CHARACTERIZATIONS OF SOME NEW CLASSES OF FUZZY SETS IN GENERALIZED FUZZY TOPOLOGY

D. MANDAL ⁽¹⁾, SUMITA DAS(BASU) ⁽²⁾ AND M. N. MUKHERJEE ⁽³⁾

ABSTRACT. In the present paper we introduce the concepts of maximal μf -open sets, minimal μf -closed sets, local minimal μf -open sets etc. in a generalized fuzzy topological space. We study their fundamental properties and discuss relations among these different μf -open like sets.

1. Introduction and Preliminaries

After the foundation of fuzzy sets by L. A. Zadeh [10], its multidirectional applications in different branches of modern science inspired Chang [1] to introduce the concept of fuzzy topology which is a generalization of classical set topology. Further generalization was contemplated by Chetty [2], who introduced generalized fuzzy topology. In this paper, we introduce a few new classes of fuzzy sets, termed maximal μf -open sets, minimal μf -closed sets in Section 2, and discuss their behaviors in different situations in a generalized fuzzy topological space. In Section 3, we define local minimal μf -open sets at some point x of a non-empty set X as well as at some fuzzy point x_{λ} defined on X. Several results are obtained while discussing their properties and inter-relations.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54A40, secondary 54D10, 54D15.

Key words and phrases. Generalized fuzzy topology, maximal μf -open set, minimal μf -open set, local minimal μf -open set, fuzzy (μ, λ) -continuous function.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

A fuzzy set A in X is characterized by a membership function in the sense of Zadeh [10]. The basic fuzzy sets are the zero set, the whole set and the class of all fuzzy sets in X, to be denoted by 0_X and 1_X and I^X respectively. According to Chetty [2], a subcollection μ of I^X is called a generalized fuzzy topology (GFT, for short) if $0_X \in \mu$ and μ is closed under arbitrary unions of the members of μ . The structure (X, μ) , where X is a non-empty set and μ is a generalized fuzzy topology defined on X, is said to be a generalized fuzzy topological space (GFTS, for short). In what follows, by (X, μ) or simply X we will mean a GFTS. The members of μ are called μf -open sets and their complements are said to be μf -closed sets. For any $A \in I^X$, the μ -closure of A and μ -interior of A are denoted by $c_{\mu}(A)$ and $i_{\mu}(A)$ respectively and are defined by $c_{\mu}(A) = \bigwedge \{F : A \leq F, F \text{ is } \mu f\text{-closed}\}$ and $i_{\mu}(A) = \bigvee \{V \in \mu : V \leq A\}$. For any two fuzzy sets A, B in X, we write $A \leq B$ if $A(x) \leq B(x)$, for each $x \in X$ whereas if $A \leq B$ and $A(x) \neq B(x)$ for some $x \in X$ we write A < B. The notation AqB means that A is quasi-coincident [7] with B, i.e., AqB, if A(x) + B(x) > 1 for some $x \in X$. The negation of this statement is denoted by $A\overline{q}B$. For a fuzzy set A in X, the support of A, denoted by S(A), is defined by $S(A) = \{x \in X : A(x) > 0\}[10]$. The union $\bigvee A_{\alpha}$ and intersection $\bigwedge A_{\alpha}$ of a family $\{A_{\alpha} : \alpha \in \Lambda\}$ of fuzzy sets A_{α} are defined in the usual way (see [10]). A fuzzy singleton or a fuzzy point [7] with support x and value α (0 < $\alpha \leq 1$) is denoted by x_{α} . The fuzzy complement of a fuzzy set A in an GFTS X, is written as 1-A. For a crisp set A of X, χ_A will stand for the characteristic function of A, and the cardinality of any set Y will be denoted by |Y|.

2. Maximal μf -open sets and minimal μf -closed sets

In this section, we introduce and investigate maximal μf -open sets and minimal μf -closed sets.

Definition 2.1. Let (X, μ) be a GFTS. A fuzzy μ -open set A in X $(A \neq 1_X)$ is said to be a fuzzy maximal μ -open set (maximal μf -open set, for short) in X if for any $B \in \mu$, ($A \leq B \Rightarrow$ either B = A or $B = 1_X$). The set of all maximal μf -open sets in (X, μ) is denoted by $\max(X, \mu)$.

