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CHARACTERIZATIONS OF SOME NEW CLASSES OF FUZZY
SETS IN GENERALIZED FUZZY TOPOLOGY

D. MANDAL (1), SUMITA DAS(BASU) (2) AND M. N. MUKHERJEE (3)

Abstract. In the present paper we introduce the concepts of maximal µf -open

sets, minimal µf -closed sets, local minimal µf -open sets etc. in a generalized fuzzy

topological space. We study their fundamental properties and discuss relations

among these different µf -open like sets.

1. Introduction and Preliminaries

After the foundation of fuzzy sets by L. A. Zadeh [10], its multidirectional appli-

cations in different branches of modern science inspired Chang [1] to introduce the

concept of fuzzy topology which is a generalization of classical set topology. Further

generalization was contemplated by Chetty [2], who introduced generalized fuzzy

topology. In this paper, we introduce a few new classes of fuzzy sets, termed max-

imal µf -open sets, minimal µf -closed sets in Section 2, and discuss their behaviors

in different situations in a generalized fuzzy topological space. In Section 3, we de-

fine local minimal µf -open sets at some point x of a non-empty set X as well as at

some fuzzy point xλ defined on X. Several results are obtained while discussing their

properties and inter-relations.
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A fuzzy set A in X is characterized by a membership function in the sense of

Zadeh [10]. The basic fuzzy sets are the zero set, the whole set and the class of all

fuzzy sets in X, to be denoted by 0X and 1X and IX respectively. According to

Chetty [2], a subcollection µ of IX is called a generalized fuzzy topology (GFT, for

short) if 0X ∈ µ and µ is closed under arbitrary unions of the members of µ. The

structure (X, µ), where X is a non-empty set and µ is a generalized fuzzy topology

defined on X, is said to be a generalized fuzzy topological space(GFTS, for short).

In what follows, by (X, µ) or simply X we will mean a GFTS. The members of µ

are called µf -open sets and their complements are said to be µf -closed sets. For

any A ∈ IX , the µ-closure of A and µ-interior of A are denoted by cµ(A) and

iµ(A) respectively and are defined by cµ(A) =
∧
{F : A ≤ F, F is µf -closed} and

iµ(A) =
∨
{V ∈ µ : V ≤ A}. For any two fuzzy sets A, B in X, we write A ≤ B if

A(x) ≤ B(x), for each x ∈ X whereas if A ≤ B and A(x) 6= B(x) for some x ∈ X

we write A < B. The notation AqB means that A is quasi-coincident [7] with B,

i.e., AqB, if A(x) + B(x) > 1 for some x ∈ X. The negation of this statement is

denoted by AqB. For a fuzzy set A in X, the support of A, denoted by S(A), is

defined by S(A) = {x ∈ X : A(x) > 0}[10]. The union
∨

Aα and intersection
∧

Aα

of a family {Aα : α ∈ Λ} of fuzzy sets Aα are defined in the usual way (see [10]). A

fuzzy singleton or a fuzzy point [7] with support x and value α (0 < α ≤ 1) is denoted

by xα. The fuzzy complement of a fuzzy set A in an GFTS X, is written as 1 − A.

For a crisp set A of X, χA will stand for the characteristic function of A, and the

cardinality of any set Y will be denoted by |Y |.

2. Maximal µf-open sets and minimal µf-closed sets

In this section, we introduce and investigate maximal µf -open sets and minimal

µf -closed sets.
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Definition 2.1. Let (X, µ) be a GFTS. A fuzzy µ-open set A in X (A 6= 1X) is said

to be a fuzzy maximal µ-open set (maximal µf -open set, for short) in X if for any

B ∈ µ, ( A ≤ B ⇒ either B = A or B = 1X). The set of all maximal µf -open sets

in (X, µ) is denoted by max(X, µ).

