
Jordan Journal of Mathematics and Statistics (JJMS) 8(3), 2015, pp 223 - 237

THE NORM OF CERTAIN MATRIX OPERATORS ON NEW
DIFFERENCE SEQUENCE SPACES

H. ROOPAEI (1) AND D. FOROUTANNIA (2)

Abstract. The purpose of the present study is to introduce the sequence space

lp(∆, E) =

{
x = (xn)∞n=1 :

∞∑
n=1

∣∣xminEn
− xminEn+1

∣∣p <∞

}
,

where E = (En) is a partition of finite subsets of the positive integers and p ≥

1. The topological properties and inclusion relations of this space are studied.

Moreover, the problem of finding the norm of certain matrix operators such as

Copson and Hilbert from lp into lp(∆, E) is investigated.

1. Introduction

Let ω denote the space of all real-valued sequences. Any vector subspace of ω is

called a sequence space. Let E = (En) be a partition of finite subsets of the positive

integers such that

(1.1) maxEn < minEn+1,

for n = 1, 2, · · · . We define the sequence spaces lp(E) by

lp(E) =

{
x = (xn) ∈ ω :

∞∑
n=1

∣∣∣∣∣∑
j∈En

xj

∣∣∣∣∣
p

<∞

}
, (1 ≤ p <∞),
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with the semi-norm ‖.‖p,E, which is defined the following way:

‖x‖p,E =

(
∞∑
n=1

∣∣∣∣∣∑
j∈En

xj

∣∣∣∣∣
p)1/p

.(1.2)

It is significant that in the special case En = {n} for n = 1, 2, · · · , we have lp(E) = lp

and ‖x‖p,E = ‖x‖p. For more details on the sequence space lp(E), the reader may

refer to [5].

The idea of difference sequence spaces was introduced by Kizmaz [10]. The difference

sequence space lp(∆) is defined by

lp(∆) = {x = (xn) :
∞∑
n=1

|xn − xn+1|p <∞}, (1 ≤ p <∞),

with norm

‖x‖p,∆ =

(
∞∑
n=1

|xn − xn+1|p
) 1

p

.

Let X, Y be two sequence spaces and A = (ank) be an infinite matrix of real numbers

ank, where n, k ∈ {1, 2, · · · }. We say that A defines a matrix mapping from X into

Y , and denote by A : X → Y , if for every sequence x = (xk) ∈ X the sequence

Ax = {(Ax)n}∞n=1 exists and is in Y , where (Ax)n =
∑∞

k=1 ankxk for n = 1, 2, · · · .

For a sequence space X, the matrix domain XA of an infinite matrix A is defined by

(1.3) XA = {x = (xn) ∈ ω : Ax ∈ X} ,

which is a sequence space. The new sequence space XA generated by the limitation

matrix A from a sequence space X can be the expansion or the contraction and or

the overlap of the original space X. A matrix A = (ank) is called a triangle if ank = 0

for k > n and ann 6= 0 for all n ∈ N. If A is triangle, then one can easily observe that

the sequence spaces XA and X are linearly isomorphic, i.e., XA
∼= X.

In the past, several authors studied matrix transformations on sequence spaces that

are the matrix domains of triangle matrices in classical spaces lp, l∞, c and c0. For

instance, some matrix domains of the difference operator were studied in [1, 3, 4, 10,
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12]. In these studies the matrix domains are obtained by triangle matrices, hence

these spaces are normed sequence spaces. For more details on the domain of triangle

matrices in some sequence spaces, the reader may refer to Chapter 4 of [2]. The

matrix domains given in this paper specify by a certain non-triangle matrix, so we

should not expect that related spaces are normed sequence spaces.

In the study, the normed sequence space lp(∆) is extended to semi-normed space

lp(∆, E). We investigate some topological properties of this space and derive inclusion

relations concerning with its. Moreover, we shall consider the inequality of the form

‖Ax‖p,∆,E ≤ U‖x‖p,

for all sequence x ∈ lp. The constant U is not depending on x, and we seek the

smallest possible value of U . We write ‖A‖p,∆,E for the norm of A as an operator

from lp into lp(∆, E), and ‖A‖p,∆ for the norm of A as an operator from lp into lp(∆).

