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CHARACTERIZATION OF THE GELFAND-SHILOV SPACES OF
BEURLING TYPE AND ITS DUAL VIA SHORT-TIME FOURIER

TRANSFORM

MOHD M YASEIN (1) AND HAMED M. OBIEDAT (2)

Abstract. We characterize Gelfand-Shilov spaces Σβ
α of test functions of tempered

ultradistribution, in terms of their short-time Fourier transform using its symmetric

characterization via the Fourier transform. Using Riesz representation theorem, we

prove structure theorem for functionals in dual space (Σβ
α)′ .

1. Introduction

In mathematical analysis, distributions (generalized functions) are objects which

generalize functions. They extend the concept of derivative to all integrable functions

and beyond, and used to formulate generalized solutions of partial differential equa-

tions. They play a crucial rule in physics and engineering where many non-continuous

problems naturally lead to differential equations whose solutions are distributions,

such as the Dirac delta distribution. The theory of generalized functions devised by

L. Schwartz was to provide a satisfactory framework for the Fourier transform(see

[10]).

Some other types of distributions called ultradistributions have also been studied

by Gelfand and Shilov (see [6]) which are well-known in the theory of tempered
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ultradistribution. S. Pilipovic obtained structural theorems for Gelfand-Shilov spaces

of Roumieu and Beurling type (see [8], [9]).

In (see [4]), K. Göchenig and G. Zimmermann obtained a characterization of

Gelfand-Shilov spaces of Roumieu type via short-time Fourier transform and the

Gelfand-Shilov spaces are connected to Modulation spaces.

In this paper, we characterize Gelfand-Shilov spaces of Beurling type of test func-

tions of tempered ultradistribution in terms of their short-time Fourier transform.

As a result of this characterization and using Riesz representation theorem, we prove

structure theorem for functionals in dual space (Σβ
α)′.

The symbols C∞, C∞0 , Lp, etc., denote the usual spaces of functions defined on Rn,

with complex values. We denote |·| the Euclidean norm on Rn, while ‖·‖p indicates

the p-norm in the space Lp, where 1 ≤ p ≤ ∞. In general, we work on the Euclidean

space Rn unless we indicate other than that as appropriate. The Fourier transform of

a function f will be denoted F (f) or f̂ and it will be defined as
∫
Rn e

−2πixξf (x) dx.

With C0 we denote the Banach space of continuous functions vanishing at infinity

with supremum norm.

2. Preliminary definitions and results

J. Chung et al proved symmetric characterizations for Gelfand-Shilov spaces via

the Fourier transform in terms of the growth of the function and its Fourier transform

which imposes no conditions on the derivative.

Theorem 2.1. ([1]) The space Σβ
α can be described as a set as well as topologically

by

Σβ
α =

 ϕ : Rn → C : ϕ is continuous and for all

k = 0, 1, 2, ..., pk,0 (ϕ) <∞, πk,0 (ϕ) <∞

 ,
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where pk,0 (ϕ) =
∥∥∥ek|x|1/αϕ∥∥∥

∞
, πk,0 (ϕ) =

∥∥∥ek|ξ|1/β ϕ̂∥∥∥
∞
.

The space Σβ
α, equipped with the family of semi-norms

N = {pk,0, πk,0 : k ∈ N0},

is a Fréchet space.

Remark 1. For α > 1, the function |•|1/α : [0,∞)→ [0,∞) has the following proper-

ties:

(1) |•|1/α is increasing, continuous and concave,

(2) |t|1/α ≥ a+ b ln (1 + t) for some a ∈ R and some b > 0.

Remark 2. Let us observe for future use that if we take N > n
b

is an integer, then

CN =

∫
Rn
e−N |x|

1/α

dx <∞, for all α > 1,

where b is the constant in property 2 of Remark 1. Moreover, property 1 in Remark

1 implies that |•|1/α is subaddative.

Example 2.1. From Theorem 2.1, it is clear that the Gaussian f(x) = e−π|x|
2

belongs

to Σβ
α for all α > 1 and β > 1.

