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TRIPLED COINCIDENCE POINT THEOREM IN FUZZY METRIC

SPACES

ANIMESH GUPTA (1), R.N. YADAVA (2) AND RAJESH SHRIVASTAVA (3)

Abstract. In this present paper we prove some common tripled fixed point the-

orems for contractive mappings in fuzzy metric spaces under geometrically con-

vergent t-norms. Our aim of this paper is to improve the result of A. Gupta,

R. Narayan and R. N. Yadava, Tripled Fixed Point For Compatible Mappings In

Partially Ordered Fuzzy Metric Spaces, The Journal Of Fuzzy Mathematics 22(3),

565-580, 2014. Our technique for the proof of the theorem is different. We also give

an example in support of our theorem.

1. Introduction

The fixed point theorems in metric spaces are playing a major role to construct

methods in mathematics to solve problems in applied mathematics and sciences. So

the attraction of metric spaces to a large numbers of mathematicians is understand-

able. Some generalizations of the notion of a metric space have been proposed by

some authors.

The concept of fuzzy sets was introduced initially by Zadeh [17] in 1965. After

that, to use this concept in topology and analysis, many authors have expansively

developed the theory of fuzzy sets and application [5], [6].
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Recently, Vasile Berinde and Marin Borcut [2] extended and generalized the results

of [14] to the case of contractive operator F : X×X×X → X, where X is a complete

ordered metric space. They introduced the concept of a tripled fixed point and the

mixed monotone property of a mapping F : X × X × X → X. For more detail of

tripled fixed point results we refer the reader to ([2] and [1]).

In the present paper, we prove a tripled coincidence point result in fuzzy metric

spaces as defined by George and Veeramani under geometrically convergent t-norms.

We use a new fuzzy contractive inequality and improve the result of A.Gupta et al

[8]. Our technique for the proof is different from the other existing results on the

same topic. We assume that the associated t-norm is a Hadžic̀ type t-norm. The

result is illustrated with an example and is an extension of some known results.

2. Preliminaries

A triangular norm (t−norm for short) is a binary operation on the unit interval

[0, 1], i.e., a function T : [0, 1]2 → [0, 1] which is commutative, associative, monotone

and T (x, 1) = x. t−conorm S is defined by S(x, y) = 1T (1x, 1y)

If T is a t−norm, x ∈ [0, 1] and n ∈ N ∪ {0} then we shall write

x
(n)
T =







1, if n = 0

T
(

x
(n−1)
T , x

)

, if otherwise.

We assume that the reader is familiar with the basic concepts and terminology of

the theory of fuzzy metric spaces. We only recall that a t-norm T is said to be of

Hadžic̀-type ( denoted T ∈ H and T∞ means infinite sequence of Hadžic̀-type) if the

family {T n(t)}∞n=1 defined by

T 1(t) = t; T n+1(t) = T (t, T n(t)) (n = 1, 2, . . . t ∈ [0, 1])
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is equicontinuous at t = 1, and that a t−norm T is called geometrically convergent

(or g−convergent) [10] if, for all q ∈ (0, 1),

lim
n→∞

T∞
i=n(1 − qi) = 1.

It is worth noting that if for a t-norm there exists q0 ∈ (0, 1) such that

lim
n→∞

T∞
i=n(1 − qi

0) = 1,

then

lim
n→∞

T∞
i=n(1 − qi) = 1

for all q ∈ (0, 1).

The well-known t-norms TP (x, y) = xy, TL(x, y) = max{x+y−1, 0} and TM(x, y) =

max{x, y} are g−convergent. Also, every member of the Domby family (T D
λ )λ∈(0,1),

Aczel-Alsina family (T AA
λ )λ∈(0,1) and Sugeno-Weber family (T SW

λ )λ∈(0,1) are g−convergent

[10]. A large class of g−convergent t−norms, in terms of the generators of strict

t−norms is described in [10].

We shall need some families of t-norms given in the following example.

Example 1. The Dombi family of t−norms (T D
λ )λ∈[0,∞] is defined by

T D
λ (x, y) =



























TD(x, y), if λ = 0

TM(x, y), if λ = ∞
(

1 +

(

(

1−x
x

)λ
+
(

1−y

y

)λ
)

1

λ

)−1

if λ ∈ (0,∞).
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Example 2. The Schweizer-Sklar family of t−norms (T SS
λ )λ∈[−∞,∞] is defined by

T SS
λ (x, y) =











































TD(x, y), if λ = −∞
(xλ + yλ − 1)

1

λ , if λ ∈ (−∞, 0),

TP (x, y), if λ = 0,

(max{xλ + yλ − 1, 0}) 1

λ , if λ ∈ (0,∞),

TD(x, y), if λ = ∞).

