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MODIFIED NEWTON TYPE METHODS WITH HIGHER ORDER

CONVERGENCE

PANKAJ JAIN (1), CHET RAJ BHATTA (2)AND JIVANDHAR JNAWALI(3)

Abstract. Inspired by a recent result of McDougall and Wortherspoon, we obtain

new iterative methods for solving nonlinear equations. Also we derive certain hybrid

methods these methods and the standard secant method. The resulting methods

turn out to be of higher order of convergence and are more efficient than the existing

ones. The methods are compared with some of the recent existing methods.

1. Introduction

Nonlinear equations are encountered quite often in all fields of science and engineer-

ing but solving such equations analytically is not always possible. In those situations

where an analytic solution cannot be obtained or it is difficult to obtain, numerical

iterative methods are used. Two classical and standard methods for solving nonlinear

equations numerically are the Newton method and the secant method. If f(x) = 0 is

the given nonlinear equation then the Newton method is given by

(1.1) xn+1 = xn − f(xn)

f ′(xn)

and the secant method is given by

(1.2) xn+1 = xn − xn − xn−1

f(xn) − f(xn−1)
f(xn).

It is known that, for a simple root, the order of convergence of Newton method is 2

while for secant method it is 1.618.
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During the last decades, tremendous methods have appeared for solving nonlinear

equations, each one is better than the other in some or the other aspect. Some of

them to mention can be found in the papers [2]-[7].

Very recently in [7], McDougall and Wortherspoon obtained a method with a slight

modification in the standard Newton method and achieved order of convergence 1 +
√

2. Their method is the following:

If x0 is the initial approximation, then

x∗

0 = x0 −
f(x0)

f ′(x0)
(1.3)

x1 = x0 −
f(x0)

f ′[1
2
(x0 + x∗

0)]
.(1.4)

Subsequently for n ≥ 1, the iterations can be obtained as

x∗

n = xn − f(xn)

f ′[1
2
(xn−1 + x∗

n−1)]
(1.5)

xn+1 = xn − f(xn)

f ′[1
2
(xn + x∗

n)]
.(1.6)

The above method is a predictor-corrector type method. The predictor step is ob-

tained just as the Newton step whereas in the corrector step, an arithmetic average is

obtained between the previous two points and derivative is calculated at the average

value.

As the first aim of the paper, we provide two variants of the method (1.3)-(1.6) by

replacing the arithmetic average with geometric average and harmonic average. The

corresponding methods are shown to be of order 1 +
√

2 each.

Next, we construct a hybrid method by combining the iterations of the resulting

method with the secant method. We show that the corresponding method is of order

3.5615. The motivation of combining two methods comes from the previous works

of [2]-[6], where the authors successfully obtained higher order of convergence. We

also compare the efficiency of the method (1.3)-(1.6) with that of McDougall and

Wortherspoon [7].
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2. The Methods with Harmonic and Geometric Averages

To begin with, we suggest the following method as a variant of (1.3)-(1.6) by

replacing the arithmetic average with the harmonic average:

x∗

0 = x0(2.1)

x1 = x0 −
f(x0)

f ′

(

2x0x
∗

0

x0 + x∗

0

) = x0 −
f(x0)

f ′(x0)
(2.2)

followed by (for n ≥ 1)

x∗

n = xn − f(xn)

f ′

(

2xn−1x
∗

n−1

xn−1 + x∗

n−1

)(2.3)

xn+1 = xn − f(xn)

f ′

(

2xnx∗

n

xn + x∗

n

) .(2.4)

The convergence of the method has been discussed in the following:

Theorem 2.1. Let α be a simple zero of a function f which has sufficient number of

smooth derivatives in a neighbourhood of α. Then for solving the nonlinear equation

f(x) = 0, the method (2.1)-(2.4) is convergent with order of convergence 1 +
√

2.

Proof. Denote cj = 1
j!
.
fj(α)
f ′(α)

, j = 2, 3, 4.... It is standard to work out that the error

equation in the Newton method (1.1) is given by

(2.5) en+1 = c2e
2
n,

where en denotes the error in the iterate xn and the terms with higher powers of en

are ignored.