Example 2.1. Let $X = \{a, b, c\}$ and $\mu = \{0_X, A, B, A \vee B\}$ be a GFT on X, where A(a) = 0.2, A(b) = 0.8, A(c) = 0.4 and B(a) = 0.6, B(b) = 0.5, B(c) = 0.3. Here $A \vee B$ is a maximal μf -open set in (X, μ) .

Definition 2.2. A fuzzy μ -closed set F in a GFTS (X, μ) with $F \neq 0_X$, is called a fuzzy minimal μ -closed set or a minimal μ f-closed set in X if there is no μ f-closed set lying strictly between 0_X and F.

Example 2.2. Let $X = \{a, b\}$ and $\mu = \{0_X, A, B, A \vee B\}$, where A(a) = 0.3, A(b) = 0.5; B(a) = 0.2 and B(b) = 0.6, be a GFT on X. It is clear that $(1 - A \vee B)$ is a minimal μf -closed set in (X, μ) .

By definition of maximal μf -open set, it is clear that maximal μf -open sets are all μf -open, although the converse is not true, in general. We show this by the following example:

Example 2.3. Let (X, μ) be a GFTS, where $X = \{a, b\}$, $\mu = \{0_X, A, B, A \lor B\}$ such that A(a) = 0.4, A(b) = 0.6; B(a) = 0.2, B(b) = 0.8. Clearly A and B are both μf -open sets but they are not maximal μf -open

The following result gives a relation between maximal μf -open set and minimal μf -closed set.

Theorem 2.1. A non-null fuzzy set $U(\neq 1_X)$ in a GFTS (X, μ) is maximal μf -open iff (1 - U) is minimal μf -closed.

Proof. Let U be a maximal μf -open set in (X, μ) and let F be a μf -closed set such

that $F \leq (1 - U)$. Then $U \leq (1 - F) \in \mu$. Now U being maximal μf -open, (1 - F) is either U or 1_X .

If (1 - F) = U then F = (1 - U), and if $(1 - F) = 1_X$ then $F = 0_X$. Thus we conclude that (1 - U) is a minimal μf -closed set.

Conversely, let B be a minimal μf -closed set and G be any μf -open set such that $(1-B) \leq G$. Since B is minimal μf -closed, (1-G) is either 0_X or B. Now $(1-G) = 0_X \Rightarrow G = 1_X$, and $(1-G) = B \Rightarrow G = (1-B)$. Thus (1-B) is a maximal μf -open set.

Theorem 2.2. Let (X, μ) be a GFTS and $A \in \max(X, \mu)$. If B is a non-zero μf open set such that $A \wedge B = 0_X$, then $A = \chi_{S(A)}$ and B = 1 - A.

Proof. Let $y \in S(B)$. Since $A \wedge B = 0_X$, A(y) = 0. Thus $(A \vee B)(y) = B(y) \neq A(y)$. Since $A \in \max(X, \mu)$, $A \vee B = 1_X$. Again since $A \wedge B = 0_X$, it follows that $A = \chi_{S(A)}$ and B = 1 - A.

Theorem 2.3. Let (X, μ) be a GFTS. If $A = \chi_{S(A)} \in \max(X, \mu)$ then either $c_{\mu}(A) = A$ or $c_{\mu}(A) = 1_X$.

Proof. If $c_{\mu}(A) = 1_X$ then there is nothing to prove. So let $c_{\mu}(A) \neq 1_X$. Then there exists $y \in X$ such that $c_{\mu}(A)(y) < 1$. Let $B = 1 - c_{\mu}(A)$. Then $B \in \mu$, $B \neq 0_X$ and $A \wedge B = 0_X$. Hence by Theorem 2.2, B = 1 - A which implies that $c_{\mu}(A) = A$.

Theorem 2.4. Let (X, μ) be a GFTS and $A \in \max(X, \mu)$. If B is a non-null fuzzy set in X with $B \le 1 - A$ then $c_{\mu}(B) = 1 - A$.

Proof. If possible, let $c_{\mu}(B) \neq 1 - A$. Since $B \leq (1 - A)$ where $A \in \mu$, we have $c_{\mu}(B) \leq (1 - A)$. Again since $c_{\mu}(B) \neq (1 - A)$, it follows that there exists $x_0 \in X$ such that $c_{\mu}(B)(x_0) < (1 - A)(x_0)$. Now, $A \in \max(X, \mu)$ and $A(x_0) < 1 - c_{\mu}(B)(x_0) \Rightarrow (1 - c_{\mu}(B)) = 1_X \Rightarrow c_{\mu}(B) = 0_X$, a contradiction.

