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SOME RESULTS ON A CONE RECTANGULAR METRIC SPACE

SHISHIR JAIN (1) AND SHOBHA JAIN (2)

Abstract. The notion of cone rectangular metric spaces was introduced by A.

Azam, M. Arshad and I. Beg in [1] (Applicable Analysis and Discrete Mathematics,

2009). The object of this paper is to prove some common fixed point result for two

weakly compatible self maps satisfying a generalized contractive condition in a cone

rectangular metric space. Our result generalizes the said result of [1]. All the results

presented in this paper are new.

1. Introduction

There has been a number of generalizations of metric space. One such generaliza-

tion was initiated by Huang and Zhang [4] in the name of cone metric space. In this

space they replaced the set of real numbers of a metric space by an ordered Banach

space and gave some fundamental results for a self map satisfying some contractive

conditions. These results were generalized in Abbas and Jungck [6]. Papers [6] and

[4] to [13] represent a comprehensive work in cone metric space. In [8] authors define

compatibility in a cone metric space establishing some results which are known to

be true in a metric space. A. Azam, M. Arshad and I. Beg in [1] introduced the

concept of cone rectangular metric space proving Banach contraction principle with

a simple contraction for one self map assuming the normality of cone associated with
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the space. In this paper, we establish the existence of a unique common fixed point

through weak compatibility, of two self maps satisfying a more general contractive

condition than one adopted in [1] without assuming the normality of cone associated

with the space. Our results generalize, extend and unify several well known results

in this space.

2. preliminaries

Definition 2.1 ([4]). Let E be a real Banach space and P be a subset of E and θ is

the zero vector of E. Then P is called a cone if:

(i) P is a closed, nonempty;

(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P imply ax + by ∈ P ;

(iii) x ∈ P , −x ∈ P imply x = θ.

Given a cone P ⊆ E, we define a partial ordering ” � ” in E by x � y if y − x ∈ P.

We write x ≺ y to denote x � y but x 6= y and x � y to denote y − x ∈ P ◦, where

P ◦ stands for the interior of P .

The cone P is called normal if there exists some M > 0 such that for

x, y ∈ E, θ � x � y =⇒ ‖x‖ ≤ M |y‖.

Proposition 2.1. Let P be a cone in a real Banach space E . If for a ∈ P and

a � ka, for some k ∈ [0, 1) then a = θ.

Proof. For a ∈ P, k ∈ [0, 1) and a � ka gives (k − 1)a ∈ P implies −(1 − k)a ∈ P.

Therefore by (ii) we have −a ∈ P, as 1/(1 − k) > 0. Hence a = θ, by (iii). �

Proposition 2.2 ([13]). Let P be a cone is a real Banach space E with non-empty

interior. If for a ∈ E and a � c, for all c ∈ P ◦, then a = θ.

Remark 2.1 ([13]). λP ◦ ⊆ P ◦, for λ > 0 and P ◦ + P ◦ ⊆ P ◦.
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Definition 2.2 ([4]). Let X be a nonempty set and P be a cone in a real Banach

space E. Suppose the mapping d : X × X → E satisfies:

(a) θ � d(x, y), for all x, y ∈ X and d(x, y) = θ, if and only if x = y;

(b) d(x, y) = d(y, x), for all x, y ∈ X;

(c) d(x, y) � d(x, z) + d(z, y), for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space. If P

is normal, then (X, d) is said to be a normal cone metric space.

For examples of cone metric spaces we refer Huang et al. [5].

Proposition 2.3 ([3]). Let (X, d) be a cone metric space and P be a cone in a real

Banach space E. If u � v, v � w then u � w.

Definition 2.3 ([1]). Let X be a nonempty set and P be a cone in a real Banach

space E. Suppose the mapping d : X × X → E satisfies:

(a) θ � d(x, y), for all x, y ∈ X and d(x, y) = θ, if and only if x = y;

(b) d(x, y) = d(y, x), for all x, y ∈ X;

(c) d(x, y) � d(x, w) + d(w, z) + d(z, y), for all x, y ∈ X and for all distinct points

w, z ∈ X \ {x, y}.