Example 2.1. Let X = {a, b, c} and µ = {0X , A, B, A ∨ B} be a GFT on X, where

A(a) = 0.2, A(b) = 0.8, A(c) = 0.4 and B(a) = 0.6, B(b) = 0.5, B(c) = 0.3. Here

A ∨ B is a maximal µf -open set in (X, µ).

Definition 2.2. A fuzzy µ-closed set F in a GFTS (X, µ) with F 6= 0X , is called a

fuzzy minimal µ-closed set or a minimal µf -closed set in X if there is no µf -closed

set lying strictly between 0X and F .

Example 2.2. Let X = {a, b} and µ = {0X , A, B, A ∨ B}, where A(a) = 0.3,

A(b) = 0.5; B(a) = 0.2 and B(b) = 0.6, be a GFT on X. It is clear that (1−A∨B)

is a minimal µf -closed set in (X, µ).

By definition of maximal µf -open set, it is clear that maximal µf -open sets

are all µf -open, although the converse is not true, in general. We show this by the

following example:

Example 2.3. Let (X, µ) be a GFTS, where X = {a, b}, µ = {0X , A, B, A∨B} such

that A(a) = 0.4, A(b) = 0.6; B(a) = 0.2, B(b) = 0.8. Clearly A and B are both

µf -open sets but they are not maximal µf -open

The following result gives a relation between maximal µf -open set and minimal

µf -closed set.

Theorem 2.1. A non-null fuzzy set U(6= 1X) in a GFTS (X, µ) is maximal µf -open

iff (1 − U) is minimal µf -closed.

Proof. Let U be a maximal µf -open set in (X, µ) and let F be a µf -closed set such
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that F ≤ (1 − U). Then U ≤ (1 − F ) ∈ µ. Now U being maximal µf -open, (1 − F )

is either U or 1X .

If (1 − F ) = U then F = (1 − U), and if (1 − F ) = 1X then F = 0X . Thus we

conclude that (1 − U) is a minimal µf -closed set.

Conversely, let B be a minimal µf -closed set and G be any µf -open set such that

(1 − B) ≤ G. Since B is minimal µf -closed, (1 − G) is either 0X or B. Now

(1 − G) = 0X ⇒ G = 1X , and (1 − G) = B ⇒ G = (1 − B). Thus (1 − B) is a

maximal µf -open set.

Theorem 2.2. Let (X, µ) be a GFTS and A ∈ max(X, µ). If B is a non-zero µf -

open set such that A ∧ B = 0X , then A = χS(A) and B = 1 − A.

Proof. Let y ∈ S(B). Since A∧B = 0X , A(y) = 0. Thus (A∨B)(y) = B(y) 6= A(y).

Since A ∈ max(X, µ), A∨B = 1X . Again since A∧B = 0X , it follows that A = χS(A)

and B = 1 − A.

Theorem 2.3. Let (X, µ) be a GFTS. If A = χS(A) ∈ max(X, µ) then either

cµ(A) = A or cµ(A) = 1X .

Proof. If cµ(A) = 1X then there is nothing to prove. So let cµ(A) 6= 1X . Then there

exists y ∈ X such that cµ(A)(y) < 1. Let B = 1 − cµ(A). Then B ∈ µ, B 6= 0X and

A ∧ B = 0X . Hence by Theorem 2.2, B = 1 − A which implies that cµ(A) = A.

Theorem 2.4. Let (X, µ) be a GFTS and A ∈ max(X, µ). If B is a non-null fuzzy

set in X with B ≤ 1 − A then cµ(B) = 1 − A.

Proof. If possible, let cµ(B) 6= 1 − A. Since B ≤ (1 − A) where A ∈ µ, we have

cµ(B) ≤ (1−A). Again since cµ(B) 6= (1−A), it follows that there exists x0 ∈ X such

that cµ(B)(x0) < (1 − A)(x0). Now, A ∈ max(X, µ) and A(x0) < 1 − cµ(B)(x0) ⇒

(1 − cµ(B)) = 1X ⇒ cµ(B) = 0X , a contradiction.

