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PARITY COMBINATION CORDIAL LABELING OF GRAPHS

R.PONRAJ(1), S.SATHISH NARAYANAN(2) AND A.M.S.RAMASAMY(3)

Abstract. In this paper we define a new graph labeling called parity combination

cordial labeling. Let G be a (p, q) graph. Let f be an injective map from V (G) to

{1, 2, . . . , p}. For each edge xy, assign the label
(

x

y

)

or
(

y

x

)

according as x > y or

y > x. f is called a parity combination cordial labeling (PCC-labeling) if f is a

one to one map and |ef (0) − ef (1)| ≤ 1 where ef (0) and ef (1) denote the number

of edges labeled with an even number and odd number, respectively. A graph with

a parity combination cordial labeling is called a parity combination cordial graph

(PCC-graph). Also we investigate the PCC-labeling behavior of path, cycle, fan,

comb, complete graph, wheel, crown, star. A conjecture is stated at the end.

1. Introduction

Graphs considered here are finite, undirected and simple. The symbols V (G)

and E(G) will denote the vertex set and edge set of a graph G. The number

of vertices in G is denoted by p and that of edges we denote q. Most graph la-

beling methods trace their origin to one introduced by Rosa [7] in year 1967. A

graph labeling is an assignment of integers to the vertices or edges, or both, sub-

ject to certain conditions. Labeled graphs serve as a useful mathematical model

for a broad range of applications such as coding theory, X-ray crystallography anal-

ysis, communication network addressing systems, astronomy, radar, circuit design
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and database management [3]. The join of two graphs G1 and G2 is denoted by

G1 + G2 and whose vertex set is V (G1 + G2) = V (G1) ∪ V (G2) and edge set

E (G1 + G2) = E (G1) ∪ E (G2) ∪ {uv : u ∈ V (G1) , v ∈ V (G2)}. Let G1, G2 re-

spectively be (p1, q1), (p2, q2) graphs. The corona of G1 with G2, G1�G2 is the graph

obtained by taking one copy of G1 and p1 copies of G2 and joining the ith vertex of

G1 with an edge to every vertex in the ith copy of G2. In 1980, Cahit [1] introduced

the cordial labeling of graphs. Let f be a function from the vertices of G to {0, 1}

and for each edge xy assign the label |f(x) − f(y)|. Call f a cordial labeling of G

if the number of vertices labeled 0 and the number of vertices labeled 1 differ by at

most 1, and the number of edges labeled 0 and the number of edges labeled 1 differ

at most by 1. Several authors studied the cordial graphs and some of them are M.A.

Seoud and A.E.I.Abdel Maqsoud [8], S.C.Shee and Y.S.Ho [9]. In [5], Hegde et al.

introduced the concept of combination labeling of graphs. Let G be a (p, q) graph.

Let f : V (G) → {1, 2, . . . , p} be a bijection such that the induced map g : E(G) → N

defined as
(

f(u)
f(v)

)

if f(u) > f(v) or
(

f(v)
f(u)

)

if f(v) > f(u) is injective. Such a labeling

f is called combination labeling of G. A graph G which admits a combination label-

ing is called a combination graph. Motivated by these two labelings, we introduce

a new type of labeling called parity combination cordial labeling. In this paper we

investigate the PCC-labeling behavior of path, cycle, fan, comb. For graph theoretic

terminology we refer Harary [4] and for number theoretic we refer [2].

2. PCC-labeling

Definition 2.1. Let G be a (p, q) graph. Let f be a one to one map from V (G)

to {1, 2, . . . , p}. For each edge xy, assign the label
(

x

y

)

if x > y or the label
(

y

x

)

if y > x. f is called a parity combination cordial labeling (PCC-labeling) if f is

one to one map and |ef(0) − ef(1)| ≤ 1 where ef(0) and ef(1) denote the number

of edges labeled with an even number and odd number respectively. A graph with
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a parity combination cordial labeling is called a parity combination cordial graph

(PCC-graph).