Then d is called a cone rectangular metric on X, and (X, d) is called a cone rectangular

metric space. Let {xn} be a sequence in X and x ∈ X. If for every c ∈ E with

θ � c there is a positive integer Nc such that for all n > Nc, d(xn, x) � c, then the

sequence {xn} is said to converges to x, and x is called the limit of {xn} . We write

limn→∞ xn = x or xn → x, as n → ∞. If for every c ∈ E with θ � c there is a

positive integer Nc such that for all n, m > Nc, d(xn, xm) � c, then the sequence {xn}

is said to be a Cauchy sequence in X. If every Cauchy sequence in X is convergent

in X then X is called a complete cone rectangular metric space.
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In the following (X, d) will stand for a cone metric space with respect to a cone P

with P ◦ 6= φ in a real Banach space E and � is partial ordering in E with respect to

P .

Example 2.1 ([1]). Let X = N, E = R
2 and P = {(x, y) : x, y ≥ 0}. Define

d : X × X → E as follows:

d(x, y) =



















(0, 0), if x = y;

(3, 9), if x, y ∈ {1, 2}, x 6= y;

(1, 3), otherwise.

Then (X, d) is a cone rectangular metric space but not a cone metric space because it

lacks the triangular property:

(3, 9) = d(1, 2) 6� d(1, 3) + d(3, 2) = (1, 3) + (1, 3) = (2, 6)

as (3, 9) − (2, 6) = (1, 3) ∈ P .

Lemma 2.1. Let (X, d) be a cone rectangular metric space and P be a cone in a real

Banach space E and k1, k2, k3, k > 0 are some fixed real numbers. If xn → x, yn → y

and zn → z in X and for some a ∈ E

(1.1) ka � k1d(xn, x) + k2d(yn, y) + k3(zn, z), for all n > N, for some integer N ,

then a = 0.

Proof. As xn → x, and yn → y and zn → z for c ∈ P 0 there exists a positive integer

Nc such that

c

(k1 + k2 + k3)
− d(xn, x),

c

(k1 + k2 + k3)
− d(yn, y),

c

(k1 + k2 + k3)
− d(zn, z) ∈ P ◦

for all n > max{N, Nc}. Therefore by Remark 2.1, we have

k1c

(k1 + k2 + k3)
−k1d(xn, x),

k2c

(k1 + k2 + k3)
−k2d(yn, y),

k1c

(k1 + k2 + k3)
−k3d(zn, z) ∈ P.

Again by the above and Proposition 2.3, we have

c − k1d(xn, x) − k2d(yn, y) − k3d(zn, z) ∈ P ◦ for all n > max{N, Nc}.
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From (1.1), we have ka � c, for each c ∈ P ◦. By Proposition 2.2 , we have a = θ, as

k > 0. �

Definition 2.4 ([6]). Let A and S be self maps of a set X . If w = Ax = Sx,

for some x ∈ X, then x is called a coincidence point and w is called the point of

coincidence of A and S corresponding to x.

Definition 2.5 ([10]). Let X be a nonempty any set. A pair (A, S) of self maps of

X is said to be weakly compatible if u ∈ X, Au = Su imply SAu = ASu.

Proposition 2.4 ([6]). Let (f, g) be a pair of weakly compatible self maps of a set

X. If f and g have a unique point of coincidence w = fx = gx, then w is the unique

common fixed point of f and g.

3. MAIN RESULTS

Lemma 3.1. Let (X, d) be a cone rectangular metric space with respect to a cone P

with P ◦ 6= ∅ in a real Banach space E. Let A and S be self mappings on X satisfying:

(3.1.1) A(X) ⊆ S(X);

(3.1.2) there exist λ, µ, δ, β ∈ [0, 1) such that 0 < λ + µ + δ + β < 1 and the following

inequality is satisfied:

d(Ax, Ay) � λd(Ax, Sx) + µd(Ay, Sy) + δd(Sx, Sy) + βd(Ax, Sy)

for all x, y ∈ X.

For some x0 ∈ X, define sequences {xn} and {yn} in X such that

Axn = Sxn+1 = yn, n ∈ N.

Suppose dn = d(yn, yn+1), for all n ≥ 0. Then:

(I) If the pair (A, S) has a coincidence point then it is unique.
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(II) If yn = yn+1, for some n ∈ N, then Sxn+1 = Axn+1 = u (say) and thus the pair

(A, S) has a unique point of coincidence u.

