighborhoods of

the following subclasses of the class A(n) of normalized analytic functions in U with

negative coefficients.

A function f(z) ∈ A(n) is said to be starlike of complex order γ(γ ∈ C − {0}),

that is, f ∈ S∗n(γ), if it also satisfies the inequality

<{1 +
1

γ
(
zf ′(z)

f(z)
− 1)} > 0, (z ∈ U ; γ ∈ C− {0}).
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Furthermore, a function f(z) ∈ A(n) is said to be convex of complex order γ(γ ∈

C− {0}), that is, f ∈ Cn(γ), if it satisfies the inequality

<{1 +
1

γ

zf ′′(z)

f ′(z)
)} > 0, (z ∈ U ; γ ∈ C− {0}).

The classes S∗n(γ) and Cn(γ) stem essentially from the classes of starlike and

convex functions of complex order, which were considered earlier by Nasr and Aouf

[6] and Wiatrowski[13], respectively, (see also [3, 11]).

We shall need the fractional derivative operator ([9], [12]) in this paper.

Let a, b, c ∈ C with C 6= {0,−1,−2, ...} . The Gaussian hypergeometric function

2F1 is defined by

2F1(z) =2 F1(a, b, c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where (λ)n is the Pochhammer symbol defined, in terms of the Gamma function, by

(λ)n =
Γ(λ+ n)

Γ(λ)
=

{ 1 (n = 0)

λ(λ+ 1)...(λ+ n− 1) (n ∈ N).

Definition 1.1: Let 0 ≤ η < 1 and µ, v ∈ R. Then, in terms of familiar (Gauss’s)

hypergeometric function 2F1, the generalized fractional derivative operator Jη,µ,v0,z of

a function f(z) is defined by:

Jη,µ,v0,z f(z) =
{ 1

Γ(1−η)
d
dz
{zη−µ

∫ z
0

(z − ε)−ηf(ε).2F1(µ− η, 1− v; 1− η; 1− ε
z
)dε}

(0 ≤ η < 1)

dn

dzn
Jη−n,µ,v0,z f(z), (n ≤ η < n+ 1, n ∈ N)

(4)
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where the function f(z) is analytic in a simply-connected region of the z-plane con-

taining the origin, with the order

f(z) = O(|z|ε), (z → 0),

for ε > max{0, µ− v} − 1, and the multiplicity of (z − ε)−η is removed by requiring

log(z − ε) to be real, when z − ε > 0.

The fractional derivative of order η of a function f(z) is defined by

Dη
z{f(z)} =

1

Γ(1− η)

d

dz

∫ z

0

f(ε)

(z − ε)η
dε, 0 ≤ η < 1, (5)

where f(z) it is chosen as in (4), and the multiplicity of (z − ε)−η is removed by

requiring log(z − ε) to be real, when z − ε > 0.

By comparing (4) with (5), we find

Jη,η,v0,z f(z) = Dη
z{f(z)}, (0 ≤ η < 1).

In terms of gamma function, we have

Jη,µ,v0,z zk =
Γ(k + 1)Γ(1− µ+ v + k)

Γ(1− µ+ k)Γ(1− η + v + k)
zk−µ,

(0 ≤ η < 1, µ, v ∈ R and k > max{0, µ− v} − 1).

Now Jη,µ1 f is a generalized Ruscheweyh derivatve defined by Goyal and Goyal [5, p.

442] as

Jη,µ1 f(z) =
Γ(µ− η + v + 2)

Γ(v + 2)Γ(µ+ 1)
zJη,λ,v0,z (zµ−1f(z)), (6)

= z −
∞∑

k=n+1

akC
η,µ
1 (k)zk,

where

Cη,µ
1 (k) =

Γ(k + µ)Γ(v + 2 + µ− η)Γ(k + v + 1)

Γ(k)Γ(k + v + 1 + µ− η)Γ(v + 2)Γ(1 + µ)
. (7)
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For µ = η = α, v = 1, the generalized Ruscheweyh derivatives of f(z) of order α [7]:

Dαf(z) =
z

Γ(α + 1)
Dα(zα−1f(z)) = z −

∞∑
k=n+1

akCk(α)zk,

where

Ck(α) =
(α + 1)(α + 2)...(α + k − 1)

(k − 1)!
.