Theorem 2.5. Let (X, μ) be a GFTS and $A = \chi_{S(A)} \in \max(X, \mu)$. If B is a μf -closed set in X such that A < B, then $B = 1_X$.

Proof. If possible, let there exist $y \in X$ such that B(y) < 1. Then $[(1 - B) \lor A](y) \neq 0 = A(y)$ (since $y \in X \setminus S(A)$ as $A < B) \Rightarrow (1 - B) \lor A \neq A \Rightarrow (1 - B) \lor A = 1_X$. As $A \neq 1_X$ and $A = \chi_{S(A)}$, $S(A) \neq X$. Thus we can choose $x_1 \in X \setminus S(A)$ and then $(1 - B)(x_1) = 1$. Since A < B, $A(x_1) < B(x_1)$. Now $(1 - B)(x_1) = 1$ $\Rightarrow B(x_1) = 0 > A(x_1)$ which is a contradiction.

Corollary 2.1. Let (X, μ) be a GFTS and $A = \chi_{S(A)} \in \max(X, \mu)$. If $B \in I^X$ such that A < B, then $c_{\mu}(B) = 1_X$.

Theorem 2.6. Let (X, μ) be a GFTS and $A \in I^X$ such that $A \neq (1 - A)$. Then the following are equivalent:

- $(a) \{A, (1-A)\} \subseteq \max(X, \mu).$
- (b) $A = \chi_{S(A)}$ and $\mu = \{0_X, A, (1 A), 1_X\}.$

Proof. (a) \Rightarrow (b) : Since $A \neq (1 - A)$, we choose $x_0 \in X$ such that $A(x_0) \neq (1 - A)(x_0)$. Then $(A \vee (1 - A))(x_0) \neq A(x_0)$ or $(A \vee (1 - A))(x_0) \neq (1 - A)(x_0)$. So by (a), $(A \vee (1 - A)) = 1_X$. Hence for every $x \in X$ with A(x) < 1, we must have (1 - A)(x) = 1 and it follows that $A(x) = 0 \Rightarrow A = \chi_{S(A)}$. Next let $B \in \mu \setminus \{0_X\}$. If $B \leq A$, then $(1 - A) \wedge B = 0_X$ and hence by Theorem 2.2, B = 1 - (1 - A) = A. If $B \not\leq A$, i.e., there exists $x_0 \in X \setminus S(A)$ such that $B(x_0) > A(x_0) = 0$; then $A \vee B = 1_X$, as $A \in \max(X, \mu)$. Thus B(x) = 1, for all $x \in X \setminus S(A)$... (i)

Now three cases arise:

Case(I): Let B(x) = 1, for all $x \in S(A)$; then $B = 1_X$.

Case(II): Let B(x) = 0, for all $x \in S(A)$; then B = 1 - A.

Case(III): Let B(x) = t, where 0 < t < 1, for some $x \in S(A)$. Then $(1 - A) \lor B > 1 - A$ and hence by maximality of (1 - A), $(1 - A) \lor B = 1_X$. Thus B(x) = 1 = t, a contradiction. Hence case(III) is not tenable, so that $B = 1_X$ or 1 - A.

(b) \Rightarrow (a): Obvious.

Theorem 2.7. Let (X, μ) be a GFTS. Then the following statements are true:

(a) If U is a maximal μf -open set and V is any μf -open set then either $U \vee V = 1_X$ or $V \leq U$.

(b) For any two maximal μf -open sets U and V, either $U \vee V = 1_X$ or U = V. Proof. (a) Here two cases arise:

<u>Case-I</u>: $U \vee V = 1_X$. In this case we get the result.

<u>Case-II</u>: $U \lor V \neq 1_X$. Then $U \lor V$ is a μf -open set for which $U \leq U \lor V$. But U being maximal μf -open, $U \lor V = U$ (since $U \lor V \neq 1_X$) $\Rightarrow V \leq U$.