(III) (a) there exists h < 1 such that dn � hdn−1, and so, dn � hnd0 for all n ∈ N,

and if m > 1 then dn+m ≺ dn.

(b) If yn = yn+p for some p ≥ 1, then p = 1. Thus, if two terms of {yn} are

equal, then they are consecutive.

(c) If the sequence {yn} consist of all distinct terms then, d(yn+2, yn) � khn−1d0,

for some 0 ≤ h < 1, k > 0.

Proof. (of I) Suppose u and v are two coincidence points of the maps A and S, i.e.,

Au = Su and Av = Sv, for some u, v ∈ X. Taking x = u, y = v in (3.1.2) we have

d(Au, Av) � λd(Au, Su) + µd(Av, Sv) + δd(Su, Sv) + βd(Au, Sv)

i.e., d(Su, Sv) � (δ + β)d(Su, Sv).

As δ + β < 1, by Proposition 2.2, d(Su, Sv) = θ. Hence, Su = Sv. This proves the

uniqueness of point of coincidence of the pair (A, S). �

Proof. (of II) By definition of yn and yn+1, the result follows. �

Proof. (of III (a)) : Taking x = xn, y = xn+1 in (3.1.2) we get,

d(Axn, Axn+1) � λd(Axn, Sxn) + µd(Axn+1, Sxn+1) + δd(Sxn, Sxn+1)

+ βd(Axn, Sxn+1)

i.e.,

d(yn, yn+1) � λd(yn, yn−1) + µd(yn+1, yn) + δd(yn−1, yn) + βd(yn, yn)

= λd(yn, yn−1) + µd(yn+1, yn) + δd(yn−1, yn)

� λd(yn, yn−1) + µd(yn+1, yn) + δd(yn−1, yn).
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Writing d(yn, yn+1) = dn, we have dn � λdn−1 + µdn + δdn−1, i.e., (1 − µ)dn �

(λ + δ)dn−1. Thus,

(3.1) dn � hdn−1 for all n ∈ N

where h = λ+δ
1−µ

. In view of (3.1.2) we have 0 ≤ h < 1. �

Proof. (of III (b)) Suppose yn = yn+p for some p > 1 Then,

d(yn, yn+1) = d(yn+p, yn+1) = d(Axn+p, Axn+1).

Taking x = xn+p, y = xn+1 in (3.1.2) we get,

d(Axn+p, Axn+1) � λd(Axn+p, Sxn+p) + µd(Axn+1, Sxn+1) + δd(Sxn+p, Sxn+1)

+ βd(Axn+p, Sxn+1).

Thus,

dn � λdn+p−1 + µdn + δd(yn+p−1, yn) + βd(yn+p, yn)

= λdn+p−1 + µdn + δd(yn+p−1, yn+p)

= (λ + δ)dn+p−1 + µdn.

Hence, dn � λ+δ
1−µ

dn+p−1 = hdn+p−1. This gives dn ≺ dn+p−1. Thus dn ≺ dn+m, for

some m > 1. This contradicts III(a). Hence p = 1 and the result follows. �

Proof. (of III (c))Taking x = xn, y = xn+2 in (3.1.2) we have

d(Axn, Axn+2) � λd(Axn, Sxn) + µd(Axn+2, Sxn+2) + δd(Sxn, Sxn+2)

+βd(Axn, Sxn+2)
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which implies that

d(yn, yn+2) � λd(yn, yn−1) + µd(yn+2, yn+1) + δd(yn−1, yn+1) + βd(yn, yn+1)

� λdn−1 + µdn+1 + δ[d(yn−1, yn) + d(yn, yn+2) + d(yn+2, yn+1)] + βdn

= λdn−1 + µdn+1 + δ[dn−1 + d(yn, yn+2) + dn+1] + βdn.

Thus,

(1 − δ)d(yn, yn+2) � (λ + δ)dn−1 + (µ + δ)dn+1 + βdn

which implies that

d(yn, yn+2) �
λ + δ

1 − δ
dn−1 +

µ + δ

1 − δ
dn+1 +

β

1 − δ
dn.