Finally, let Hη,µ,v
n (γ, λ, β) denote the subclass of A(n) consisting of functions f(z)

which satisfy the inequality

|1
γ

(
z(Jη,µ1 f(z))′ + λz2(Jη,µ1 f(z))′′

λz(Jη,µ1 f(z))′ + (1− λ)(Jη,µ1 f(z))
− 1)| < β (8)

(z ∈ U ; γ ∈ C− {0}; 0 ≤ λ ≤ 1; 0 < β ≤ 1).

Also let Mη,µ,v
n (γ, λ, β) denote the subclass of A(n) consisting of functions f(z)

which satisfy the inequality

|1
γ

(f ′(z) + λzf ′′(z)− 1)| < β (9)

(z ∈ U ; γ ∈ C− {0}; 0 ≤ λ ≤ 1; 0 < β ≤ 1).

Various further subclasses of the classes Hη,µ,v
n (γ, λ, β) and Mη,µ,v

n (γ, λ, β) with

γ = 1, µ = η = 0, v = 1 were studied in many earlier works (cf., e.g., [2], [10]); see

also the references cited in these earlier works). Clearly, we have

H0,0,1
n (γ, 0, 1) ⊂ S∗n(γ) and M0,0,1

n (γ, 0, 1) ⊂ Cn(γ)

(n ∈ N; γ ∈ C− {0}).
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2. A SET OF INCLUSION RELATIONS INVOLVING

Nn,δ(e)

In our investigation of the inclusion relations involving Nn,δ(e), we shall require The-

orem 2.1 and 2.2 below.

Theorem 2.1 : Let the function f ∈ A(n) be defined by (1), then f(z) is in the class

Hη,µ,v
n (γ, λ, β) if and only if

∞∑
k=n+1

(λ(k − 1) + 1)(k + β|γ| − 1)Cη,µ
1 (k)ak ≤ β|γ|. (10)

where Cη,µ
1 (k) is defined by (7).

Proof: We first suppose that f ∈ Hη,µ,v
n (γ, λ, β). Then, by condition (8), we get:

<{ z(Jη,µ1 f(z))′ + λz2(Jη,µ1 f(z))′′

λz(Jη,µ1 f(z))′ + (1− λ)(Jη,µ1 f(z))
− 1} > −β|γ|, (z ∈ U)

or equivalently,

<{
−
∑∞

k=n+1[λ(k − 1) + 1)(k − 1)akz
k

z −
∑∞

k=n+1(λ(k − 1) + 1)akzk
} > −β|γ|.(z ∈ U) (11)

Now choose values of z on the real axis and let z → 1− through real values. Then

inequality (11) immediately yields the desired condition (10).

Conversely, by applying hypothesis (10) and letting |z| = 1, we find that

| z(Jη,µ1 f(z))′ + λz2(Jη,µ1 f(z))′′

λz(Jη,µ1 f(z))′ + (1− λ)(Jη,µ1 f(z))
− 1| = |

∑∞
k=n+1[λ(k − 1) + 1)(k − 1)akz

k

z −
∑∞

k=n+1[λ(k − 1) + 1)akzk
|

≤
β|γ|(1−

∑∞
k=n+1[λ(k − 1) + 1)ak

1−
∑∞

k=n+1[λ(k − 1) + 1)ak

< β|γ|.
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Hence, by the maximum modulus theorem, we have

f ∈ Hη,µ,v
n (γ, λ, β).

Hence the proof is complete.

Similarly, we can prove the following.

Theorem 2.2 : Let the function f ∈ A(n) be defined by (1), then f(z) is in the class

Mη,µ,v
n (γ, λ, β) if and only if

∞∑
k=n+1

k(λ(k − 1) + 1)Cη,µ
1 (k)ak ≤ β|γ|. (12)

where Cη,µ
1 (k) is defined by (7).

Remark 2.1: A special case of Theorem 2.1 when µ = η = 0, v = 1, γ = 1, and

β = 1− α, (0 ≤ α < 1)

was given earlier by Altintas [1, p. 489, Theorem 1].

Our first inclusion relation involving Nn,δ(e) is given by the following.

Theorem 2.3 : Let

δ =
(n+ 1)β|γ|

(λn+ 1)(n+ β|γ|)Cη,µ
1 (n+ 1)

, (|γ < 1),

then

Hη,µ,v
n (γ, λ, β) ⊂ Nn,δ(e).