Theorem 2.1. Any path Pn is a PCC-graph.

Proof. Let Pn : u1u2 . . . un be a path. Assign the labels 1, 2, . . . , n consecutively to

the vertices u1, u2, . . . , un. Since
(

n

n−1

)

=
(

n

1

)

= n, it is easy to verify that the edges

u2i−1u2i received even labels whereas the edges u2iu2i+1 received the odd labels. Hence

we have the following table 1.

Nature of n ef (0) ef(1)

n ≡ 0 (mod 2) n
2

n
2
− 1

n ≡ 1 (mod 2) n−1
2

n−1
2

Table 1

Table 1 establishes that Pn is a PCC-graph. �

Theorem 2.2. Any cycle Cn is a PCC-graph.

Proof. Let Cn : u1u2 . . . unu1 be a cycle.

Case 1. n is odd.

Assign the labels to the vertices of Cn as in theorem 2.1. Here ef (0) = n−1
2

and

ef(1) = n+1
2

.

Case 2. n is even.

Assign the labels to the vertices of Cn as in theorem 2.1 then interchange the labels

of u2 and u3. As in theorem 2.1, ef (0) = ef(1) = n
2

and hence Cn is PCC. �

Theorem 2.3. All stars K1,n are PCC-graphs.

Proof. Assign the label 1 to the central vertex of the star and assign the remaining

labels from 2 to n + 1 to the leaves. Since
(

n

1

)

= n, the edges with even labeled
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pendent vertex received the even label. Also the other edges received the odd label.

This forces the following table 2.

Nature of n ef (0) ef(1)

n ≡ 0 (mod 2) n
2

n
2

n ≡ 1 (mod 2) n+1
2

n−1
2

Table 2

From table 2, we conclude that f is a parity combination cordial labeling of the

star K1,n. �

Now we investigate the PCC-labeling behavior of triangular snakes. a triangular

snake ∆Tn is obtained from a path u1u2 . . . un by joining ui and ui+1 to a new vertex

vi for i = 1, 2, 3 . . . , n−1. Let Pn be the path u1u2 . . . un. Let V (∆Tn) = V (Pn)∪{vi :

1 ≤ i ≤ n − 1} and E(∆Tn) = E(Pn) ∪ {uivi, viui+1 : 1 ≤ i ≤ n − 1}.

Theorem 2.4. The triangular snake ∆Tn is a PCC-graph.

Proof. Define an injective map f : V (∆Tn) → {1, 2, . . . , 2n − 1} by

f(ui) = 2i − 1, 1 ≤ i ≤ n

f(vi) = 2i, 1 ≤ i ≤ n − 1.

Since
(

n

2

)

is even if n ≡ 0, 1 (mod 4) and odd if n ≡ 2, 3 (mod 4), the number of 0’s

and 1’s in the edges of the path are balanced. Consider the other edges. Note that
(

f(vi)
f(ui)

)

is even and
(

f(ui)
f(vi)

)

is odd. So the edges uivi are labeled with even numbers

and the edges viui+1 are labeled with odd numbers. So, here the number of 0’s and

1’s are balanced. Hence f is a PCC-labeling of ∆Tn. �

Next we consider the alternate triangular snake. An alternate triangular snake

A (Tn) is obtained from a path u1u2 . . . un by joining u2i and u2i+1 to new vertex vi,

1 ≤ i ≤ n−2
2

if the first triangle starts from u2 and the last triangle ends with un−1, by
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joining u2i−1 and u2i to new vertex vi, 1 ≤ i ≤ n
2

if the first triangle starts from u1 and

the last triangle ends with un, by joining u2i and u2i+1 to new vertex vi, 1 ≤ i ≤ n−1
2

if the first triangle starts from u2 and the last triangle ends with un. That is every

alternate edge of a path is replaced by C3.

Theorem 2.5. Alternate triangular snakes are PCC-graphs.

Proof. According to the parity of n, we consider the following two cases:

Case 1. n is even.

Consider the case that the first triangle starts from u2 and the last triangle ends

with un−1.