� (
λ + δ

1 − δ
hn−1 +

µ + δ

1 − δ
hn+1 +

β

1 − δ
hn)d0,

=
λ + µ + 2δ + β

1 − δ
hn−1d0,

= khn−1d0,

where k =
λ + µ + 2δ + β

1 − δ
> 0, in view of (3.1.2). �

Theorem 3.1. Let (X, d) be a cone rectangular metric space with respect to a cone P

with P ◦ 6= φ in a real Banach space E. Let A and S be self mappings on X satisfying

(3.1.1), (3.1.2) and

(3.2.1) Either A(X) or S(X) is complete.

Then the mappings A and S have a unique point of coincidence in X. Moreover, if

the pair (A, S) is weakly compatible, then this coincidence point is the unique common

fixed point of the maps A and S in X.

Proof. We construct two sequences {xn} and {yn} in X as defined in Lemma 3.1.

If yn = yn+1 for some n, then from then from Lemma 3.1 the maps A and S have

a unique point of coincidence in X and that the elements of the sequence {yn} are
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all distinct or else some consecutive terms are equal . Now, it remains to prove the

existence of unique point of coincidence when the terms of {yn} are all distinct. First,

we show that {yn} is a Cauchy sequence in X, by considering d(yn+p, yn) in two cases

when p is odd and p is even.

By using rectangular inequality and Lemma 3.1 III (a), we have

d(yn+2m+1, yn) � d(yn+2m+1, yn+2m) + d(yn+2m, yn+2m−1) + d(yn+2m−1, yn)

= dn+2m + dn+2m−1 + d(yn+2m−1, yn),

� dn+2m + dn+2m−1 + dn+2m−2 + dn+2m−3 + · · · + dn,

� hn+2md0 + hn+2m−1d0 + · · · + hnd0,

= hn(1 + h + h2 + · · ·+ h2m)d0,

�
hn

1 − h
d0,

as h < 1 and P is closed. Thus

(3.2) d(yn+2m+1, yn) �
hn

1 − h
d0.

Again, from Lemma 3.1 (III (c)), we have

d(yn+2m, yn) � d(yn+2m, yn+2m−1) + d(yn+2m−1, yn+2m−2) + d(yn+2m−2, yn)

= dn+2m−1 + dn+2m−2 + d(yn+2m−2, yn)

� dn+2m−1 + dn+2m−2 + dn+2m−3 + dn+2m−4 + · · ·

+dn+2 + d(yn+2, yn)

= d(yn+2, yn) + dn+2 + dn+3 + · · · + dn+2m−1

� khn−1d0 + hn+2(1 + h + h2 + · · ·+ h2m−3)d0

� khn−1d0 + hn+2
d0

1 − h
,
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as h < 1 and P is closed. Thus

(3.3) d(yn+2m, yn) � khn−1d0 + hn+2
d0

1 − h
.

Now for c ∈ P ◦, there exists r > 0 such that c/2 − y ∈ P ◦, if ||y|| < r. Choose a

positive integer Nc such that for all n ≥ Nc, ||(h
nd0)/(1−h)|| < r, ‖khn−1d0‖ < r, and

‖
hn+2

1 − h
d0‖ < r, for all n > Nc. This implies

c

2
−

hn+2

1 − h
d0,

c

2
−khn−1d0, c−

hn

1 − h
d0 ∈ P ◦.

Hence by remark 2.1, we have c −
hn+2

1 − h
d0 − khn−1d0 ∈ P ◦, and c −

hn

1 − h
d0 ∈ P ◦,

for all n > Nc . Also from (3.2) and (3.3),
hn+2

1 − h
d0 + khn−1d0 − d(yn+2m, yn) ∈ P

and
hn

1 − h
d0 − d(yn+2m+1, yn) ∈ P. Hence by Proposition 2.3, c − d(yn+2m, yn) ∈ P ◦

and c − d(yn+2m+1, yn) ∈ P ◦, for all n > Nc. Thus {yn} is a Cauchy sequence in

S(X)
⋂

A(X). Now, we show that the mappings A and S have a unique point of

coincidence.