It is well known that Fourier series are a good tool to represent periodic func-

tions. However, they fail to represent non-periodic functions accurately. To solve

this problem, the short-time Fourier transform was introduced by D. Gabor [2]. The

short-time Fourier transform works by first cutting off the function by multiplying it

by another function called window then apply the Fourier transform. This technique

maps a function of time x into a function of time x and frequency ξ .



34 MOHD M YASEIN AND HAMED M. OBIEDAT

Definition 2.1. ([3], [4])The short-time Fourier transform (STFT) of a function or

distribution f on Rn with respect to a non-zero window function g is formally defined

as

νgf(x, ξ) =

∫
Rn
f(t)g(t− x)e−2πit.ξdt = (̂fTxg)(ξ) =< f,MξTxg > .

where Txg(t) = g(t − x) is the translation operator and Mξg(t) = e2πit.ξg(t) is the

modulation operator.

The composition of Tx and Mξ is the time-frequency shift

(MξTxg)(t) = e2πix.ξg(t− x),

and its Fourier transform is given by

M̂ξTxg = e2πix.ξM−xTξĝ.

The main properties of the short-time Fourier transform is given in the following

lemma.

Lemma 2.1. ([3], [4])For f, g ∈ Σβ
α, the STFT has the following properties.

(1) (Inversion formula)

(2.1)

∫ ∫
Rn×Rn

νgf(x, ξ)(MξTxg)(t)dxdξ = ‖g‖22 f .

(2) (STFT of the Fourier transforms)

νĝf̂(x, ξ) = e−2πix.ξνgf(−ξ, x).

(3) (Fourier transform of the STFT)

(2.2) ν̂gf(x, ξ) = e2πix.ξf(−ξ)ĝ(x).
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Remark 3. The space νg(Σ
β
α) = {νgf : f ∈ Σβ

α} has no functions with compact

support.

Now we will introduce two auxiliary results that we will use in the proof of the

topological characterization of the space Σβ
α via the short-time Fourier transform.

Lemma 2.2. ([4])Let f and g be two nonnegative measurable functions. If N > n,

there exists C > 0 such that

∥∥∥ek|•|1/α(f ∗ g)
∥∥∥
∞
≤ C

∥∥∥e2(N+k)|•|1/αf
∥∥∥
∞

∥∥∥e2(N+k)|•|1/αg
∥∥∥
∞
,

for all k = 0, 1, 2, .... The constant C does not depend on k.

In the following lemma, we include a proof using the topological characterization

of Σβ
α given in Theorem 2.1 which imposes no conditions on the derivative. Our proof

is an adaptation of the proof of (Proposition 2.6 stated in [4]).

Lemma 2.3. Let g ∈ Σβ
α be fixed and assume that F : R2n → C is a measurable

function that has a subexponential decay, i.e. such that for each k = 0, 1, 2, ..., there

is a constant C = Ck > 0 satisfying

|F (x, ξ)| ≤ Ce−k(|x|
1/α+|ξ|1/β).

Then the integral

f(t) =

∫ ∫
R2n

F (x, ξ)(MξTxg)(t)dxdξ

defines a function in Σβ
α.
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Proof. To prove that f ∈ Σβ
α, we start with∣∣∣(ek|t|1/αf)(t)

∣∣∣ ≤ ∫ ∫
R2n

(F (x, ξ)ek|t|
1/α

(MξTxg)(t))dxdξ

≤
∫ ∫

R2n

|F (x, ξ)|
∣∣∣MξTx(e

k|t+x|1/αg))(t)
∣∣∣ dxdξ

≤
∫ ∫

R2n

|F (x, ξ)|
∣∣∣Tx(ek|t+x|1/αg))(t)

∣∣∣ dxdξ
≤

∫ ∫
R2n

ek|x|
1/α

eN |ξ|
1/β

e−N |ξ|
1/β

|F (x, ξ)|
∥∥∥ek|•|1/αg∥∥∥

∞
dxdξ

≤
∫ ∫

R2n

e(k+N)(|x|1/α+|ξ|1/β)e−N(|x|1/α+|ξ|1/β) |F (x, ξ)|
∥∥∥ek|•|1/αg∥∥∥

∞
dxdξ

≤
∥∥∥ek|•|1/αg∥∥∥

∞

∥∥∥e(N+k)(|x|1/α+|ξ|1/β)F
∥∥∥
∞

∫ ∫
R2n

e−N(|x|1/α+|ξ|1/β)dxdξ

≤ C
∥∥∥e(N+k)(|x|1/α+|ξ|1/β)F

∥∥∥
∞
.