Theorem 2.5. Let (X, µ) be a GFTS and A = χS(A) ∈ max(X, µ). If B is

a µf -closed set in X such that A < B, then B = 1X .
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Proof. If possible, let there exist y ∈ X such that B(y) < 1. Then [(1−B)∨A](y) 6=

0 = A(y) (since y ∈ X \ S(A) as A < B) ⇒ (1 − B) ∨ A 6= A ⇒ (1 − B) ∨ A = 1X .

As A 6= 1X and A = χS(A), S(A) 6= X. Thus we can choose x1 ∈ X \ S(A)

and then (1 − B)(x1) = 1. Since A < B, A(x1) < B(x1). Now (1 − B)(x1) = 1

⇒ B(x1) = 0 > A(x1) which is a contradiction.

Corollary 2.1. Let (X, µ) be a GFTS and A = χS(A) ∈ max(X, µ). If B ∈ IX such

that A < B, then cµ(B) = 1X .

Theorem 2.6. Let (X, µ) be a GFTS and A ∈ IX such that A 6= (1 − A). Then the

following are equivalent:

(a) {A, (1 − A)} ⊆ max(X, µ).

(b) A = χS(A) and µ = {0X , A, (1 − A), 1X}.

Proof. (a) ⇒ (b) : Since A 6= (1 − A), we choose x0 ∈ X such that A(x0) 6=

(1 − A)(x0). Then (A ∨ (1 − A))(x0) 6= A(x0) or (A ∨ (1 − A))(x0) 6= (1 − A)(x0).

So by (a), (A ∨ (1 − A)) = 1X . Hence for every x ∈ X with A(x) < 1, we must have

(1 − A)(x) = 1 and it follows that A(x) = 0 ⇒ A = χS(A). Next let B ∈ µ \ {0X}.

If B ≤ A, then (1 − A) ∧ B = 0X and hence by Theorem 2.2, B = 1 − (1 − A) = A.

If B 6≤ A, i.e., there exists x0 ∈ X \ S(A) such that B(x0) > A(x0) = 0; then

A ∨ B = 1X , as A ∈ max(X, µ). Thus B(x) = 1, for all x ∈ X \ S(A) ... (i)

Now three cases arise:

Case(I): Let B(x) = 1, for all x ∈ S(A); then B = 1X .

Case(II): Let B(x) = 0, for all x ∈ S(A); then B = 1 − A.

Case(III): Let B(x) = t, where 0 < t < 1, for some x ∈ S(A). Then (1 − A) ∨ B >

1−A and hence by maximality of (1− A), (1−A) ∨B = 1X . Thus B(x) = 1 = t, a

contradiction. Hence case(III) is not tenable, so that B = 1X or 1 − A.

(b) ⇒ (a): Obvious.
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Theorem 2.7. Let (X, µ) be a GFTS. Then the following statements are true:

(a) If U is a maximal µf -open set and V is any µf -open set then either U ∨ V = 1X

or V ≤ U .

(b) For any two maximal µf -open sets U and V , either U ∨ V = 1X or U = V .

Proof. (a) Here two cases arise:

Case-I: U ∨ V = 1X . In this case we get the result.

Case-II: U ∨ V 6= 1X . Then U ∨ V is a µf -open set for which U ≤ U ∨ V . But U

being maximal µf -open, U ∨ V = U (since U ∨ V 6= 1X) ⇒ V ≤ U .

(b) For two maximal µf -open sets U and V , either U ∨ V = 1X or U ∨ V 6= 1X . If

U ∨V 6= 1X then U ∨V is a µf -open set such that U , V ≤ U ∨V ⇒ U ∨V = U = V .

Corollary 2.2. Let (X, µ) be a GFTS and A ∈ max(X, µ) with I(A) = φ, where

I(A) = {x ∈ X : A(x) = 1}. Then for every B ∈ µ \ {1X}, B ≤ A.

Proof. Follows from Theorem 2.7(a).