In this case, |V (A (Tn))| = 3n−2
2

and |E (A (Tn))| = 2n − 3. Define an injective

map f : V (A(Tn)) → {1, 2, . . . , 3n−2
2

} by

f(u2i−1) = 3i − 2, 1 ≤ i ≤ n
2

f(u2i) = 3i − 1, 1 ≤ i ≤ n
2

f(vi) = 3i, 1 ≤ i ≤ n−2
2

.

Here

ef (0) =







n − 2 if n ≡ 0 (mod 8)

n − 1 otherwise

and

ef (1) =







n − 1 if n ≡ 0 (mod 8)

n − 2 otherwise

If the first triangle starts from u1 and the last triangle ends with un then |V (A (Tn))| =

3n
2

and |E (A (Tn))| = 2n−1. Define a one to one map f : V (A (Tn)) →
{

1, 2, . . . , 3n
2

}

by

f(u2i−1) = 3i − 2, 1 ≤ i ≤ n
2

f(u2i) = 3i, 1 ≤ i ≤ n
2

f(vi) = 3i − 1, 1 ≤ i ≤ n
2
.
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In this case

ef (0) =







n if n ≡ 0 (mod 8)

n − 1 otherwise

and

ef (1) =







n − 1 if n ≡ 0 (mod 8)

n otherwise

Case 2. n is odd.

In this case, the first triangle start from u2 and the last triangle ends with un. Note

that in this case, |V (A (Tn))| = 3n−1
2

and |E (A (Tn))| = 2n − 2. Define an injective

map f : V (A (Tn)) →
{

1, 2, . . . , 3n−1
2

}

by

f(u2i−1) = 3i − 2, 1 ≤ i ≤ n+1
2

f(u2i) = 3i − 1, 1 ≤ i ≤ n−1
2

f(vi) = 3i, 1 ≤ i ≤ n−1
2

.

Then if n ≡ 3 (mod 8) relabel the vertices u2, v1 by 3, 2 respectively. Here

ef(0) = ef (1) = n − 1. Hence all alternate triangular snakes are PCC. �

A rooted tree consisting of k branches, where the ith branch is a path of length i,

is called an olive tree.

Theorem 2.6. All olive trees are PCC-graphs.

Proof. Assign the label 1 to the root vertex. Next consider the path of highest order.

Let n be the order of this path. Assign the label 2 to the vertex on this path which

is neighbor of the root vertex. Then assign 3 to the vertex which is adjacent to the

vertex with label 2. (other than root vertex). Thereafter label to the next vertex by

4 and so on. In this process the last vertex of the path receives the label n + 1. Next

consider the path of order n − 1. Assign the label n + 2 to the vertex of this path

which is adjacent to the root vertex. Next assign n + 3, n + 4, . . . to the successive

vertices of this path. Subsequently consider the path of length n − 2, n − 3, . . . and
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proceed as before. Note that the vertex in the path of order 2 receives the label
(

n

2

)

+ 1. Using the results
(

n

1

)

= n and
(

n

n−1

)

=
(

n

1

)

= n, we get

ef (0) − ef (1) =







0 if n is odd

1 if n is even

For illustration we consider the olive tree with order 29 as given in figure 1.��
1
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89
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28 25 21 16 10 3

26 22 17 11 4

23 18 12 5

19 13 6

14 7

8

Figure 1

�

Next we investigate the parity combination cordial labeling behavior of comb Pn �

K1. Let Pn : u1u2 . . . un be a path. Let V (Pn � K1) = V (Pn) ∪ {vi : 1 ≤ i ≤ n} and

E(Pn � K1) = E(Pn) ∪ {uivi : 1 ≤ i ≤ n}.

Theorem 2.7. The comb Pn � K1 is a PCC-graph.
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Proof. Here p = 2n and q = 2n − 1.

Case 1. n is odd.

Subcase 1a. n ≡ 1 (mod 4).