So,

(2.3)
∥∥∥ek|•|1/αf∥∥∥

∞
≤ C

∥∥∥e(N+k)(|x|1/α+|ξ|1/β)F
∥∥∥
∞
.

This implies that
∥∥∥ek|•|1/αf∥∥∥

∞
<∞.

To show that
∥∥∥ek|•|1/β f̂∥∥∥

∞
<∞, we write

f̂(τ) =

∫ ∫
R2n

(F (x, ξ)(M−xTξĝ)(τ))e2πix.ξdxdξ,

using

̂(MξTxg)(τ) = (M−xTξĝ)(τ)e2πix.ξ.

Using an argument similar to the one leading to the proof of (2.3), we have∣∣∣ek|τ |1/β f̂(τ)
∣∣∣ ≤ C

∥∥∥e(N+k)(|x|1/α+|ξ|1/β)F
∥∥∥
∞
.
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This completes the proof of Lemma 2.3.

Remark 4. Given α > 1.Then for the Gaussian g(x) = e−π|x|
2

and f with e−k|x|
1/α

f ∈

L1 for some k ∈ N0, then νgf is well-defined and continuous. In fact,

|νgf(x, ξ)| =

∣∣∣∣∫
Rn
f(t)g(t− x)e−2πit.ξdt

∣∣∣∣
≤

∫
Rn

∣∣∣f(t)g(t− x)e−2πit.ξ
∣∣∣ dt

=

∫
Rn
e−k|x|

1/α

|f(t)| ek|t|
1/α
∣∣∣g(t− x)

∣∣∣ dt
≤

∫
Rn
e−k|x|

1/α

|f(t)| ek|t−x|
1/α
∣∣∣g(t− x)

∣∣∣ ek|x|1/αdt
=

∣∣∣∣∣∣e−k|x|1/αf ∣∣∣∣∣∣
1

∣∣∣∣∣∣ek|x|1/αg∣∣∣∣∣∣
∞
ek|x|

1/α

.

This shows that νgf is well-defined. Moreover, if we fix (x0, ξ0) ∈ R2n and let

(xj, ξj) be any sequence in R2n converging to (x0, ξ0) as j → ∞, the function

f(t)g(t− xj)e−2πit.ξj converges to f(t)g(t− x0)e−2πit.ξ0 pointwise as j →∞ and∣∣∣f(t)g(t− xj)e−2πit.ξj
∣∣∣ ≤ ∣∣∣e−k|t|1/αf(t)ek|t|

1/α

g(t− xj)e−2πit.ξj
∣∣∣

≤
∣∣∣e−k|t|1/αf(t)ek|t−xj |

1/α)g(t− xj)ek|xj |
1/α
∣∣∣

≤ C
∣∣∣e−k|t|1/αf(t)

∣∣∣ ∣∣∣∣∣∣ek|•|1/αg∣∣∣∣∣∣
∞

≤ C
∣∣∣e−k|t|1/αf(t)

∣∣∣ .
Since the function

∣∣∣e−k|t|1/αf(t)
∣∣∣ ∈ L1, we can apply Lebesgue Dominated Conver-

gence Theorem to obtain

νgf(xj, ξj)→ νgf(x0, ξ0)

as j →∞. This shows the continuity of νgf.

�
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3. The short-time Fourier transform over Σβ
α

We use the topological characterization as stated in Theorem 2.1. Our proof im-

poses no conditions on the derivative.

Theorem 3.1. Let α > 1, β > 1 and g(x) = e−π|x|
2

be the Gaussian. Then the

Gelfand-Shilov space Σβ
α can be described as a set as well as topologically by

Σβ
α = {f : Rn → C: e−m|x|

1/α

f ∈ L1 for some m ∈ N0 and πk(f) <∞, ∀k ∈ N0, }

where πk(f) =
∥∥∥ek(|x|1/α+|ξ|1/β)νgf∥∥∥

∞
.