Proof: For f ∈ Hη,µ,v
n (γ, λ, β), Theorem 2.1 immediately yields

(λn+ 1)(n+ β|γ|)Cη,µ
1 (n+ 1)

∞∑
k=n+1

ak ≤ β|γ|,

so that
∞∑

k=n+1

ak ≤
β|γ|

(λn+ 1)(n+ β|γ|)Cη,µ
1 (n+ 1)

. (13)
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On the other hand, we also find from (10) and (13) that

(λn+ 1)
∞∑

k=n+1

kak ≤ β|γ|(1− β|γ|)(λn+ 1)Cη,µ
1 (n+ 1)

∞∑
k=n+1

ak

≤ β|γ|(1− β|γ|)(λn+ 1)
β|γ|

(λn+ 1)(n+ β|γ|)Cη,µ
1 (n+ 1)

≤ (n+ 1)β|γ|
n+ β|γ|Cη,µ

1 (n+ 1)
, (|γ < 1),

that is,
∞∑

k=n+1

kak ≤
(n+ 1)β|γ|

(λn+ 1)(n+ β|γ|)Cη,µ
1 (n+ 1)

= δ,

which, in view of definition (3), proves Theorem 2.1.

By similarly, applying Theorem 2.2 instead of Theorem 2.1, we can prove the

following.

Theorem 2.4: Let

δ =
β|γ|

(λn+ 1)Cη,µ
1 (n+ 1)

,

then

Mη,µ,v
n (γ, λ, β) ⊂ Nn,δ(e).

Remark 2.2: A special case of Theorem 2.3 when

γ = 1− α, (0 ≤ α < 1), µ = η = 0, v = 1, λ = 0, β = 1

was given by Altintas and Owa [9, p. 798, Theorem 2.1].

3. NEIGHBORHOODS FOR THE CLASSES Hη,µ,v(τ)
n (γ, λ, β)

AND Mη,µ,v(τ)
n (γ, λ, β)
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In this section, we determine the neighborhood for each of the classes Hη,µ,v(τ)

n (γ, λ, β)

and Mη,µ,v(τ)

n (γ, λ, β), which we define as follows. A function f ∈ A(n) is said to be

in the class Hη,µ,v(τ)

n (γ, λ, β) if there exists a function g ∈ Hη,µ,v
n (γ, λ, β) such that

|f(z)

g(z)
− 1| < 1− τ, (z ∈ U ; 0 ≤ τ < 1). (14)

Analogously, a function f ∈ A(n) is said to be in the class Mη,µ,v(τ)

n (γ, λ, β) if there

exists a function g ∈Mη,µ,v
n (γ, λ, β) such that inequality (14) holds true.

Theorem 3.1: If g ∈ Hη,µ,v
n (γ, λ, β) and

τ =
δ

n+ 1
.

(λn+ 1)(n+ β|γ|)Cη,µ
1 (n+ 1)

(λn+ 1)(n+ β|γ|)Cη,µ
1 (n+ 1)− β|γ|

, (15)

then

Nn,δ(g) ⊂ Hη,µ,v(τ)

n (γ, λ, β).

Proof: Suppose f ∈ Nn,δ(g). We then find from (2) that

∞∑
k=n+1

k|ak − bk| ≤ δ,

which readily implies the coefficient inequality

∞∑
k=n+1

|ak − bk| ≤
δ

n+ 1
, (n ∈ N).

Next, since g ∈ Hη,µ,v
n (γ, λ, β), we have:

∞∑
k=n+1

ak ≤
β|γ|

(λn+ 1)(n+ β|γ|)Cη,µ
1 (n+ 1)

,

so that

|f(z)

g(z)
− 1| <

∑∞
k=n+1 |ak − bk|

1−
∑∞

k=n+1 bk
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≤ δ

n+ 1
.

(λn+ 1)(n+ β|γ|)Cη,µ
1 (n+ 1)

(λn+ 1)(n+ β|γ|)Cη,µ
1 (n+ 1)− β|γ|

= τ,

provided that τ is given precisely by (15).

Thus, by definition, f ∈ Hη,µ,v(τ)

n (γ, λ, β) for τ given by (15).

Hence the proof is complete.

Theorem 3.2: If g ∈Mη,µ,v
n (γ, λ, β) and

τ =
δ

n+ 1
.

(λn+ 1)(n+ 1)Cη,µ
1 (n+ 1)

(λn+ 1)(n+ 1)Cη,µ
1 (n+ 1)− β|γ|

then

Nn,δ(g) ⊂Mη,µ,v(τ)

n (γ, λ, β).

The proof is similar to that of Theorem 3.1, hence it is omitted.
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