Example 3. The Aczél-Alsina family of t−norms (T AA
λ )λ∈[0,∞] is defined by

T AA
λ (x, y) =



















TD(x, y), if λ = 0

TM(x, y), if λ = ∞
e−(| log x|λ+| log y|λ)

1
λ if λ ∈ (0,∞).

Example 4. The Sugeno-Weber family of t−norms (T SW
λ )λ∈[−1,+∞] is defined by

T SW
λ (x, y) =



















TD(x, y), if λ = −1

TP (x, y), if λ = +∞
max

(

0, x+y−1+λxy

1+λ

)

if otherwise.

In the following we consider M−complete fuzzy metric spaces in the sense of

Kramosil and Michalek [13], satisfying the condition (FM-6):

lim
t→∞

M(x, y, t) = 1(2.1)

for all x, y ∈ X.

Definition 5. [2] An element (x, y, z) ∈ X × X × X is called a tripled fixed point of

the mapping F : X × X × X → X if

F (x, y, z) = x, F (y, x, y) = y and F (z, y, x) = z.

Definition 6. [2] Let X be a nonempty set. The mappings F : X ×X ×X → X and

g : X → X are said to commute if

g(F (x, y, z)) = F (gx, gy, gz)
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for all x, y, z ∈ X.

Definition 7. [2] An element (x, y, z) ∈ X × X × X is called a tripled coincidence

point of the mappings F : X × X × X → X and g : X → X if

F (x, y, z) = gx, F (y, x, y) = gy and F (z, y, x) = gz.

Definition 8. [2] An element (x, y, z) ∈ X ×X ×X is called a tripled common fixed

point of the mappings F : X × X × X → X and g : X → X if

F (x, y, z) = gx = x, F (y, x, y) = gy = y and F (z, y, x) = gz = z.

Definition 9. [2] An element x ∈ X is called a common fixed point of the mappings

F : X × X × X → X and g : X → X if

F (x, x, x) = gx = x.

3. Main results

Theorem 10. Let (X, M, T ) be a complete Fuzzy metric space, satisfying 2.1, with

T is a g-convergent t−norm. Let F : X × X × X → X and g : X → X be two

mappings and there exists k ∈ (0, 1) such that,

(3.1) M(F (x, y, z), F (u, v, w), kt) ≥ min{M(gx, gu, t), M(gy, gv, t), M(gz, gw, t)}

for all x, y, z, u, v, w ∈ X, t > 0.

Suppose that F (X ×X ×X) ⊂ g(X) and g is continuous, F and g are commuting.

If there exist a > 0 and x0, y0, z0 ∈ X such that

sup
t>0

ta(1 − M(gx0, F (x0, y0, z0), t) < ∞,

sup
t>0

ta(1 − M(gy0, F (y0, x0, y0), t) < ∞,

sup
t>0

ta(1 − M(gz0, F (z0, y0, x0), t) < ∞,
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then there exists a unique x ∈ X such that x = g(x) = F (x, x, x), which means that,

F and g have a unique common fixed point in X.

It should be noted that (x0, y0, z0) is a tripled coincidence point of F and g, then

the conditions

sup
t>0

ta(1 − M(gx0, F (x0, y0, z0), t) < ∞,

sup
t>0

ta(1 − M(gy0, F (y0, x0, y0), t) < ∞,

sup
t>0

ta(1 − M(gz0, F (z0, y0, x0), t) < ∞,

are satisfied.

Proof. Let x0, y0, z0 ∈ X be three arbitrary points in X. Since F (X×X×X) ⊆ g(X),

we can choose x1, y1, z1 ∈ X such that g(x1) = F (x0, y0, z0), g(y1) = F (y0, z0, x0) and

g(z1) = F (z0, x0, y0) using same argiments, we can construct three sequences {xn},
{yn}, {zn} in X such that

g(xn+1) = F (xn, yn, zn), g(yn+1) = F (yn, xn, yn, ), g(zn+1) = F (zn, xn, yn, ).