Proof. Let us indicate Bβ
α the space defined in (3.1). Observe that the condition

e−k|x|
1/α

f ∈ L1 for some k ∈ N0 implies that νgf is continuous by Remark 4, so the

formulation of the condition
∥∥∥ek(|x|1/α+|ξ|1/β)νgf∥∥∥

∞
makes sense. We define in Bβ

α a

structure of Fréchet space by means of the countable family of semi-norms

N = {πk : k = 0, 1, 2, ...}.

We will show that Bβ
α = Σβ

α. To do so, we first prove that Bβ
α ⊆ Σβ

α continuously.

Fix f ∈ Bβ
α, we need to show that

∥∥∥ek|ξ|1/β f̂∥∥∥
∞

and
∥∥∥ek|x|1/αf∥∥∥

∞
are finite. Since

f ∈ Bβ
α, then πk (f) <∞ for all k ∈ N0 which implies that νgf has a subexponential

decay. Then by Lemma 2.3 and the inversion formula given in Lemma 2.1, we can

write

f(t) = ‖g‖−22

∫ ∫
R2n

(νgf(x, ξ)(MξTxg)(t))dxdξ.

Using Lemma 2.3, we have that
∥∥∥ek|ξ|1/β f̂∥∥∥

∞
and

∥∥∥ek|x|1/αf∥∥∥
∞

are finite for all k ∈ N0.

Conversely, let f ∈ Σβ
α, then we know that f is continuous and for all k ∈ N0

pk,0 (f) <∞, πk,0 (f) <∞.

It is clear that e−k|x|
1/α

f ∈ L1 for some k ∈ N0 since f ∈ Σβ
α.To show that πk(f) <∞
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for all k ∈ N0, we write

e2k|x|
1/α)|νgf(x, ξ)| = e2k|x|

1/α

∣∣∣∣∫
Rn
f(t)g(x− t)e−2πiξ.tdt

∣∣∣∣
≤ ‖ e2k|x|

1/α

(|f | ∗ |g|) ‖∞ .

Using Lemma 2.2 we get the following estimate

e2k|x|
1/α

|νgf(x, ξ)| ≤
∥∥∥e2k|x|1/α(|f | ∗ |g|)

∥∥∥
∞

≤ C
∥∥∥e2(N+2k)|x|1/αf

∥∥∥
∞

∥∥∥e2(N+2k)|x|1/αg
∥∥∥
∞

≤ C
∥∥∥e2(N+2k)|x|1/αf

∥∥∥
∞
.

Then

(3.1) e2k|x|
1/α

|νgf(x, ξ)| ≤ C
∥∥∥e2(N+2k)|x|1/αf

∥∥∥
∞
.

Moreover, since we can write νgf(x, ξ) = e−2πiξ.xνĝf̂(ξ,−x), we have the following

estimate.

e2k|ξ|
1/β

|νgf(x, ξ)| ≤ e2k|ξ|
1/β
∣∣∣νĝf̂(ξ,−x)

∣∣∣
≤

∥∥∥e2k|ξ|1/β(
∣∣∣f̂ ∣∣∣ ∗ |ĝ|)∥∥∥

∞

Once again, using Lemma 2.2 we obtain

e2k|ξ|
1/β

|νgf(x, ξ)| ≤
∥∥∥e2k|ξ|1/β(

∣∣∣f̂ ∣∣∣ ∗ |ĝ|)∥∥∥
∞

≤ C
∥∥∥e2(N+2k)|ξ|1/β f̂

∥∥∥
∞

∥∥∥e2(N+2k)|ξ|1/β ĝ
∥∥∥
∞

≤ C
∥∥∥e2(N+2k)|ξ|1/β f̂

∥∥∥
∞
.
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Then

(3.2) e2k|ξ|
1/β

|νgf(x, ξ)| ≤ C
∥∥∥e2(N+2k)|ξ|1/β f̂

∥∥∥
∞
.