Case I: S(X) is complete

In this case yn = Sxn+1 is a Cauchy sequence in S(X), which is complete. So

{yn} → z ∈ S(X). Hence there exist u ∈ X such that z = Su

Now,

d(Au, Su) � d(Au, Axn) + d(Axn, Axn+1) + d(Axn+1, Su),

= d(Au, Axn) + d(yn, yn+1) + d(yn+1, Su),

= dn + d(yn+1, Su) + d(Axn, Au)

� dn + d(yn+1, Su) + µd(Au, Su) + λd(Axn, Sxn)

+δd(Su, Sxn) + βd(Au, Su)

= dn + d(yn+1, Su) + µd(Au, Su) + λd(yn, yn−1)

+δd(Su, yn−1) + βd(yn, Su).
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Writing dn = d(xn, xn+1) we obtain

d(Au, Su) � dn + d(yn+1, Su) + µd(Au, Su) + λdn−1

+δd(Su, yn−1) + βd(yn, Su).

Rearranging the terms we obtain:

(1 − µ)d(Au, Su) � dn + d(yn+1, Su) + λdn−1 + δd(Su, yn−1) + βd(Su, yn)

� hnd0 + λhn−1d0 + d(yn+1, Su) + δd(Su, yn−1) + βd(Su, yn)

� (1 + λ)hnd0 + d(Su, yn+1) + δd(Su, yn−1) + βd(Su, yn).

Thus,

(3.4) (1 − µ)d(Au, Su)− (1 + λ)hnd0 � d(Su, yn+1) + δd(Su, yn−1) + βd(Su, yn).

As β ≥ 0, δ ≥ 0 and yn−1, yn, yn+1 → Su, by Lemma 2.1 for c ∈ P ◦ there exists a

positive integer Nc such that

c − d(Su, yn+1) − δd(Su, yn−1) − βd(Su, yn−1) ∈ P ◦ for all n > Nc.

This implies that

d(Su, yn+1) + δd(Su, yn−1) + βd(Su, yn) � c for all n > Nc.

Using Proposition 2.3 and equation 3.4, we get

(1 − µ)d(Au, Su)− (1 + λ)hnd0 � c for all n > Nc.

As h < 1, we have (1 − µ)d(Au, Su) � c for all c ∈ P ◦. Using Proposition 2.2 it

follows that d(Au, Su) = θ and we get Au = Su. Thus, the pair (A, S) has a point of

coincidence z = Au = Su.

Case II: A(X) is complete.

In this case yn = Axn is a Cauchy sequence in A(X) which is complete. So {yn} →
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z = Aw, for some w ∈ X. As A(X) ⊆ S(X) there exists v ∈ X such that Aw = Sv.

Thus {yn} → Sv. It follows from case I that Av = Sv. Thus in both the cases the pair

(A, S) has a point of coincidence, which is unique in view of Lemma 2.2 As (A, S) is

weakly compatible from Proposition 2.4, it follows that the point of coincidence of A

and S is their unique common fixed point in X. �

Theorem 3.2. Let (X, d) be a cone rectangular metric space with respect to a cone P

with P ◦ 6= φ in a real Banach space E. Let A and S be self mappings on X satisfying

(3.1.1), (3.1.2) and

(3.3.1) there exists λ, µ, δ, α ∈ [0, 1) such that 0 < λ+µ+ δ +α < 1 and the following

inequality is satisfied:

d(Ax, Ay) � λd(Ax, Sx) + µd(Ay, Sy) + δd(Sx, Sy) + αd(Ay, Sx)

for all x, y ∈ X.

Then the mappings A and S have a unique coincidence point in X. Moreover, if the

pair (A, S) is weakly compatible, then A and S have a unique common fixed point in

X.

Proof. we have,

d(Ax, Ay) = d(Ay, Ax) � λd(Ay, Sy) + µd(Ax, Sx) + δd(Sx, Sy) + αd(Ax, Sy).

Interchanging λ and µ and writing α as β, we get

d(Ax, Ay) � λd(Ax, Sx) + µd(Ay, Sy) + δd(Sx, Sy) + βd(Ax, Sy).