The proof of the Theorem is divided into five steps,

Step - 1. Prove that {xn}, {yn}, {zn} are Cauchy sequences.

Let α > 0 be such that

ta(1 − M(gx0, F (x0, y0, z0), t) ≤ α,

ta(1 − M(gy0, F (y0, x0, y0), t) ≤ α,

ta(1 − M(gz0, F (z0, y0, x0), t) ≤ α,
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for all t > 0. Then

M

(

gx0, gx1,
1

tn

)

≥ 1 − α(ta)α,

M

(

gy0, gy1,
1

tn

)

≥ 1 − α(ta)α,

M

(

gz0, gz1,
1

tn

)

≥ 1 − α(ta)α,

for every t > 0 and n ∈ N .

If t > 0 and ε ∈ (0, 1) are given, we choose µ in the interval (k, 1) such that

T∞
i=n+1(1 − (µa)i) > 1 − ε

and δ = k
µ
. As δ ∈ (0, 1), we can find n1 = n1(t) such that Σ∞

n=n1
δn < t.

Condition 3.1 implies that, for all s > 0,

M(gx1, gx2, ks) = M(F (x0, y0, z0), F (x1, y1, z1), ks)

≥ min{M(gx0, gx1, s), M(gy0, gy1, s), M(gz0, gz1, s)},

M(gy1, gy2, ks) = M(F (y0, x0, y0), F (y1, x1, y1), ks)

≥ min{M(gy0, gy1, s), M(gz0, gz1, s), M(gy0, gy1, s)},

and

M(gz1, gz2, ks) = M(F (z0, y0, x0), F (z1, y1, x1), ks)

≥ min{M(gz0, gz1, s), M(gy0, gy1, s), M(gx0, gx1, s)}.

It follows by induction that

M(gx1, gx2, k
ns) ≥ min{M(gx0, gx1, s), M(gy0, gy1, s), M(gz0, gz1, s)},
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M(gy1, gy2, k
ns) ≥ min{M(gy0, gy1, s), M(gz0, gz1, s), M(gy0, gy1, s)},

and

M(gz1, gz2, k
ns) ≥ min{M(gz0, gz1, s), M(gy0, gy1, s), M(gx0, gx1, s)},

for all n ∈ N . Then for all n ≥ n1 and all m ∈ N, we obtain

M(gxn, gxn+m, t)

≥ M
(

gxn, gxn+m, Σ∞
i=n1

δi
)

≥ M
(

gxn, gxn+m, Σn+m−1
i=n δi

)

≥ T n+m−1
i=n M(gxi, gxi+1, δ

i)

≥ T n+m−1
i=n

(

min

{

M

(

gx0, gx1,
1

µi

)

, M

(

gy0, gy1,
1

µi

)

, M

(

gz0, gz1,
1

µi

)})

≥ T n+m−1
i=n (1 − αµαi).

If we choose l0 ∈ N such that αµal0 ≤ µa, then

1 − α(µa)n+l0 ≥ 1 − (µa)n+1,

for all n. Thus,

M(gxn+l0 , gxn+l0+m, t) ≥ T∞
i=n+1(1 − (µa)i) > 1 − ε,

for every n ≥ n1 and m ∈ N , hence {gxn} is a Cauchy sequence.

Similarly, one can show that {gyn} and {gzn} are Cauchy sequences.

Step 2. Prove that g and F have common coincidence point.

Since X is complete space, there exist x, y, z ∈ X such that,
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lim
n→∞

F (xn, yn, zn) = lim
n→∞

g(xn) = x,

lim
n→∞

F (yn, zn, xn) = lim
n→∞

g(yn) = y,

lim
n→∞

F (zn, xn, yn) = lim
n→∞

g(zn) = z.

Next, we prove that g(x) = F (x, y, z), g(y) = F (y, x, y) and g(z) = F (z, y, x).

From the continuity of g, it follows that

lim
n→∞

ggxn = gx,

lim
n→∞

ggyn = gy,

lim
n→∞

ggzn = gz.

As F and g commuting,

ggxn+1 = gF (xn, yn, zn) = F (gxn, gyn, gzn),

ggyn+1 = gF (yn, xn, yn) = F (gyn, gxn, gyn),

and

ggzn+1 = gF (zn, yn, xn) = F (gzn, gyn, gxn).