More recently, the problem of finding the upper bound of certain matrix operators

on the sequence spaces lp(w), d(w, p) and lp(∆) are studied in [6, 9, 11]. In the study,

we examine this problem for matrix operators from lp into lp(∆, E) and we consider

certain matrix operators such as Copson and Hilbert.

In a similar way, the Authors have introduced the sequence space lp(E,∆) and in-

vestigated the norm of certain matrix operators on this space [7].

2. The sequence space lp(∆, E) of non-absolute type

Suppose p ≥ 1 and E = (En) is a sequence of finite subsets of the positive integers

that satisfies condition (1.1). We define the sequence spaces lp(∆, E) by

lp(∆, E) =

{
x = (xn)∞n=1 :

∞∑
n=1

∣∣xminEn − xminEn+1

∣∣p <∞} ,
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with the semi-norm ‖.‖p,∆,E, which is defined the following way:

‖x‖p,∆,E =

(
∞∑
n=1

∣∣xminEn − xminEn+1

∣∣p)1/p

.(2.1)

It should be noted that the function ‖.‖p,∆,E cannot be the norm, since if x =

(1, 1, 1, · · · ) and En = {2n − 1, 2n} for all n, then ‖x‖p,∆,E = 0 while x 6= 0.

It is also significant that in the special case En = {n} for n = 1, 2, · · · , we have

lp(∆, E) = lp(∆) and ‖x‖p,∆,E = ‖x‖p,∆.

If the infinite matrix A = (ank) is defined by

ank =


1 if k = minEn

−1 if k = minEn+1

0 otherwise,

(2.2)

with the notation of (1.3), we can redefine the space lp(∆, E) as follows:

lp(∆, E) = (lp)A.

Throughout this article, the cardinal number of the set Ek is denoted by |Ek|. The

purpose of this section is to consider some properties of the sequence space lp(∆, E)

and is to derive some inclusion relations related to them. Now, we may begin with

the following theorem which is essential in the study.

Theorem 2.1. Let p ≥ 1 and E = (En) be a partition of finite subsets of the positive

integers that satisfies condition (1.1). The set lp(∆, E) becomes a vector space with

coordinatewise addition and scalar multiplication, which is the complete semi-normed

space by ‖.‖p,∆,E defined by (2.1).

Proof. This is a routine verification and so we omit the detail. �

It can easily be checked that the absolute property does not hold on the space

lp(∆, E), that is ‖x‖p,∆,E 6= ‖|x|‖p,∆,E for at least one sequence in the space lp(∆, E),
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and this says that lp(∆, E) is a sequence space of nonabsolute type, where |x| = (|xk|).

Suppose that En = {2n − 1, 2n} for n = 1, 2, .... If x = (1, 0, 1, 0, · · · ) and y =

(1,−1, 0, 0, 1,−1, 0, 0, · · · ), then x ∈ lp(∆, E) − lp(E) and y ∈ lp(E) − lp(∆, E). So

neither of the spaces lp(E) and lp(∆, E) include the other one.

Theorem 2.2. Let p ≥ 1 and E = (En) be a partition of finite subsets of the positive

integers that satisfies condition (1.1). We have the following statements:

(i) If M1 = {x = (xn) : xn = xn+1, ∀n }, then lp(∆, E)/M1 ' lp(E).

(ii) If M2 = {x = (xn) : xminEn = xminEn+1 , ∀n }, then lp(∆, E)/M2 ' lp.

Proof. (i) If the map T : lp(∆, E) −→ lp(E) is defined by (Tx)n = xn − xn+1 for all

x ∈ lp(∆, E) and for all n, then T is well-defined and linear. Let y ∈ lp(E), we define

the sequence x = (xk) by

x = (0,−y1,−y1 − y2,−y1 − y2 − y3, · · · , ).

It is clear that x ∈ lp(∆, E) and Tx = y, so the map T is surjective. The remaining

proof of part (i) is obvious.