(b) For two maximal μf -open sets U and V, either $U \vee V = 1_X$ or $U \vee V \neq 1_X$. If $U \vee V \neq 1_X$ then $U \vee V$ is a μf -open set such that $U, V \leq U \vee V \Rightarrow U \vee V = U = V$.

Corollary 2.2. Let (X, μ) be a GFTS and $A \in \max(X, \mu)$ with $I(A) = \phi$, where $I(A) = \{x \in X : A(x) = 1\}$. Then for every $B \in \mu \setminus \{1_X\}$, $B \leq A$.

Proof. Follows from Theorem 2.7(a).

Corollary 2.3. Let (X, μ) be a GFTS and $A \in \max(X, \mu)$ with $I(A) = \phi$. Then $\max(X, \mu) = \{A\}$.

Corollary 2.4. Let (X, μ) be a GFTS. If $|\max(X, \mu)| > 1$, then for every $A \in \max(X, \mu)$, $I(A) \neq \phi$.

Theorem 2.8. Let (X, μ) be a GFTS. Then the following statements are true:

- (a) If F is a minimal μf -closed set and G is any μf -closed set then either $F \wedge G = 0_X$ or $F \leq G$.
- (b) For any two minimal μf -closed sets F and G, either $F \wedge G = 0_X$ or F = G. Proof. The proof is similar to that of Theorem 2.7.

Corollary 2.5. Let (X, μ) be a GFTS in which U is a maximal μf -open set and x_{λ} a fuzzy point such that $x_{\lambda}q(1-U)$. Then for any μf -open set V in X containing x_{λ} , $(1-U) \leq V$.

Proof. Since $x_{\lambda}q(1-U)$, then $x_{\lambda} \not\leq U$. Thus for any μf -open set V in X containing x_{λ} , $V \not\leq U$. Hence by Theorem 2.7(a), $U \vee V = 1_X \Rightarrow (1-U) \leq V$.

Corollary 2.6. For any maximal μf -open set U in any $GFTS(X, \mu)$, only one of the following statements (a) and (b) holds:

- (a) For each fuzzy point x_{λ} in X, if $x_{\lambda}q(1-U)$ then for each μf -open set V in X containing x_{λ} , $V = 1_X$.
- (b) There exists a fuzzy point x_{λ} with $x_{\lambda}q(1-U)$ and there exists a μf -open set V in X containing x_{λ} such that $(1-U) \leq V$ and $V \neq 1_{X}$.

Proof. If (a) holds, then we are done. On the other hand, if (a) does not hold then there exist a fuzzy point x_{λ} in X and a μf -open set V containing x_{λ} such that $x_{\lambda}q(1-U)$ and $V \neq 1_X$. Clearly $V < 1_X$. Then by Theorem 2.7(a), $U \vee V = 1_X$ or $V \leq U$. But $x_{\lambda}q(1-U) \Rightarrow V \not\leq U$. Thus $U \vee V = 1_X$ and so $(1-U) \leq V$.

Theorem 2.9. Let C be a minimal μ -closed set in a GFTS (X, μ) and x_{λ} be any fuzzy point in X such that $x_{\lambda} \leq C$. Then

- (i) $C \leq F$ for any μf -closed set F containing x_{λ} .
- (ii) $C = \bigwedge \{F : x_{\lambda} \leq F \text{ and } F \text{ is } \mu f\text{-closed }\}.$

Proof. (i) Let $x_{\lambda} \leq C$ and F be a μf -closed set such that $x_{\lambda} \leq F$. Then $C \wedge F \neq 0_X$. By Theorem 2.8(a), $C \leq F$.

(ii) By (i) above, $C \leq \bigwedge \{F : x_{\lambda} \leq F \text{ and } F \text{ is } \mu f\text{-closed } \}$. On the other hand, $y_{\beta} \leq \bigwedge \{F : x_{\lambda} \leq F \text{ and } F \text{ is } \mu f\text{-closed } \} \Rightarrow y_{\beta} \leq F$, for all $\mu f\text{-closed set } F$ containing $x_{\lambda} \Rightarrow y_{\beta} \leq C \Rightarrow \bigwedge \{F : x_{\lambda} \leq F \text{ and } F \text{ is } \mu f\text{-closed } \} = C$.