Corollary 2.3. Let (X, µ) be a GFTS and A ∈ max(X, µ) with I(A) = φ. Then

max(X, µ) = {A}.

Corollary 2.4. Let (X, µ) be a GFTS. If |max(X, µ)| > 1, then for every

A ∈ max(X, µ), I(A) 6= φ.

Theorem 2.8. Let (X, µ) be a GFTS. Then the following statements are true:

(a) If F is a minimal µf -closed set and G is any µf -closed set then either F ∧G = 0X

or F ≤ G.

(b) For any two minimal µf -closed sets F and G, either F ∧ G = 0X or F = G.

Proof. The proof is similar to that of Theorem 2.7.

Corollary 2.5. Let (X, µ) be a GFTS in which U is a maximal µf -open set and xλ

a fuzzy point such that xλq(1−U). Then for any µf -open set V in X containing xλ,

(1 − U) ≤ V .
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Proof. Since xλq(1−U), then xλ 6≤ U . Thus for any µf -open set V in X containing

xλ, V 6≤ U . Hence by Theorem 2.7(a), U ∨ V = 1X ⇒ (1 − U) ≤ V .

Corollary 2.6. For any maximal µf -open set U in any GFTS (X, µ), only one of

the following statements (a) and (b) holds:

(a) For each fuzzy point xλ in X, if xλq(1 − U) then for each µf -open set V in X

containing xλ, V = 1X .

(b) There exists a fuzzy point xλ with xλq(1−U) and there exists a µf -open set V in

X containing xλ such that (1 − U) ≤ V and V 6= 1X .

Proof. If (a) holds, then we are done. On the other hand, if (a) does not hold

then there exist a fuzzy point xλ in X and a µf -open set V containing xλ such that

xλq(1 − U) and V 6= 1X . Clearly V < 1X . Then by Theorem 2.7(a), U ∨ V = 1X or

V ≤ U . But xλq(1 − U) ⇒ V 6≤ U . Thus U ∨ V = 1X and so (1 − U) ≤ V .

Theorem 2.9. Let C be a minimal µ-closed set in a GFTS (X, µ) and xλ be any

fuzzy point in X such that xλ ≤ C. Then

(i) C ≤ F for any µf -closed set F containing xλ.

(ii) C =
∧
{F : xλ ≤ F and F is µf -closed }.

Proof. (i) Let xλ ≤ C and F be a µf -closed set such that xλ ≤ F . Then C ∧F 6= 0X .

By Theorem 2.8(a), C ≤ F .

(ii) By (i) above, C ≤
∧
{F : xλ ≤ F and F is µf -closed }. On the other hand,

yβ ≤
∧
{F : xλ ≤ F and F is µf -closed } ⇒ yβ ≤ F , for all µf -closed set F

containing xλ ⇒ yβ ≤ C ⇒
∧
{F : xλ ≤ F and F is µf -closed } = C.

Theorem 2.10. Let {Fα : α ∈ Λ} be a family of minimal µf -closed sets in a GFTS

(X, µ) and F be a minimal µf -closed set in X.

(a) If Fq
∨

α∈Λ

Fα, then there exists some α0 ∈ Λ such that F = Fα0
.

(b) If F 6= Fα for any α ∈ Λ, then (
∨

α∈Λ

Fα) ∧ F = 0X .
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Proof. (a) We first show that F ∧ Fα0
6= 0X for at least one α0 ∈ Λ. If possible, let

F ∧ Fα = 0X for each α ∈ Λ. Then FqFα for each α ∈ Λ ⇒ Fα ≤ (1 − F ) for each

α ∈ Λ ⇒
∨

α∈Λ

Fα ≤ (1 − F ) ⇒ Fq(
∨

α∈Λ

Fα), a contradiction. Thus F ∧ Fα0
6= 0X for

some α0 ∈ Λ. Since F and Fα0
, are both minimal µf -closed sets in X, by Theorem

2.8(b), F = Fα0
.