(ii) Consider the map T : lp(∆, E) −→ lp defined by (Tx)n = xminEn − xminEn+1 for

all x ∈ lp(∆, E) and for all n. T is well-defined and linearity of T is trivial. Let

y ∈ lp, we define the sequence x = (xk) by

x = (0, 0, · · · , 0︸ ︷︷ ︸
E1

,−y1, 0, · · · , 0︸ ︷︷ ︸
E2

,−y1 − y2, 0, · · · , 0︸ ︷︷ ︸
E3

, · · · ).

It is clear that x ∈ lp(∆, E) and Tx = y, so the map T is surjective. By applying the

first isomorphism theorem we deduce the desired result. �

One may expect a similar result for the space lp(∆, E) as was observed for the space

lp, and ask the following natural question: Is the space lp(∆, E) a semi-inner product

space for p = 2? The answer is positive and is given by the following theorem:
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Theorem 2.3. Except the case p =2, the space lp(∆, E) is not a semi-inner product

space.

Proof. If we define < x, y >=
∑∞

n=1(xminEn − xminEn+1)(yminEn − yminEn+1), then it

is a semi-inner product on the space l2(∆, E) and ‖x‖2
2,∆,E =< x, x >. Now consider

the sequences x and y such that

x = (1, 0, · · · , 0︸ ︷︷ ︸
E1

, 1, 0, · · · , 0︸ ︷︷ ︸
E2

, 0, 0, · · · )

y = (1, 1, · · · , 1︸ ︷︷ ︸
E1

, 0, 0, · · · )

we see that

‖x+ y‖2
p,∆,E + ‖x− y‖2

p,∆,E 6= 2
(
‖x‖2

p,∆,E + ‖y‖2
p,∆,E

)
(p 6= 2).

Since the equation 2 = 2
2
p has only one root p = 2, the semi-norm of the space lp(∆, E)

does not satisfy the parallelogram equality, which means that the semi-norm cannot

be obtained from the semi-inner product. Hence the space lp(∆, E) with p 6= 2 is not

a semi-inner product space. �

Let X be a semi-normed space with a semi-norm g. A sequence (bn) of elements of

the semi-normed space X is called a Schauder basis (or briefly a basis) for X iff, for

each x ∈ X there exists a unique sequence of scalars (αn) such that

lim
n→∞

g

(
x−

n∑
k=1

αkbk

)
= 0.

The series
∑∞

k=1 αkbk which has the sum x is then called the expansion of x with

respect to (bn), and written as x =
∑∞

k=1 αkbk.

In the following, we will give a sequence of the points of the space lp(∆, E) which forms

a basis for the space lp(∆, E). Here and in the sequel, we shall use the convention

that any term with a zero subscript is equal to zero.
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Theorem 2.4. If the sequence b(k) = {b(k)
j }∞j=1 is defined such that

b
(k)
j =

 0 for j < minEk

1 for j ≥ minEk.

Then the sequence
{
b(k)
}∞
k=1

is a basis for the space lp(∆, E), and any x ∈ lp(∆, E)

has a unique representation of the form

x =
∞∑
k=1

αkb
(k),

where αk = xminEk
− xminEk−1

for k = 1, 2, · · · .

Proof. This is a routine verification and so we omit the detail. �

Definition 2.1. Let E = (En) be a partition of finite subsets of the positive integers

that satisfies condition (1.1), and s = (sn) be a strictly increasing sequence of the

positive integers. The generated partition H = (Hn) is defined by E and s, as follows

Hn = ∪snj=sn−1+1Ej,

for n = 1, 2, · · · .

Note that any arbitrary partition H = (Hn) that satisfies condition (1.1) generated

by the partition E = (En) and the sequence s = (sn), where En = {n} and sn =

maxHn for all n. It is also important to know sn − sn−1 = |Hn|.

In the following, the inclusion relation between the spaces lp(∆, E) and lp(∆, H) is

examined. Obviously if sn − sn−1 > 1 only for a finite number of n, then

lp(∆, E) = lp(∆, H).