Let n = 4t+1 and t > 0. Define an injective map f : V (Pn�K1) → {1, 2, . . . , 8t+2}

by f(v4t+1) = 1,

f(ui) = 2i, 1 ≤ i ≤ 4t + 1

f(vi) = 2i + 1, 1 ≤ i ≤ 2t

f(v2t+2i−1) = 4t + 4i + 1, 1 ≤ i ≤ t

f(v2t+2i) = 4t + 4i − 1, 1 ≤ i ≤ t.

Here ef (0) = 4t + 1 and ef(1) = 4t.

Subcase 1b. n ≡ 3 (mod 4).

Let n = 4t−1 and t > 0. Define an injective map f : V (Pn�K1) → {1, 2, . . . , 8t−2}

by f(v4t−1) = 1,

f(ui) = 2i, 1 ≤ i ≤ 4t − 1

f(vi) = 2i + 1, 1 ≤ i ≤ 2t

f(v2t+2i−1) = 4t + 4i + 1, 1 ≤ i ≤ t − 1

f(v2t+2i) = 4t + 4i − 1, 1 ≤ i ≤ t − 1.

Here ef (0) = 4t − 2 and ef (1) = 4t − 1.

Case 2. n is even.

Let n = 2t and t > 0. Define an injective map f : V (Pn � K1) → {1, 2, . . . , 4t} by

f(v2t) = 1, f(v1) = 3, f(v2) = 5, f(v3) = 7,

f(ui) = 2i, 1 ≤ i ≤ 2t

f(v2i+2) = 4i + 7, 1 ≤ i ≤ t − 2

f(v2i+3) = 4i + 5, 1 ≤ i ≤ t − 2.

Here ef (0) = 2t − 1 and ef (1) = 2t. Hence Pn � K1 is PCC. �
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Theorem 2.8. The crown Cn � K1 is a PCC-graph.

Proof. In each of the following cases, assign the labels as in Theorem 2.7.

Case 1. n ≡ 0, 1, 2 (mod 4).

Here ef (0) = ef(1) = n.

Case 2. n ≡ 3 (mod 4).

For n = 3 the following figure 2 shows that C3 � K1 is PCC.

:;
<= >? @A

BC

DE

6

5

4
1

2

3

Figure 2

For n > 3, relabel the vertices v2, v3 by 7, 5 respectively. Here also ef (0) = ef(1) = n

and hence Cn � K1 is PCC. �

The graph Pn + K1 is called the fan Fn. Let V (Fn) = {u, ui : 1 ≤ i ≤ n} and

E(Fn) = {uui : 1 ≤ i ≤ n} ∪ {uiui+1 : 1 ≤ i ≤ n − 1}.

Theorem 2.9. The fan Fn is a PCC-graph.

Proof. Define a map f : V (Fn) → {1, 2, . . . , n + 1} by f(u) = 1, f(ui) = i + 1,

1 ≤ i ≤ n. The following table 3 shows that Fn is PCC.

Nature of n ef(0) ef (1)

n ≡ 0 (mod 2) n − 1 n

n ≡ 1 (mod 2) n n − 1

Table 3
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�

The graph Cn + K1 is called a Wheel Wn.

Theorem 2.10. The wheel Wn is a PCC-graph if and only if n ≥ 4.

Proof. It is easy to check that the graph W3 is not PCC. Suppose n ≥ 4, then assign

the labels to the vertices of Wn as in theorem 2.9. Now if n ≡ 2 (mod 4), then

relabel u1, u3 by 4, 2 respectively and if n ≡ 3 (mod 4) then relabel u3, u4 by 5, 4

respectively. Then ef (0) = ef (1) = n. �

The umbrella Un,m is obtained from a fan Fn by appending a path Pm : v1v2 . . . vm

to the central vertex of the fan Fn. Take the vertex set and edge set of Fn as in

theorem 2.9.

Theorem 2.11. The umbrella Un,m, m > 1 is a PCC-graph.

Proof. Identify the vertices u and v1. It is clear that |E(Un,m)| = 2n + m− 2. Assign

the labels i + 1 to the vertices ui (1 ≤ i ≤ n) and put the label 1 to the vertex u.