Consequently, for all t > 0 and n ∈ N ,

M(ggxn+1, F (x, y, z), kt) = M(F (xn, yn, zn), F (x, y, z), kt)

= M(F (gxn, gyn, gzn), F (x, y, z), kt)

≥ min{M(ggxn, gx, t), M(ggyn, gy, t), M(ggzn, gz, t)}.

Letting n → ∞ yields M(gx, F (x, y, z), kt) ≥ 1 for all t > 0, hence gx = F (x, y, z).
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Similarly one can deduce that g(y) = F (y, x, y) and g(z) = F (z, y, x).

Step 3. We show that gx = y, gy = z and gz = x.

Indeed letting n → ∞ in the inequality

M(gx, gyn+1, kt) = M(F (x, y, z), F (yn, xn, yn), kt)

≤ min{M(gx, gyn, t), M(gy, gxn, t), M(gz, gyn, t)}

M(gx, y, kt) ≤ min{M(gx, y, t), M(gy, x, t), M(gz, y, t)}.

Similarly

M(gy, gzn+1, kt) = M(F (y, x, y), F (zn, yn, xn), kt)

≤ min{M(gy, gzn, t), M(gx, gyn, t), M(gy, gxn, t)}

M(gy, z, kt) ≤ min{M(gy, z, t), M(gx, z, t), M(gy, x, t)}

M(gx, gzn+1, kt) = M(F (x, y, z), F (zn, yn, xn), kt)

≤ min{M(gx, gzn, t), M(gy, gyn, t), M(gz, gxn, t)}

M(gx, z, kt) ≤ min{M(gx, z, t), M(gy, y, t), M(gz, x, t)}.

Thus

min{M(gx, y, t), M(gy, z, t), M(gx, z, t)}

≥ min

{

M

(

gx, y,
t

kn

)

, M

(

gy, z,
t

kn

)

, M

(

gx, z,
t

kn

)}



TRIPLED COINCIDENCE POINT THEOREM IN FUZZY METRIC SPACES 319

for all n ∈ N , implying

min{M(gx, y, t), M(gy, z, t), M(gx, z, t)} = 1

for all t > 0. It follows that

M(gx, y, t) = 1,

M(gy, z, t) = 1,

M(gx, z, t) = 1,

for all t > 0, whence gx = y, gy = z and gz = x.

Step 4. We prove that x = y = z.

Indeed, letting n → ∞ in the inequality

M(gxn+1, gyn+1, kt) = M(F (xn, yn, zn)F (yn, xn, yn), kt)

≥ min{M(gxn, gyn, t), M(gyn, gxn, t), M(gzn, gyn, t)}

M(x, y, kt) ≥ min{M(x, y, t), M(y, x, t), M(z, y, t)}.

Similarly we have

M(gzn+1, gyn+1, kt) = M(F (zn, yn, xn)F (yn, xn, yn), kt)

≥ min{M(gzn, gyn, t), M(gyn, gxn, t), M(gxn, gyn, t)}

M(z, y, kt) ≥ min{M(z, y, t), M(y, x, t), M(x, y, t)}

M(gxn+1, gzn+1, kt) = M(F (xn, yn, zn)F (zn, yn, xn), kt)

≥ min{M(gxn, gzn, t), M(gyn, gyn, t), M(gzn, gxn, t)}

M(x, z, kt) ≥ min{M(x, z, t), M(y, y, t), M(z, x, t)}.
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It follows that

min{M(x, y, kt), M(z, y, kt), M(x, z, kt)} ≥ min{M(x, y, t), M(y, x, t), M(z, y, t)}

for all t > 0 and so x = y = z.

Step 5. We show that the fixed point is unique.

Let p, q be common fixed points for F and g. Then from 3.1 we obtain

M(gp, gq, kt) = M(F (p, p, p), F (q, q, q), kt)

≥ min{M(gp, gq, t), M(gp, gq, t), M(gp, gq, t)}

≥ min{M(p, q, t), M(p, q, t), M(p, q, t)}

M(p, q, kt) ≥ M(p, q, t)

for all t > 0, implying p = q.

Hence the proof is completed. �

Our next theorem shows that, if the t-norm T is of Hadz̀ic̀ -type, then the conditions

sup
t>0

ta(1 − M(gx0, F (x0, y0, z0), t) < 1

sup
t>0

ta(1 − M(gy0, F (y0, x0, y0), t) < 1

sup
t>0

ta(1 − M(gz0, F (z0, y0, x0), t) < 1

can be dropped.