Theorem 2.5. Let E, s and H be as in Definition 2.1, and

(2.3) sup
n

(sn − sn−1) <∞.
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We have lp(∆, E) ⊂ lp(∆, H) for all p ≥ 1. Moreover if sn − sn−1 > 1 for an infinite

number of n, then these inclusions are strict.

Proof. Let p ≥ 1 and ζ = supn (sn − sn−1). To prove the validity of the inclusion

lp(∆, E) ⊂ lp(∆, H), we show that

‖x‖p,∆,H ≤ ζ
p−1
p ‖x‖p,∆,E,

for each x ∈ lp(∆, E). Note that ζ = 1, when p = 1. Suppose that x = (xn) ∈

lp(∆, E) is an arbitrary sequence. By using Definition 2.5, we have minHn =

minEsn−1+1 and minHn+1 = minEsn+1, so

xminHn − xminHn+1 = xminEsn−1+1 − xminEsn+1

=
sn∑

k=sn−1+1

(xminEk
− xminEk+1

).(2.4)

By apply the triangular inequality and Hölder’s inequality, we deduce that

∣∣∣∣∣∣
sn∑

k=sn−1+1

(xminEk
− xminEk+1

)

∣∣∣∣∣∣ ≤
sn∑

k=sn−1+1

|xminEk
− xminEk+1

|

≤

 sn∑
k=sn−1+1

1p∗

1/p∗ sn∑
k=sn−1+1

∣∣xminEk
− xminEk+1

∣∣p1/p

= (sn − sn−1)1/p∗

 sn∑
k=sn−1+1

∣∣xminEk
− xminEk+1

∣∣p1/p

,(2.5)

where p∗ = p/(p− 1) . The relations (2.4) and (2.5) imply that

∣∣xminHn − xminHn+1

∣∣p ≤ (sn − sn−1)p−1
sn∑

k=sn−1+1

∣∣xminEk
− xminEk+1

∣∣p ,
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so

∞∑
n=1

∣∣xminHn − xminHn+1

∣∣p ≤ ∞∑
n=1

(sn − sn−1)p−1
sn∑

k=sn−1+1

∣∣xminEk
− xminEk+1

∣∣p
≤ sup

n
(sn − sn−1)p−1

∞∑
n=1

sn∑
k=sn−1+1

∣∣xminEk
− xminEk+1

∣∣p
= ζp−1

∞∑
n=1

∣∣xminEn − xminEn+1

∣∣p .
This means that

‖x‖pp,∆,H ≤ ζp−1‖x‖pp,∆,E.

Moreover, let sn − sn−1 > 1 for an infinite number of n. There is a sequence (nj)

which snj
− snj−1

> 1 for j = 1, 2, · · · . We define the sequence x = (xk) such that

xminEk
− xminEk+1

=


1 if k = snj−1

+ 1

−1 if k = snj−1
+ 2

0 otherwise,

(2.6)

for k = 1, 2, · · · . It is obvious that x ∈ lp(∆, H) − lp(∆, E), and the inclusion

lp(∆, E) ⊂ lp(∆, H) strictly holds. �

Corollary 2.1. Let H = (Hn) be a partition of finite subsets of the positive integers

that satisfies condition (1.1). If p ≥ 1 and supn |Hn| <∞, then we have

(i) lp(∆) ⊂ lp(∆, H)

(ii) lp ⊂ lp(∆, H)

Moreover if |Hn| > 1 for an infinite number of n, then these inclusion are strict.

Proof. (i) If En = {n} and sn = minHn for all n, then the partition H = (Hn) is

generated by E = (En) and s = (sn). The desired result follows from Theorem 2.5.

(ii) Since lp ⊂ lp(∆) the proof will be finished by part (i). �
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Corollary 2.2. Let p ≥ 1, and M and N be two positive integers. If we put Ei =

{Mi −M + 1,Mi −M + 2, · · · ,Mi} and Hi = {MNi −MN + 1,MNi −MN +

2, · · · ,MNi} for all i, then lp(∆, E) ⊂ lp(∆, H). Moreover if N > 1, then this

inclusion strictly holds.