Then put the labels n + j (2 ≤ j ≤ m) to the vertices vj (2 ≤ j ≤ m). For n ≡ 1

(mod 2), m ≡ 0 (mod 2) and n 6= 3, relabel the vertices u3, u4 by 5, 4 respectively.

If n = 3 and m ≡ 0 (mod 2) then assign the label i (1 ≤ i ≤ m) to vi (1 ≤ i ≤ m)

respectively and then put the labels m + 1, m + 2, m + 3 to the vertices u1, u2, u3

respectively. The following table 4 shows that Um,n is PCC.

�

Our next investigation is about the complete graph Kn.

According to the paper of Karl Goldberg et al. [6], the following table 5 is derived.

This proves that Kn (4 ≤ n ≤ 100) is not PCC.
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Values of n & m ef(0) ef (1)

n ≡ 0 (mod 2) & m ≡ 0 (mod 2) n − 1 + m
2

n + m−2
2

n ≡ 0 (mod 2) & m ≡ 1 (mod 2) n − 1 + m−1
2

n + m−1
2

n ≡ 1 (mod 2), m ≡ 0 (mod 2) & n 6= 3 n − 1 + m
2

n + m−2
2

n = 3 & m ≡ 0 (mod 2) m
2

+ 2 m−2
2

+ 3

n ≡ 1 (mod 2) & m ≡ 1 (mod 2) n + m−1
2

n − 1 + m−1
2

Table 4

Values of n ef (0) ef (1) |ef (0) − ef (1)|

2 1 0 1

3 1 2 1

4 4 2 2

5 6 4 2

6 9 6 3

7 9 12 3

8 16 12 4

9 22 14 8

10 29 16 13

11 33 22 11

12 42 24 18

13 48 30 18

14 55 36 19

15 55 50 5

16 70 50 20

17 84 52 32

18 99 54 45
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19 111 60 51

20 128 62 66

21 142 68 74

22 157 74 83

23 165 88 77

24 186 90 96

25 204 96 108

26 223 102 121

27 235 116 119

28 256 122 134

29 270 136 134

30 285 150 135

31 285 180 105

32 316 180 136

33 346 182 164

34 377 184 193

35 405 190 215

36 438 192 246

37 468 198 270

38 499 204 295

39 523 218 305

40 560 220 340

41 594 226 368

42 629 232 397

43 657 246 411
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44 694 252 442

45 724 266 458

46 755 280 475

47 771 310 461

48 816 312 504

49 858 318 540

50 901 324 577

51 937 338 599

52 982 344 638

53 1020 358 662

54 1057 374 683

55 1081 404 677

56 1130 410 720

57 1172 424 748

58 1215 438 777

59 1245 466 779

60 1290 480 810

61 1320 510 810

62 1351 540 811

63 1351 602 749

64 1414 602 812

65 1476 604 872

66 1539 606 933

67 1599 612 987

68 1664 614 1050
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69 1726 620 1106

70 1789 626 1163

71 1845 640 1205

72 1914 642 1272

73 1980 648 1332

74 2047 654 1393

75 2107 668 1439

76 2176 674 1502

77 2238 688 1550

78 2301 702 1599

79 2349 732 1617

80 2426 734 1692

81 2500 740 1760

82 2575 746 1829

83 2643 760 1883

84 2720 766 1954

85 2790 780 2010

86 2861 794 2067

87 2917 824 2093

88 2998 830 2168

89 3073 844 2229

90 3148 858 2290

91 3208 888 2320

92 3285 902 2383

93 3347 932 2415
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94 3410 962 2448

95 3442 1024 2418

96 3535 1026 2509

97 3625 1032 2593

98 3716 1038 2678

99 3800 1052 2748

100 3893 1058 2835

Table 5:

Based on the numerical evidence provided by table 5, we propose the following con-

jecture.

Conjecture 2.1. For n ≥ 4, Kn is not a PCC-graph.
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