Theorem 2.10. Let $\{F_{\alpha} : \alpha \in \Lambda\}$ be a family of minimal μf -closed sets in a GFTS (X, μ) and F be a minimal μf -closed set in X.

- (a) If $Fq\bigvee_{\alpha\in\Lambda}F_{\alpha}$, then there exists some $\alpha_0\in\Lambda$ such that $F=F_{\alpha_0}$.
- (b) If $F \neq F_{\alpha}$ for any $\alpha \in \Lambda$, then $(\bigvee_{\alpha \in \Lambda} F_{\alpha}) \wedge F = 0_X$.

Proof. (a) We first show that $F \wedge F_{\alpha_0} \neq 0_X$ for at least one $\alpha_0 \in \Lambda$. If possible, let $F \wedge F_{\alpha} = 0_X$ for each $\alpha \in \Lambda$. Then $F\overline{q}F_{\alpha}$ for each $\alpha \in \Lambda \Rightarrow F_{\alpha} \leq (1 - F)$ for each $\alpha \in \Lambda \Rightarrow \bigvee_{\alpha \in \Lambda} F_{\alpha} \leq (1 - F) \Rightarrow F\overline{q}(\bigvee_{\alpha \in \Lambda} F_{\alpha})$, a contradiction. Thus $F \wedge F_{\alpha_0} \neq 0_X$ for some $\alpha_0 \in \Lambda$. Since F and F_{α_0} , are both minimal μf -closed sets in X, by Theorem 2.8(b), $F = F_{\alpha_0}$.

(b) If possible, let $(\bigvee_{\alpha \in \Lambda} F_{\alpha}) \wedge F \neq 0_X$. Then there exists $\alpha \in \Lambda$ such that $F_{\alpha} \wedge F \neq 0_X$. Now by Theorem 2.8(b), $F = F_{\alpha}$ for that α , which contradicts our assumption.

Let us recall the definitions of fuzzy (μ, λ) -continuous and fuzzy (μ, λ) -open functions which are defined in [5]. Our goal is to look for the behavior of maximal μf -open sets under these functions.

Definition 2.3. Let (X, μ) and (Y, λ) be two GFTS's. A mapping $f: (X, \mu) \to (Y, \lambda)$ is said to be

- (i) fuzzy (μ, λ) -continuous if $f^{-1}(F)$ is μf -closed for every λf -closed set F in Y.
- (ii) fuzzy (μ, λ) -open if for every μf -open set U in X, f(U) is λf -open in Y.

Theorem 2.11. Let (X, μ) and (Y, λ) be two GFTS's and $f: (X, \mu) \to (Y, \lambda)$ be a fuzzy (μ, λ) -continuous and fuzzy (μ, λ) -open surjection. If $A \in \max(X, \mu)$ then either $f(A) = 1_Y$ or $f(A) \in \max(Y, \lambda)$.

Proof. If $f(A) = 1_Y$ then there is nothing to prove. So let $f(A) \neq 1_Y$. Since f is fuzzy (μ, λ) -open and A is a μf -open set in X, f(A) is λf -open in Y. Again since $A \neq 0_X$, there exists $x_0 \in X$ such that $A(x_0) > 0$ and so $f(A)(f(x_0)) = \sup\{A(x) : f(x) = f(x_0)\} \geq A(x_0) > 0$ and hence $f(A) \neq 0_Y$. Let $B \in \lambda$ such that f(A) < B. It is sufficient to show that $B = 1_Y$. Let us choose $y_0 \in Y$ such that $f(A)(y_0) < B(y_0)$. Since f is surjective, there exists $x_0 \in X$ such that $f(x_0) = y_0$. Thus $A(x_0) \leq f(A)(y_0) < B(y_0)$. Now f being fuzzy (μ, λ) -continuous, $f^{-1}(B) \in \mu$. Hence we get $f^{-1}(B) \vee A \in \mu$, $A \leq f^{-1}(B) \vee A$ and

 $(f^{-1}(B) \vee A)(x_0) = \max\{A(x_0), B(y_0)\} = B(y_0) > A(x_0).$ Since $A \in \max(X, \mu)$, $f^{-1}(B) \vee A = 1_X.$ Next let $y \in Y$. Then there exists $x \in X$ such that f(x) = y. Thus $1 = \max\{A(x), B(y)\} \leq \max\{f(A)(y), B(y)\} = B(y)$ and so B(y) = 1. Hence $B = 1_Y$.