Combining (3.1) and (3.2), we have that

e2k(|x|
1/α+|ξ|1/β) |νgf(x, ξ)|2 ≤ C(

∥∥∥e2(N+2k)(|x|1/αf
∥∥∥
∞

∥∥∥e2(N+2k)|ξ|1/β f̂
∥∥∥
∞

).

This implies that

(3.3) πk(f) ≤ C(
∥∥∥e2(N+2k)(|x|1/αf

∥∥∥
∞

+
∥∥∥e2(N+2k)|ξ|1/β f̂

∥∥∥
∞

).

So, f ∈ Bβ
α. Hence Bβ

α ⊆ Σβ
α and the inclusion is continuous. This completes the

proof of Theorem 3.1. �

Remark 5. Let g(x) = e−π|x|
2

be the Gaussian. Then for f ∈ Σβ
α(Rn), we have

νgf ∈ Σβ
α(R2n).

4. Characterization of the dual space (Σβ
α)′

Theorem 4.1. ([7])Given a functional L in the topological dual of the space C0, there

exists a unique regular complex Borel measure µ so that

L (ϕ) =

∫
Rn
ϕdµ.

Moreover, the norm of the functional L is equal to the total variation |µ| of the

measure µ. Conversely, any such measure µ defines a continuous linear functional

on C0.



CHARACTERIZATION OF THE GELFAND-SHILOV SPACES OF BEURLING... 41

Theorem 4.2. Let g(x) = e−π|x|
2

be the Gaussian. Then if L : Σβ
α → C, the following

statements are equivalent:

(i) L ∈ (Σβ
α)′

(ii) There exist a regular complex Borel measure µ of finite total variation and k ∈ N0

so that

L = ek(|x|
1/α+|ξ|1/β)νgdµ,

in the sense of (Σβ
α)′.

Proof. (i)⇒ (ii). Given L ∈ (Σβ
α)′, there exist k, C so that

L (ϕ) ≤ C
∥∥∥ek(|x|1/α+|ξ|1/β)νgϕ∥∥∥

∞

for all ϕ ∈ Σβ
α. Moreover, the map

Σβ
α(Rn)→ C0(R2n)

ϕ→ ek(|x|
1/α+|ξ|1/β)νgϕ

is well-defined, linear, continuous and injective. Let R be the range of this map. We

define on R the map

l1

(
ek(|x|

1/α+|ξ|1/β)νgϕ
)

= L (ϕ) ,

for a unique ϕ ∈ Σβ
α. The map l1 : R →C is linear and continuous. By the Hahn-

Banach theorem, there exists a functional L1 in the topological dual C ′0(R2n) of

C0(R2n) such that ‖L1‖ = ‖l1‖ and the restriction of L1 to R is l1. Using Theo-

rem 4.1, there exist a regular complex Borel measure µ of finite total variation so

that

L1 (f) =

∫
R2n

fdµ

for all f ∈ C0(R2n). If f ∈ R, we conclude

L (ϕ) =

∫
R2n

ek(|x|
1/α+|ξ|1/β)νgϕdµ
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for all ϕ ∈ Σβ
α. In the sense of (Σβ

α)′,

L =

∫
R2n

ek(|x|
1/α+|ξ|1/β)νgdµ.

(ii)⇒ (i). If µ is a regular complex Borel measure satisfying (ii) and ϕ ∈ Σβ
α, then

L (ϕ) =

∫
R2n

ek(|x|
1/α+|ξ|1/β)νgϕdµ.

This implies that

|L (ϕ)| ≤
∣∣∣∣∫

R2n

ek(|x|
1/α+|ξ|1/β)νgϕdµ

∣∣∣∣
≤ |µ| (R2n)

∥∥∥ek(|x|1/α+|ξ|1/β)νgϕ∥∥∥
∞

≤ C(
∥∥∥ek(|x|1/α+|ξ|1/β)νgϕ∥∥∥

∞
).

It may be noted that µ, employed to obtain the above inequality, is of finite total

variation. This completes the proof of Theorem 4.2. �
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