(b) If possible, let (
∨

α∈Λ

Fα)∧F 6= 0X . Then there exists α ∈ Λ such that Fα ∧F 6= 0X .

Now by Theorem 2.8(b), F = Fα for that α, which contradicts our assumption.

Let us recall the definitions of fuzzy (µ, λ)-continuous and fuzzy (µ, λ)-open func-

tions which are defined in [5]. Our goal is to look for the behavior of maximal µf -open

sets under these functions.

Definition 2.3. Let (X, µ) and (Y, λ) be two GFTS’s. A mapping f : (X, µ) → (Y, λ)

is said to be

(i) fuzzy (µ, λ)-continuous if f−1(F ) is µf -closed for every λf -closed set F in Y .

(ii) fuzzy (µ, λ)-open if for every µf -open set U in X, f(U) is λf -open in Y .

Theorem 2.11. Let (X, µ) and (Y, λ) be two GFTS’s and f : (X, µ) → (Y, λ) be

a fuzzy (µ, λ)-continuous and fuzzy (µ, λ)-open surjection. If A ∈ max(X, µ) then

either f(A) = 1Y or f(A) ∈ max(Y, λ).

Proof. If f(A) = 1Y then there is nothing to prove. So let f(A) 6= 1Y . Since f

is fuzzy (µ, λ)-open and A is a µf -open set in X, f(A) is λf -open in Y . Again

since A 6= 0X , there exists x0 ∈ X such that A(x0) > 0 and so f(A)(f(x0)) =

sup{A(x) : f(x) = f(x0)} ≥ A(x0) > 0 and hence f(A) 6= 0Y . Let B ∈ λ

such that f(A) < B. It is sufficient to show that B = 1Y . Let us choose y0 ∈

Y such that f(A)(y0) < B(y0). Since f is surjective, there exists x0 ∈ X such

that f(x0) = y0. Thus A(x0) ≤ f(A)(y0) < B(y0). Now f being fuzzy (µ, λ)-

continuous, f−1(B) ∈ µ. Hence we get f−1(B) ∨ A ∈ µ, A ≤ f−1(B) ∨ A and
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(f−1(B) ∨ A)(x0) = max{A(x0), B(y0)} = B(y0) > A(x0). Since A ∈ max(X, µ),

f−1(B) ∨ A = 1X . Next let y ∈ Y . Then there exists x ∈ X such that f(x) = y.

Thus 1 = max{A(x), B(y)} ≤ max{f(A)(y), B(y)} = B(y) and so B(y) = 1. Hence

B = 1Y .

3. Local minimal µf-open sets

In this section, we develop the notion of locally minimal µf -open sets at some point

of a non-empty set X as well as at some fuzzy point xλ, defined on a GFTS X and

study their basic properties.

Definition 3.1. Let (X, µ) be a GFTS, x ∈ X and A ∈ µ such that x ∈ S(A). Then

A is called a locally minimal µf -open set at x if for each B ∈ µ with x ∈ S(B) one

has A ≤ B. The set of all locally minimal µf -open sets at a point x ∈ X is denoted

by min(X, µ, x).

Definition 3.2. Let (X, µ) be a GFTS, pλ a fuzzy point in X and A ∈ µ such that

pλ ≤ A. Then A is called a locally minimal µf -open set at pλ if for each B ∈ µ

with pλ ≤ B, A ≤ B holds. The set of all locally minimal µf -open sets at pλ will be

denoted by min(X, µ, pλ).

Example 3.1. Let X = {a, b, c}, µ = {0X , P, Q} be a GFT on X, where P (a) = 0.2,

P (b) = 0.4, P (c) = 0.6 and Q(a) = 0.3, Q(b) = 0.6, Q(c) = 1. Here P ∈ µ is a

locally minimal µf -open set at a ∈ X. Now we consider a fuzzy point c0.7 in X. Then

c0.7 ≤ Q ∈ µ and clearly Q is a locally minimal µf -open set at c0.7.