Proof. If si = Ni for all i, then the partition H = (Hn) is generated by E and s. The

desired result follows from Theorem 2.5. �

In the following, we consider the necessity of the condition (2.3) in Theorem (2.5).

Theorem 2.6. Let E, s and H be as in Definition 2.1. If p > 1 and

sup
n

(sn − sn−1) =∞,(2.7)

then neither of the spaces lp(∆, E) and lp(∆, H) includes the other one.

Proof. There exists a sequence {nk} such that snk
− snk−1 ≥ k, by (2.7). Consider

the sequence y = (yi) such that

yminEi
− yminEi+1

=
1

(snk
− snk−1) k1/p

,

for snk−1 + 1 ≤ i ≤ snk
. We conclude that y ∈ lp(∆, E) − lp(∆, H). Also if the

sequence x = (xn) is defined as (2.6), then x ∈ lp(∆, H) − lp(∆, E). This completes

the proof of the theorem. �

Corollary 2.3. Let H = (Hn) be a sequence of finite subsets of the positive integers

that satisfies condition (1.1). If p > 1 and

sup
n
|Hn| =∞,

then neither of the spaces lp(∆, H) and lp(∆) includes the other one.

Proof. If En = {n} and sn = maxHn for all n, the desired result follows from Theorem

2.6. �
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Theorem 2.7. If 1 ≤ p < s, then lp(∆, H) ⊂ ls(∆, H).

Proof. Let x ∈ lp(∆, H), we have
(
xminHn − xminHn+1

)∞
n=1
∈ lp. So(

xminHn − xminHn+1

)∞
n=1
∈ ls, by the inclusion lp ⊂ ls. Hence x ∈ ls(∆, H), this

finishes the proof of the theorem. �

3. The norm of matrix operators from lp into lp(∆, E)

In this section the problem of finding the norm of certain matrix operators such

as Copson and Hilbert from lp into lp(∆, E) are considered, where p ≥ 1. At the

beginning, we tend to compute the norm of operators from l1 into l1(∆, E).

Theorem 3.1. Let A = (an,k) be a matrix operator and E = (En) be a partition that

satisfies condition (1.1). If

M = sup
k

∞∑
n=1

∣∣aminEn,k − aminEn+1,k

∣∣ <∞,
then A is a bounded operator from l1 into l1(∆, E) and ‖A‖1,∆,E = M . In particular

if aminEn,k ≥ aminEn+1,k for all n, k, then

‖A‖1,∆,E = sup
k
|a1,k| .

Proof. Let (xn) be in l1 and uk =
∑∞

n=1

∣∣aminEn,k − aminEn+1,k

∣∣ for all k. We have

‖Ax‖1,∆,E ≤
∞∑
n=1

∞∑
k=1

∣∣aminEn,k − aminEn+1,k

∣∣ |xk|
=

∞∑
k=1

uk |xk|

≤ M‖x‖1.

which says that ‖A‖1,∆,E 6 M . Conversely, we take x = en which en denotes the

sequence having 1 in place n and 0 elsewhere, then ‖x‖1 = 1 and ‖Ax‖1,∆,E = un

which proves that ‖A‖1,∆,E = M . �
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In the sequel we will compute the norms of Copson and Hilbert operators from

sequence space l1 into l1(∆, E).

The Copson operator C is defined by y = Cx, where

yn =
∞∑
k=n

xk
k
, (∀n).

It is given by the Copson matrix:

cn,k =

 1
k

for n ≤ k

0 for n > k.

Corollary 3.1. Let C be the Copson operator and E = (En) be a partition that

satisfies condition (1.1), then C is a bounded operator from l1 into l1(∆, E) and

‖C‖1,∆,E = 1.

Proof. Since M = supk c1,k = c1,1 = 1, we obtain the desired result from Theorem

3.1. �

Corollary 3.2. Suppose that C is the Copson operator and En = {n} for all n, then

C is a bounded operator from l1 into l1(∆) and ‖C‖1,∆ = 1.