3. Local minimal μf -open sets

In this section, we develop the notion of locally minimal μf -open sets at some point of a non-empty set X as well as at some fuzzy point x_{λ} , defined on a GFTS X and study their basic properties.

Definition 3.1. Let (X, μ) be a GFTS, $x \in X$ and $A \in \mu$ such that $x \in S(A)$. Then A is called a locally minimal μf -open set at x if for each $B \in \mu$ with $x \in S(B)$ one has $A \leq B$. The set of all locally minimal μf -open sets at a point $x \in X$ is denoted by $\min(X, \mu, x)$.

Definition 3.2. Let (X, μ) be a GFTS, p_{λ} a fuzzy point in X and $A \in \mu$ such that $p_{\lambda} \leq A$. Then A is called a locally minimal μf -open set at p_{λ} if for each $B \in \mu$ with $p_{\lambda} \leq B$, $A \leq B$ holds. The set of all locally minimal μf -open sets at p_{λ} will be denoted by $\min(X, \mu, p_{\lambda})$.

Example 3.1. Let $X = \{a, b, c\}$, $\mu = \{0_X, P, Q\}$ be a GFT on X, where P(a) = 0.2, P(b) = 0.4, P(c) = 0.6 and Q(a) = 0.3, Q(b) = 0.6, Q(c) = 1. Here $P \in \mu$ is a locally minimal μf -open set at $a \in X$. Now we consider a fuzzy point $c_{0.7}$ in X. Then $c_{0.7} \leq Q \in \mu$ and clearly Q is a locally minimal μf -open set at $c_{0.7}$.

Theorem 3.1. Let (X, μ) be a GFTS, $x \in X$ and p_{λ} be any fuzzy point in X. Then $|\min(X, \mu, x)| \le 1$ and $|\min(X, \mu, p_{\lambda})| \le 1$.

Proof. Let $A, B \in \min(X, \mu, x)$. Then by definition, we have $A \leq B$ and $B \leq A$ and hence A = B. Therefore $|\min(X, \mu, x)| \leq 1$. Similarly we can show that $|\min(X, \mu, p_{\lambda})| \leq 1$.

Theorem 3.2. Let (X, μ) be a GFTS, $A \in \mu$ and $x \in X$. Then the following are equivalent:

- (a) $\min(X, \mu, x) = \{A\}.$
- (b) For each fuzzy point $x_{\lambda} \leq A$, $\min(X, \mu, x_{\lambda}) = \{A\}$.

Proof. (a) \Rightarrow (b): Let x_{λ} be a fuzzy point in X such that $x_{\lambda} \leq A$. Let $B \in \mu$ such that $x_{\lambda} \leq B$. Then $x \in S(B)$. Since $\min(X, \mu, x) = \{A\}$, we have $A \leq B$. So $\min(X, \mu, x_{\lambda}) = \{A\}$.

(b) \Rightarrow (a): Let $B \in \mu$ such that $x \in S(B)$. Let us consider a fuzzy point x_{λ} in X where $\lambda = \min\{\frac{A(x)}{2}, \frac{B(x)}{2}\}$. Then $x_{\lambda} \leq A \wedge B$. Since by (b), $\min(X, \mu, x_{\lambda}) = \{A\}$, we have $A \leq B$. So $\min(X, \mu, x) = \{A\}$.

Theorem 3.3. Let (X, μ) be a GFTS, $A \in \mu$ and p_{λ} be any fuzzy point in X with $p_{\lambda} \leq A$. Then the following are equivalent:

- (a) $\min(X, \mu, p_{\lambda}) = \{A\}.$
- (b) $\min(X, \mu, p_{\beta}) = \{A\}$, for every fuzzy point $p_{\beta} \leq A$ with $\lambda \leq \beta$.

Proof. (a) \Rightarrow (b): Suppose that p_{β} is a fuzzy point with $p_{\beta} \leq A$ and $\lambda \leq \beta$ hold. Let $B \in \mu$ with $p_{\beta} \leq B$. Then $\beta \leq B(p)$ and $\lambda \leq \beta \leq B(p) \Rightarrow p_{\lambda} \leq B$. Then by (a), it follows that $A \leq B$ and hence $\min(X, \mu, p_{\beta}) = \{A\}$.