Theorem 3.1. Let (X, µ) be a GFTS, x ∈ X and pλ be any fuzzy point in X. Then

| min(X, µ, x) |≤ 1 and | min(X, µ, pλ) |≤ 1.

Proof. Let A, B ∈ min(X, µ, x). Then by definition, we have A ≤ B and B ≤ A

and hence A = B. Therefore | min(X, µ, x) |≤ 1. Similarly we can show that

| min(X, µ, pλ) |≤ 1.
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Theorem 3.2. Let (X, µ) be a GFTS, A ∈ µ and x ∈ X. Then the following are

equivalent:

(a) min(X, µ, x) = {A}.

(b) For each fuzzy point xλ ≤ A, min(X, µ, xλ) = {A}.

Proof. (a)⇒ (b): Let xλ be a fuzzy point in X such that xλ ≤ A. Let B ∈ µ such

that xλ ≤ B. Then x ∈ S(B). Since min(X, µ, x) = {A}, we have A ≤ B. So

min(X, µ, xλ) = {A}.

(b)⇒ (a): Let B ∈ µ such that x ∈ S(B). Let us consider a fuzzy point xλ in X

where λ = min{A(x)
2

,
B(x)

2
}. Then xλ ≤ A∧B. Since by (b), min(X, µ, xλ) = {A}, we

have A ≤ B. So min(X, µ, x) = {A}.

Theorem 3.3. Let (X, µ) be a GFTS, A ∈ µ and pλ be any fuzzy point in X with

pλ ≤ A. Then the following are equivalent:

(a) min(X, µ, pλ) = {A}.

(b) min(X, µ, pβ) = {A}, for every fuzzy point pβ ≤ A with λ ≤ β.

Proof. (a)⇒ (b): Suppose that pβ is a fuzzy point with pβ ≤ A and λ ≤ β hold. Let

B ∈ µ with pβ ≤ B. Then β ≤ B(p) and λ ≤ β ≤ B(p) ⇒ pλ ≤ B. Then by (a), it

follows that A ≤ B and hence min(X, µ, pβ) = {A}.

(b)⇒ (a): Clear.

Theorem 3.4. Let (X, µ) be a GFTS and pλ be any fuzzy point in X. Then the

following are equivalent:

(a) min(X, µ, pλ) 6= φ.

(b)
∧
{B ∈ µ : pλ ≤ B} ∈ µ.

Proof. (a)⇒ (b): In view of Theorem 3.1 and (a), we have min(X, µ, pλ) = {A}

for some fuzzy set A. Now, for each B ∈ µ with pλ ≤ B we have A ≤ B. Thus

A ≤
∧
{B ∈ µ : pλ ≤ B}. Also by definition of min(X, µ, pλ), pλ ≤ A(∈ µ). Hence

∧
{B ∈ µ : pλ ≤ B} ≤ A. Therefore

∧
{B ∈ µ : pλ ≤ B} = A ∈ µ.
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(b)⇒ (a): Let A =
∧
{B ∈ µ : pλ ≤ B}. Clearly, pλ ≤ A ∈ µ. Also, for each B ∈ µ

with pλ ≤ B, we have A ≤ B. Thus min(X, µ, pλ) = {A} 6= φ.

Remark 1. The counterpart of the above theorem for the locally minimal µf -open

set min(X, µ, x), viz ‘ for any x ∈ X, where (X, µ) is a GFTS, min(X, µ, x) 6= φ

iff
∧
{B ∈ µ : x ∈ S(B)} ∈ µ’ is false. In fact, let X = {a, b} and µ = {0X , Ar :

0 < r ≤ 1
3
}, where Ar(a) = Ar(b) = r. Then (X, µ) is a GFTS. It is easy to see

that
∧
{B ∈ µ : a ∈ S(B)} =

∧
{B ∈ µ : b ∈ S(B)} = 0X ∈ µ, but min(X, µ, a) =

min(X, µ, b) = φ. The desired result for min(X, µ, x) corresponding to that in the

above theorem goes as follows.