Let us now proceed with convergence analysis of the method (2.1)-(2.4). Let en and

e∗n denote the errors in the iterates xn and x∗

n respectively. Then obviously e∗0 = e0

and in the view of (2.5), the error equation for (2.2) is given by

(2.6) e1 = c2e
2
0
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using which, Taylor series expansion and binomial expansion, the error equation for

(2.3) with n = 1, i.e., for x∗

1 is given by

(2.7)

e∗1 = e1 −
e1 + c2e

2
1 + c3e

3
1 + O(e4

1)

1 + 2c2e0 + 3c3e
2
0 + O(e3

0)

= e1 −
(

e1 + c2e
2
1 + c3e

3
1 + O(e4

1)
) (

1 − 2c2e0 − 3c3e
2
0 + 4c2

2e
2
0 + O(e3

0)
)

= 2c2e0e1

= 2c2
2e

3
0,

neglecting the higher powers of e0.

Next, we find that

2x1x
∗

1

x1 + x∗

1

=
2(α + e1)(α + e∗1)

(α + e1) + (α + e∗1)

=

(

α + (e1 + e∗1) +
e1e

∗

1

α

) (

1 +
e1 + e∗1

2α

)

−1

= α +
e1 + e∗1

2
,

neglecting the higher powers of e1 and e∗1. Therefore, the error equation for (2.4) with

n = 1, i.e., x2 can be obtained as follows:

e2 = e1 −
f(α + e1)

f ′

(

α +
e1+e∗

1

2

)

= e1 −
(

1 + c2e
2
1 + c3e

3
1

)

(

1 + 2c2(
e1 + e∗1

2
) + 3c3(

e1 + e∗1
2

)2

)

−1

= c2e1e
∗

1

= 2c4
2e

5
0

by using (2.6) and (2.7). It can be shown, in general, that for n ≥ 2, the errors in

respectively x∗

n and xn can be obtained recursively by the relations

e∗n = c2enen−1

and

en+1 = c2ene∗n.
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Using the above information, the errors at each stage in x∗

n and xn+1 are obtained

and are tabulated below:

n en e∗n

0 e0 e0

1 c2e
2
0 2c2e

3
0

2 2c4
2e

5
0 2c6

2e
7
0

3 22c11
2 e12

0 23c16
2 e17

0

4 25c28
2 e29

0 27c40
2 e41

0

5 212c69
2 e70

0 217c98
2 e99

0

...
...

...

Note that, we obtain the same sequences {en} and {e∗n} as obtained in [7]. Conse-

quently, the method (2.1)-(2.4) is convergent with order of convergence 1 +
√

2. �

Next, we propose the following method that involves geometric average:

x∗

0 = x0(2.8)

x1 = x0 −
f(x0)

f ′(
√

x0x
∗

0 )
= x0 −

f(x0)

f ′(x0)
(2.9)

followed by (for n ≥ 1)

x∗

n = xn − f(xn)

f ′(
√

xn−1x
∗

n−1 )
(2.10)

xn+1 = xn − f(xn)

f ′(
√

xnx∗

n )
.(2.11)

We prove the following:

Theorem 2.2. Let α be a simple zero of a function f which has sufficient number

of smooth derivatives in a neighbourhood of α. Then for solving nonlinear equation

f(x) = 0, the method (2.8)-(2.11) is convergent with order of convergence 1 +
√

2.
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Proof. As in the proof of Theorem 2.1, e∗0 = e0 and e1 = c2e
2
0. For n = 1, (2.10)

becomes

x∗

1 = x1 −
f(x1)

f ′(x0)
,

which is exactly the same as obtained from (2.3) for n = 1. Therefore, the error e∗1

in (2.10) is as given by (2.7), i.e.,

e∗1 = 2c3
2e

3
0.

We now calculate the error in (2.11) for n = 1. We have

f ′

(

√

x1x
∗

1

)

= f ′

(

√

(α + e1)(α + e∗1)
)

= f ′

[

α

(

1 +
e1 + e∗1

α
+

e1e
∗

1

α2

)
1

2

]

= f ′

(

α +
e1 + e∗1

2

)

= f ′(α)[1 + c2(e1 + e∗1)]

using the binomial expansion for fractions, Taylor’s expansion and neglecting higher

power terms of e1 and e∗1. Using this, the error e2 in (2.11) can be calculated as

e2 = e1 − (e1 + c2e
2
1 + c3e

3
1)[1 + c2(e1 + e∗1)]

−1

= c2e1e
∗

1

= 2c4
2e

5
0.

It can be shown, in general, that for n ≥ 2, the errors en and e∗n can be calculated

recursively by the relations

e∗n = c2enen−1

en+1 = c2ene∗n.