(b)⇒ **(a)**: Clear.

Theorem 3.4. Let (X, μ) be a GFTS and p_{λ} be any fuzzy point in X. Then the following are equivalent:

- (a) $\min(X, \mu, p_{\lambda}) \neq \phi$.
- (b) $\bigwedge \{B \in \mu : p_{\lambda} \leq B\} \in \mu$.

Proof. (a) \Rightarrow (b): In view of Theorem 3.1 and (a), we have $min(X, \mu, p_{\lambda}) = \{A\}$ for some fuzzy set A. Now, for each $B \in \mu$ with $p_{\lambda} \leq B$ we have $A \leq B$. Thus $A \leq \bigwedge \{B \in \mu : p_{\lambda} \leq B\}$. Also by definition of $min(X, \mu, p_{\lambda}), p_{\lambda} \leq A(\in \mu)$. Hence $\bigwedge \{B \in \mu : p_{\lambda} \leq B\} \leq A$. Therefore $\bigwedge \{B \in \mu : p_{\lambda} \leq B\} = A \in \mu$.

(b) \Rightarrow (a): Let $A = \bigwedge \{B \in \mu : p_{\lambda} \leq B\}$. Clearly, $p_{\lambda} \leq A \in \mu$. Also, for each $B \in \mu$ with $p_{\lambda} \leq B$, we have $A \leq B$. Thus $min(X, \mu, p_{\lambda}) = \{A\} \neq \phi$.

Remark 1. The counterpart of the above theorem for the locally minimal μf -open set $min(X, \mu, x)$, viz ' for any $x \in X$, where (X, μ) is a GFTS, $min(X, \mu, x) \neq \phi$ iff $\bigwedge \{B \in \mu : x \in S(B)\} \in \mu$ ' is false. In fact, let $X = \{a, b\}$ and $\mu = \{0_X, A_r : 0 < r \leq \frac{1}{3}\}$, where $A_r(a) = A_r(b) = r$. Then (X, μ) is a GFTS. It is easy to see that $\bigwedge \{B \in \mu : a \in S(B)\} = \bigwedge \{B \in \mu : b \in S(B)\} = 0_X \in \mu$, but $min(X, \mu, a) = min(X, \mu, b) = \phi$. The desired result for $min(X, \mu, x)$ corresponding to that in the above theorem goes as follows.

Theorem 3.5. Let (X, μ) be a GFTS and $x \in X$. Then the following are equivalent: (a) $\min(X, \mu, x) \neq \phi$.

(b) $(\bigwedge \{B \in \mu : x \in S(B)\})(x) \neq 0$ and $\bigwedge \{B \in \mu : x \in S(B)\} \in \mu$.

Proof. (a) \Rightarrow (b): Suppose $\min(X, \mu, x) = \{A\}$. Then for each $B \in \mu$ with $x \in S(B)$ we have $A \leq B$. Thus $A \leq \bigwedge \{B \in \mu : x \in S(B)\}$. Again $x \in S(A) \Rightarrow \bigwedge \{B \in \mu : x \in S(B)\}$ defined A = $\bigwedge \{B \in \mu : x \in S(B)\}$. Hence (b) follows as $x \in S(A)$ and $A = \bigwedge \{B \in \mu : x \in S(B)\} \in \mu$.

(b) \Rightarrow (a): Let $F = \bigwedge \{B \in \mu : x \in S(B)\}$. Then by (b), $F \in \mu$. Also by the first condition of (b), $x \in S(F)$. Now for any $G \in \mu$ with $x \in S(G)$, we have $F \leq G$. Thus $F \in \min(X, \mu, x)$ and hence $\min(X, \mu, x) \neq \phi$.

If a fuzzy set A is locally minimal at some point in a GFTS, then it is not true in general that each point of S(A) must have a locally minimal μf -open set. We show this by the following example:

Example 3.2. Let (X, μ) be a GFTS, where $X = \{a, b\}$, and μ consist of 0_X , 1_X and all those fuzzy sets P such that $0 < P(a) \le \frac{1}{2}$ and P(b) = 0. Then 1_X is a locally minimal μf -open set at b, i.e., $\min(X, \mu, b) = \{1_X\}$. But $a \in S(1_X)$, $\min(X, \mu, a) = \phi$.