Theorem 3.5. Let (X, µ) be a GFTS and x ∈ X. Then the following are equivalent:

(a) min(X, µ, x) 6= φ.

(b) (
∧
{B ∈ µ : x ∈ S(B)})(x) 6= 0 and

∧
{B ∈ µ : x ∈ S(B)} ∈ µ.

Proof. (a)⇒ (b): Suppose min(X, µ, x) = {A}. Then for each B ∈ µ with x ∈ S(B)

we have A ≤ B. Thus A ≤
∧
{B ∈ µ : x ∈ S(B)}. Again x ∈ S(A) ⇒

∧
{B ∈ µ :

x ∈ S(B)} ≤ A. Thus A =
∧
{B ∈ µ : x ∈ S(B)}. Hence (b) follows as x ∈ S(A)

and A =
∧
{B ∈ µ : x ∈ S(B)} ∈ µ.

(b)⇒ (a): Let F =
∧
{B ∈ µ : x ∈ S(B)}. Then by (b), F ∈ µ. Also by the first

condition of (b), x ∈ S(F ). Now for any G ∈ µ with x ∈ S(G), we have F ≤ G.

Thus F ∈ min(X, µ, x) and hence min(X, µ, x) 6= φ.

If a fuzzy set A is locally minimal at some point in a GFTS, then it is not true

in general that each point of S(A) must have a locally minimal µf -open set. We

show this by the following example:

Example 3.2. Let (X, µ) be a GFTS, where X = {a, b}, and µ consist of 0X , 1X

and all those fuzzy sets P such that 0 < P (a) ≤ 1
2

and P (b) = 0. Then 1X is

a locally minimal µf -open set at b, i.e., min(X, µ, b) = {1X}. But a ∈ S(1X),

min(X, µ, a) = φ.
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We have already defined minimal µf -closed set. In an analogous way we define

minimal µf -open sets as follows:

Definition 3.3. A non-null µf -open set U in a GFTS (X, µ) is called a minimal

µf -open set in X if there is no µf -open set strictly lying between 0X and U .

Theorem 3.6. Let (X, µ) be a GFTS, A ∈ µ and pλ be any fuzzy point in X such

that pλ ≤ A. Then the following are equivalent:

(a) A is a minimal µf -open set in X, and min(X, µ, pλ) 6= φ.

(b) min(X, µ, pλ) = {A}.

Proof. (a)⇒ (b): Let A be a minimal µf -open set in X and pλ ≤ A. Since

min(X, µ, pλ) 6= φ, let B ∈ min(X, µ, pλ). Then by definition of min(X, µ, pλ), B ≤

A. Again, A is minimal µf -open set in X implies A = B. Thus min(X, µ, pλ) = {A}.

(b)⇒ (a): Let us take B ∈ µ \ {0X} such that B ≤ A. Let us choose some y ∈ X

such that B(y) > 0. Then A(y) ≥ B(y) > 0. We consider the fuzzy point yα where

α = B(y)
2

. Then yα ≤ A ∧B. Now by (b), min(X, µ, yα) = {A} ⇒ A ≤ B. So A = B

and hence A is a minimal µf -open set in X.

The second condition of (a) is clear from (b).

Remark 2. The implication ‘(a) ⇒ (b)’ of the above theorem fails if the second

condition of (a) is dropped. In fact, let X = {a, b, c}, µ = {0X , A, B, A ∨ B}, where

A(a) = 0.1, A(b) = 0.4, A(c) = 0.2; B(a) = 0.2, B(b) = 0.3 and B(c) = 0.5. Then

both A and B are minimal µf -open sets in the GFTS (X, µ) and the fuzzy point

a0.1 ≤ A
∧

B. But min(X, µ, a0.1) = φ (6= {A} or {B}).
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