These relations are exactly the same as obtained in Theorem 2.1. Consequently, the

method (2.8)-(2.11) is convergent with order of convergence 1 +
√

2.

Remark 2.3. For any n = 0, 1, 2, ..., if xnx∗

n < 0, then in the method (2.8)-(2.11),
√

xnx∗

n will not be real and hence the method will not proceed further. To avoid
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such situation, one has to be a little cautious. Although, the exact root of the given

nonlinear equation is not known, but it is not difficult to know the sign of the root,

e.g., one can plot the corresponding curve. In the case of positive root, if we start

with a positive initial approximation x0, then since the method is convergent, all

iterates will be positive and there will be no negative product. The case of negative

root can be handled similarly.

�

3. Hybrid Methods with Faster Convergence

In this section, we provide a method by combining the iterations of the method

(1.3)-(1.6) with secant method and show that the order of convergence of the resulting

method is more than 1 +
√

2. Precisely, we propose the following method:

If x0 is the initial approximation, then

x∗

0 = x0(3.1)

x∗∗

0 = x0 −
f(x0)

f ′[1
2
(x0 + x∗

0)]
= x0 −

f(x0)

f ′(x0)
(3.2)

x1 = x∗∗

0 − x∗∗

0 − x∗

0

f(x∗∗

0 ) − f(x∗

0)
f(x∗∗

0 )(3.3)

followed by (for n ≥ 1)

x∗

n = xn − f(xn)

f ′[1
2
(xn−1 + x∗

n−1)]
(3.4)

x∗∗

n = xn − f(xn)

f ′[1
2
(xn + x∗

n)]
(3.5)

xn+1 = x∗∗

n − x∗∗

n − x∗

n

f(x∗∗

n ) − f(x∗

n)
f(x∗∗

n ).(3.6)

For convergence of this method, we prove the following:

Theorem 3.1. Let f be a function having sufficient number of continuous derivatives

in a neighbourhood of α which is a simple root of the equation f(x) = 0. Then the

method (3.1)-(3.6) to approximate the root α is convergent with order of convergence

3.5615.
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Proof. On the lines of the proofs of Theorems 2.1 and 2.2 and also the error equation of

the standard secant method, it can be shown that the errors e∗n, e∗∗n and en respectively

in x∗

n, x∗∗

n and xn in the method (3.1)-(3.6) satisfy the following recursion formula:

e∗n = c2en−1en

e∗∗n = c2ene∗n

en+1 = c2e
∗

ne∗∗n .

The corresponding errors at each stage in x∗

n, x∗∗

n and xn are obtained and tabulated

as follows:

n en e∗n e∗∗n

0 e0 e0 c2e
2
0

1 c2
2e

3
0 2c3

2e
4
0 2c6

2e
7
0

2 22c10
2 e11

0 22c13
2 e14

0 24c24
2 e25

0

3 26c38
2 e39

0 28c49
2 e50

0 214c88
2 e89

0

4 222c138
2 e139

0 228c177
2 e178

0 250c316
2 e317

0

5 278c494
2 e495

0 2100c633
2 e634

0 2178c1128
2 e1129

0

...
...

...
...

We make the analysis of the table as done in [7]. Note that the powers of e0 in the

error at each iterate form the sequence

3, 11, 39, 139, 495, 1763, 6279, 22363, . . .

and the sequence of their successive ratios is

11

3
,

39

11
,

139

495
,

495

139
,

1763

495
,

6279

1763
,

22363

6279
, . . .

or

3.67, 3.5454, 3.5641, 3.5611, 3.5616, 3.5615, 3.5615, . . .
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This sequence approaches to a fixed number which approximately can be taken as

3.5615 which is the order of convergence of the method (3.1)-(3.6). �

Remark 3.2. Amalgamation of methods already exists in literature. For example,

Kasturiarachi [6] amalgamated standard Newton and Secant methods, Jain [5] mixed

iterations of Steffensen and Secant methods, Jain [2], [3] also mixed several methods

with secant as well as with modified secant methods. It is noticed that whenever

a method is combined with secant method, the order of convergence of the method

gets increased by 1. In the present situation, the method (1.3)-(1.6) of McDougall

and Wortherspoon [7] is of order 1 +
√

2 but the increase in our method (3.1)-(3.6)

is more than 1 when combines with the secant method.