We have already defined minimal μf -closed set. In an analogous way we define minimal μf -open sets as follows:

Definition 3.3. A non-null μf -open set U in a GFTS (X, μ) is called a minimal μf -open set in X if there is no μf -open set strictly lying between 0_X and U.

Theorem 3.6. Let (X, μ) be a GFTS, $A \in \mu$ and p_{λ} be any fuzzy point in X such that $p_{\lambda} \leq A$. Then the following are equivalent:

- (a) A is a minimal μf -open set in X, and $\min(X, \mu, p_{\lambda}) \neq \phi$.
- (b) $min(X, \mu, p_{\lambda}) = \{A\}.$

Proof. (a) \Rightarrow (b): Let A be a minimal μf -open set in X and $p_{\lambda} \leq A$. Since $\min(X, \mu, p_{\lambda}) \neq \phi$, let $B \in \min(X, \mu, p_{\lambda})$. Then by definition of $\min(X, \mu, p_{\lambda})$, $B \leq A$. Again, A is minimal μf -open set in X implies A = B. Thus $\min(X, \mu, p_{\lambda}) = \{A\}$. (b) \Rightarrow (a): Let us take $B \in \mu \setminus \{0_X\}$ such that $B \leq A$. Let us choose some $y \in X$ such that B(y) > 0. Then $A(y) \geq B(y) > 0$. We consider the fuzzy point y_{α} where $\alpha = \frac{B(y)}{2}$. Then $y_{\alpha} \leq A \wedge B$. Now by (b), $\min(X, \mu, y_{\alpha}) = \{A\} \Rightarrow A \leq B$. So A = B and hence A is a minimal μf -open set in X.

The second condition of (a) is clear from (b).

Remark 2. The implication ' $(a) \Rightarrow (b)$ ' of the above theorem fails if the second condition of (a) is dropped. In fact, let $X = \{a, b, c\}$, $\mu = \{0_X, A, B, A \lor B\}$, where A(a) = 0.1, A(b) = 0.4, A(c) = 0.2; B(a) = 0.2, B(b) = 0.3 and B(c) = 0.5. Then both A and B are minimal μf -open sets in the GFTS (X, μ) and the fuzzy point $a_{0.1} \leq A \land B$. But $\min(X, \mu, a_{0.1}) = \phi \ (\neq \{A\} \text{ or } \{B\})$.

Acknowledgement

The authors are grateful to the referee for his/her meticulous reading of the manuscript and making critical comments, which have gone significantly towards marked improvement of the paper.

References

- [1] C.L. Chang; Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [2] G. P. Chetty; Generalized fuzzy topology, Ital. J. Pure Appl. Math. 24(2008), 91-96.
- [3] G. Choquet; Sur les notions de filter et de grille, C. R. Acad. Sci. Paris 224 (1947), 171-173.
- [4] Á. Császár; Generalized topology, generalized continuity, Acta Math. Hangar.96(2002), 351-357.
- [5] D. Mandal, M.N.Mukherjee; Some classes of fuzzy sets in a generalized fuzzy topological spaces and certain unifications, Annals of Fuzzy Mathematics and Informatics, 7(6)(2014), 949-957.
- [6] Samer Al. Ghour; Some generalizations of minimal fuzzy open sets, Acta Math. Univ. Comenianac. LXXV(1)(2006), 107-117.
- [7] Pao Ming Pu, Ying Ming Liu; Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599.
- [8] Pao Ming Pu, Ying Ming Li; Fuzzy topology II. Product and quotient spaces, J. Math. Anal. Appl. 77 (1980), 20-37.
- [9] C. K. Wong; Fuzzy topology; product and quotient theorems, J. Math. Anal. Appl. 45(1974), 512-521.
- [10] L.A. Zadeh; Fuzzy sets, Inform. Control 8 (1965), 338-353.
- (1) Department of Pure Mathematics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata-700 019, India

E-mail address: dmandal.cu@gmail.com

(2) Department of Mathematics, Sammilani Mahavidyalaya,, E. M. Bypass, Kolkata 700 075, India

 $E ext{-}mail\ address: das.sumita752@gmail.com}$

(3) Department of Pure Mathematics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata-700 019, India

 $E ext{-}mail\ address: mukherjeemn@yahoo.co.in}$