Theorem 11. Let (X, M, T ) be a complete Fuzzy metric space, be a complete fuzzy

metric space satisfying 2.1, with T ∈ H. Let F : X × X × X → X and g : X → X

be two mappings such that, for some k ∈ (0, 1),

(3.2) M(F (x, y, z), F (u, v, w), kt) ≥ min{M(gx, gu, t), M(gy, gv, t), M(gz, gw, t)}
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for all x, y, z, u, v, w ∈ X, t > 0.

Suppose that F (X ×X ×X) ⊂ g(X) and g is continuous, F and g are commuting.

Then F and g have a unique common fixed point in X.

Proof. We only verify Step -1 of Theorem 10, so we need to prove that {xn}, {yn}
and {zn} are Cauchy sequences.

Let t > 0 and ε ∈ (0, 1) be given. Since T isa t−norm of Hadz̀ic̀ type, then there

exists µ > 0 such that

T k(1 − µ) > 1 − ε,

for all k ∈ N .

By 2.1, we can find s > 0 such that

M(gx0, gx1, s) > 1 − µ,

M(gy0, gy1, s) > 1 − µ

and

M(gz0, gz1, s) > 1 − µ.

Let n0 ∈ N be such that t > Σ∞
i=n0

kis.

As in Step 1 of the proof of Theorem 10 it can be proved that

M(gxn, gxn+1, k
ns) ≥ min{M(gx0, gx1, s), M(gy0, gy1, s), M(gz0, gz1, s)} > 1 − µ,

M(gyn, gyn+1, k
ns) ≥ min{M(gy0, gy1, s), M(gz0, gz1, s), M(gy0, gy1, s)} > 1 − µ,

and

M(gzn, gzn+1, k
ns) ≥ min{M(gz0, gz1, s), M(gy0, gy1, s), M(gx0, gx1, s)} > 1 − µ
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for all n ∈ N . Therefore, for all n ≥ n0 and all m ∈ N the following inequalities

hold:

M(gxn, gxn+m, t) ≥ M
(

gxn, gxn+m, Σ∞
i=n1

kis
)

≥ M
(

gxn, gxn+m, Σn+m−1
i=n kis

)

≥ T n+m−1
i=n M(gxi, gxi+1, k

ns)

≥ T n+m−1
i=n (1 − µ)

M(gxn, gxn+m, t) > 1 − ε.

This complete the proof. �

Next we give an example to illustrate Theorem 3.1.

Example 12. Let X = [−3, 3] and M(x, y, t) =
(

t
t+1

)|x−y|
. It is easy to verify that

(X, M, TP ) is a complete fuzzy metric spaces.

Let F : X × X × X → X, be defined by

F (x, y, z) =
x2

18
+

y2

18
+

z2

18
− 3

and g : X → X be such that

g(x) = x.

Then F (X × X × X) = [−3,− 3
2
] and 3.1 is verified with k = 1

3
.

Indeed, since

t/3

t/3 + 1
≥
(

t

t + 1

)3
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for all t ≥ 0, then

M

(

F (x, y, z), F (u, v, w),
t

3

)

=

( t
3

t
3

+ 1

)

|x2−u2+y2−v2+z2−w2|
18

≥
(

t

t + 1

)

|x2−u2
+y2−v2

+z2−w2|
6

≥
(

t

t + 1

)

|x−u|+|y−v|+|z−w|
3

≥ min

{

(

t

t + 1

)|x−u|

,

(

t

t + 1

)|y−v|

,

(

t

t + 1

)|z−w|
}

M

(

F (x, y, z), F (u, v, w),
t

3

)

≥ min{M(gx, gu, t), M(gy, gv, t), M(gz, gw, t)}

for all x, y, z, u, v, w ∈ X, t > 0. The point x = 4(1 −
√

3) ∈ X and it is the unique

common fixed point of F and g.

4. Conclusion

In this paper we have proved tripled coincidence point results in ordered fuzzy

metric spaces by assuming an inequality, certain conditions on the t-norm and com-

mutativity condition between the mappings. Here we also remove the monotone

property and prove a common tripled fixed point for fuzzy metric spaces.
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