Remark 3.3. It is known that the efficiency of numerical method for solving a

nonlinear equation is defined to be p
1

θ , where p is the order of convergence of the

method and θ is the number of functions evaluation per iteration. Note that the

efficiency of Newton method is (2)
1

2 ≈ 1.4142, that of McDougall and Wortherspoon

method is (
√

2 + 1)
1

2 ≈ 1.5538 while the present method has efficiency (3.5615)
1

3 ≈
1.5271. Comparing our method with McDougall and Wortherspoon’s method, we

point out that the efficiency of our method is quite close to their method. Moreover,

the order of convergence of our method is much more than that of McDougall and

Wortherspoon’s method.

It is natural to consider the variants of methods (3.1)-(3.6), where in (3.2) and

(3.5), the arithmetic mean is replaced by harmonic mean as well geometric mean as

done in methods (2.1)-(2.4) and (2.8)-(2.11), respectively. Precisely, with harmonic

mean, we propose the following method:

(3.7) x∗

0 = x0

(3.8) x∗∗

0 = x0 −
f(x0)

f ′

(

2x0x
∗

0

x0 + x∗

0

) = x0 −
f(x0)

f ′(x0)

(3.9) x1 = x∗∗

0 − x∗∗

0 − x∗

0

f(x∗∗

0 ) − f(x∗

0)
f(x∗∗

0 )
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followed by (for n ≥ 1)

x∗

n = xn − f(xn)

f ′

(

2xn−1x
∗

n−1

xn−1 + x∗

n−1

)(3.10)

x∗∗

n = xn − f(xn)

f ′

(

2xnx∗

n

xn + x∗

n

)(3.11)

xn+1 = x∗∗

n − x∗∗

n − x∗

n

f(x∗∗

n ) − f(x∗

n)
f(x∗∗

n )(3.12)

and with the geometric mean, we propose the following:

(3.13) x∗

0 = x0

(3.14) x∗∗

0 = x0 −
f(x0)

f ′(
√

x0x
∗

0 )
= x0 −

f(x0)

f ′(x0)

(3.15) x1 = x∗∗

0 − x∗∗

0 − x∗

0

f(x∗∗

0 ) − f(x∗

0)
f(x∗∗

0 )

followed by (for n ≥ 1)

x∗

n = xn − f(xn)

f ′

(√

xn−1x
∗

n−1

)(3.16)

x∗∗

n = xn − f(xn)

f ′ (
√

xnx∗

n )
(3.17)

xn+1 = x∗∗

n − x∗∗

n − x∗

n

f(x∗∗

n ) − f(x∗

n)
f(x∗∗

n ).(3.18)

Using the arguments as used in the proofs of Theorems 2.1, 2.2 and 3.1, the following

result can be proved. We omit the details for conciseness.

Theorem 3.4. Let f be a function having sufficient number of continuous derivatives

in a neighbourhood of α which is a simple root of the equation f(x) = 0. Then the

methods (3.7)-(3.12) as well as (3.13)-(3.18) to approximate the root α are convergent

with order of convergence 3.5615.
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4. Algorithms and Numerical Examples

We give below an algorithm in order to implement the method (3.1)-(3.6):

Algorithm 4.1. Step 1 : For the given tolerance ε > 0 and iteration N , choose the

initial approximation x0 and set n = 0.

Step 2 : Follow the following sequence of expressions:

x∗

0 = x0

x∗∗

0 = x0 −
f(x0)

f ′[1
2
(x0 + x∗

0)]
= x0 −

f(x0)

f ′(x0)

x1 = x∗∗

0 − x∗∗

0 − x∗

0

f(x∗∗

0 ) − f(x∗

0)
f(x∗∗

0 ).

Step 3 : For n = 1, 2, 3, . . ., calculate x2, x3, x4, . . . by the following sequence of

expressions:

x∗

n = xn − f(xn)

f ′[1
2
(xn−1 + x∗

n−1)]

x∗∗

n = xn − f(xn)

f ′[1
2
(xn + x∗

n)]

xn+1 = x∗∗

n − x∗∗

n − x∗

n

f(x∗∗

n ) − f(x∗

n)
f(x∗∗

n ).

Step 4 : Stop if either |xn+1 − xn| < ε or n > N .

Step 5 : Set n = n + 1 and repeat Step 3.

Example 4.2. We apply Algorithm 4.1 on the nonlinear equation

cosx − xex + x2 = 0.