We recall the Hilbert operator H which is defined by the matrix:

hn,k =
1

n+ k
, (n, k = 1, 2, · · · ).

Corollary 3.3. Let H be the Hilbert operator and E = (En) be a partition that

satisfies condition (1.1), then H is a bounded operator from l1 into l1(∆, E) and

‖H‖1,∆,E =
1

2
.

Proof. According to the above notation M = supk h1,k = 1
2
, so ‖H‖1,∆,E = 1

2
�

Corollary 3.4. If H is the Hilbert operator, then H is a bounded operator from l1

into l1(∆) and ‖H‖1,∆ = 1
2
.
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Proof. By letting En = {n} in Theorem 3.1, the proof is obvious. �

In the following, the problem of finding the norm of certain matrix operators such

as Copson and Hilbert from lp into lp(∆, E) are investigated for p > 1. For this

purpose, we give the Schur’s Theorem and a lemma which are needed to prove our

main results.

Theorem 3.2. ([8], Theorem 275) Let p > 1 and B = (bn,k) be a matrix operator

with bn,k ≥ 0 for all n, k. Suppose that K, R are two strictly positive numbers such

that

∞∑
n=1

bn,k ≤ K for all k,
∞∑
k=1

bn,k ≤ R for all n,

(bounds for column and row sums respectively). Then ‖B‖p ≤ R(p−1)/pK1/p.

Lemma 3.1. If A = (an,k) and B = (bn,k) are two matrix operators such that bn,k =

aminEn,k − aminEn+1,k, then

‖A‖p,∆,E = ‖B‖p.

Hence, if B is a bounded operator on lp, then A will be a bounded operator from lp

into lp(∆, E).

Now we are ready to compute the norm of the Copson matrix operator when p > 1.

Theorem 3.3. Suppose that p > 1 and N is a positive integer and En = {nN −N +

1, nN − N + 2, · · · , nN} for all n. If C is the Copson matrix operator, then it is a

bounded operator from lp into lp(∆, E) and

‖C‖p,∆,E ≤ (1 +
1

2
+ · · ·+ 1

N
)
p−1
p .

In particular if N = 1, then we have ‖C‖p,∆,E = 1.
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Proof. By applying Lemma 3.1 we have ‖C‖p,∆,E = ‖B‖p, where bn,k = cminEn,k −

cminEn+1,k. Let Cn =
∑∞

k=1 bk,n and Rn =
∑∞

k=1 bn,k for all n, by a simple calculation

we deduce that Rn ≤ R1 and Cn ≤ 1 for all n. Since

b1,k = c1,k − cN+1,k =

 1
k

for k ≤ N

0 for k > N,

and R1 = 1+ 1
2
+· · ·+ 1

N
, by using Theorem 3.2, we conclude that ‖C‖p,∆,E ≤ R1

(p−1)/p.

In particular if N = 1, then R1 = 1 so ‖C‖p,∆,E ≤ 1. Now let x = e1, we have Cx = x

and this completes the proof of the theorem. �

Finally, we try to solve the problem of finding the norm of the Hilbert matrix

operator for p > 1.

Theorem 3.4. Let H be the Hilbert operator and p > 1. If N is a positive integer

and En = {nN−N+1, nN−N+2, · · · , nN} for all n, then H is a bounded operator

from lp into lp(∆, E) and

‖H‖p,∆,E ≤ (
1

2
+ · · ·+ 1

N + 1
)
p−1
p (

1

2
)
1
p .

In particular if N = 1, then we have ‖H‖p,∆,E ≤ 1/2.

Proof. By applying Lemma 3.1 we have ‖H‖p,∆,E = ‖B‖p, where bn,k = hminEn,k −

hminEn+1,k. Let Cn and Rn be defined as in Theorem 3.3. By a simple calculation we

deduce that Rn ≤ R1 and Cn ≤ 1
2

for all n. But

b1,k = h1,k − hN+1,k =
1

1 + k
− 1

N + 1 + k
,

so R1 =
∑∞

k=1 b1,k = 1
2

+ · · · + 1
N+1

. This concludes the proof according to Theorem

3.2. �
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