This equation has a simple root in the interval (0, 1). Taking initial approximation as x0 = 1, Table

1 shows the iterations of McDougall-Wortherspoon method (1.3)-(1.6), a third order method and

our method (3.1)-(3.6).
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Table 1

n McDougall-Wotherspoon Method A third order method [8] Present method (3.1)-(3.6)

1. 0.64132328499316349 0.64599588437664313 0.63915520442184104

2. 0.6391544362117092 0.63915411336536088 0.6391541004893474

3. 0.63915409833960735 0.63915408672427509 division by zero

4. 0.63915411809538092 0.63915409327226524

5. 0.63915407824650872 0.63915409982025551

6. 0.63915409800228429 0.63915410636824566

7. 0.63915411775805786 0.63915411291623581

8. 0.63915407790918577 0.63915408627515002

9. 0.63915409766496134 division by zero

10. 0.63915411742073491

11. 0.63915407757186271

12. 0.63915409732763828

13. 0.63915411708341185

14. 0.63915407723453976

15. 0.63915409699031522

16. 0.63915411674608891

17. 0.63915407689721671

18. 0.63915409665299228

19. 0.63915411640876585

20. 0.63915407655989365

Example 4.3. We refer to the problem of ”Solving a Crime” from [1]. The problem is of estimating

the time of death of a person. It was noticed that the core temperatures of the corpse were 90◦F and

85◦F at 8 PM and 9 PM, respectively. Also, it was noticed that due to the faliur of air conditioner,

the room temperature increased at the rate of 1◦F per hour.
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Using the Newton’s Law of Cooling, the problem reduces to solving the equations

(4.1)
(

18 +
1

k

)

e−k − 1

k
− 12 = 0

and

(4.2)
(

18 +
1

k

)

e−kt + t − 1

k
− 26.6 = 0

simultaneously, where k denotes the constant of proportionality and t denotes the time. The equa-

tions (4.1) and (4.2) are nonlinear and so precise values of k and t is difficult to find. The author in

[1] used secant method to solve (4.1) with initial interval (0.1, 1). After six iterations, the approx-

imate value of k was obtained as 0.337114. Using k = 0.337114 in (4.2) and using secant method

again with initial interval (−2, 0), after six iterations, t was found to be −1.130939 which means

that the man would have been dead approximately 1 hour 8 minutes before 8 PM. In Tables 2 and 3,

we demonstrate that if instead of secant method, we apply our method (3.1)-(3.6), then we require

much less than six iterations to reach the same conclusion.

Table 2. To calculate value of k in (4.1)

n Mcdougall-Wortherspoon Method A third order method [8] Present method (3.1)-(3.6)

1. 0.39424536527674747 0.28399501628622575 0.33729218050164789

2. 0.33712186735193811 0.33711307862711176 0.33711438414127259

3. 0.33711437423853269 0.33711439449543812 division by zero

4. 0.33711439130907683 division by zero

5. 0.33711437857729748

6. 0.33711439564784168

7. 0.33711438291606233

8. 0.33711437018428397

9. 0.33711438725482684

10. 0.33711437452304749
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Table 3. To calculate value of t in (4.2)

n McDougall-Wortherspoon Method A third order method [8] Present method (3.1)-(3.6)

1. -0.43229389880795427 -1.4680241724237642 -1.1259217033754243

2. -1.1245149717844931 -1.1310367658010889 -1.1309393994384249

3. -1.1309384372848865 -1.13093937858347 division by zero

4. -1.1309393943474491 division by zero

5. -1.1309393977356448

6. -1.1309394011238405

7. -1.1309394045120362

8. -1.130939407900232

9. -1.1309394112884277

10. -1.1309394146766234

Remark 4.4. The examples in support of methods (3.7)-(3.12) as well as (3.13)-(3.18) have also

been tested and verified. For the conciseness, we avoid the details.

5. Conclusion

In this paper, we have studied the method (1.3)-(1.6) given by Mcdougall and Wortherspoon [7]

which is of order 1+
√

2. We have obtained some variant of this method by replacing the arithmetic

average by geometric average as well as harmonic average with the same order order of convergence.

Then we derived new hybrid methods by combining these methods with the secant method. It is

shown that the resulting methods are of order 3.5615 and moreover the efficiency of these methods

is comparable with that of the method of Mcdougall and Wortherspoon.
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