Rest follows from Theorem 3.1 �

Example 3.1. (of Theorem 3.2) Let X = {1, 2, 3, 4}, E = R
2, P = {(x, y) ∈ R

2 :

x ≥ 0, y ≥ 0} ⊂ R
2 , be a cone in E. Define d : X × X → E as follows:

d(x, y) = 0 if x = y,
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d(1, 2) = d(2, 1) = (3, 6)

d(2, 3) = d(3, 2) = d(1, 3) = d(3, 1) = (1, 2)

d(1, 4) = d(4, 1) = d(2, 4) = d(4, 2) = d(3, 4) = d(4, 3) = (2, 4)

Then, (X, d) is a complete rectangular cone metric space. In fact it is not a cone

metric space as d(1, 3) + d(3, 2) < d(1, 2). Define the mappings A and S on X as

follows:

A(1) = 3, A(2) = 3, A(3) = 3, A(4) = 1

S(1) = 2, S(2) = 1, S(3) = 3, S(4) = 2. Then the maps A and S are weakly compatible

and A(X) ⊂ S(X). The conditions (3.2.1) and (3.1.2) are satisfied with λ = µ = 1/4

and β = δ = 1/8 and the pair (A, S) has a unique common fixed point x = 3 ∈ X.

Taking S = I, the identity mapping in Theorems 3.2 and 3.3, we have the following

results:

Theorem 3.3. Let (X, d) be a cone rectangular metric space with respect to a cone

P with P ◦ 6= φ in a real Banach space E. Let A be self mappings on X and there

exist λ, µ, δ, β ∈ [0, 1) such that 0 < λ + µ + δ + β < 1 and the following inequality is

satisfied:

d(Ax, Ay) � λd(Ax, x) + µd(Ay, y) + δd(x, y) + βd(Ax, y)

for all x, y ∈ X. Then the mapping A has a unique fixed point in X.

Theorem 3.4. Let (X, d) be a cone rectangular metric space with respect to a cone

P with P ◦ 6= φ in a real Banach space E. Let A be self mapping on X and there exist

λ, µ, δ, α ∈ [0, 1) such that λ + µ + δ + β < 1 and the following inequality is satisfied:

d(Ax, Ay) � λd(x, Ax) + µd(y, Ay) + δd(x, y) + αd(x, Ay)

for all x, y ∈ X. Then the mapping A has a unique fixed point in X.
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Again, taking λ = µ = α = 0 and δ = k in Theorem 3.3, we have the following

result:

Corollary 3.1. Let (X, d) be a cone rectangular metric space with respect to a cone P

with P ◦ 6= φ in a real Banach space E. Let A and S be self mappings on X satisfying

(3.1.1) and for some k ∈ [0, 1) and for all x, y ∈ X,

d(Ax, Ay) � kd(Sx, Sy).

If A(X) or S(X) is complete and the pair (A, S) is weakly compatible then the map-

pings A and S have a unique common fixed point in X.

Remark 3.1. On taking S = I, the identity mapping in Corollary 3.1 the result of

Azam et all [1], Theorem 2 follows.

Again taking λ = µ = k and α = δ = 0 in Theorem 3.2, we have the following

result:

Corollary 3.2. Let (X, d) be a cone rectangular metric space with respect to a cone P

with P ◦ 6= φ in a real Banach space E. Let A and S be self mappings on X satisfying

(3.1.1) and for some k ∈ (0, 1/2) and for all x, y ∈ X,

d(Ax, Ay) � k[d(Ax, Sx) + d(Ay, Sy)]

If A(X) or S(X) is complete and the pair (A, S) is weakly compatible then the map-

pings A and S have a unique common fixed point in X.

Finally, taking β = 0 in Theorem 3.3, we have the following result

Corollary 3.3. Let (X, d) be a cone rectangular metric space with respect to a cone P

with P ◦ 6= φ in a real Banach space E. Let A and S be self mappings on X satisfying
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(3.1.1),(3.2.1) and there exist λ, µ, δ ∈ [0, 1) such that 0 < λ + µ + δ < 1 and the

following inequality is satisfied:

d(Ax, Ay) � λd(Sx, Ax) + µd(Sy, Ay) + δd(Sx, Sy)

for all x, y ∈ X. If the pair (A, S) is weakly compatible then the mappings A and S

have a unique common fixed point in X.

Remark 3.2. Corollaries 3.1 and 3.2 are known to be true in a normal cone metric

space from Abbas and Jungck [6]. Corollary 3.3 is known to be true in a normal

cone metric space from P. Vetro [7]. Also, an ordered version of this corollary and a

consequence of this can be seen in [11, 12].

Keeping one of the constants α, β, γ, δ, µ non-zero and all others equal to zero in

Theorems 3.1 and 3.2, we have the following result:

Corollary 3.4. Let (X, d) be a cone rectangular metric space with respect to a cone

P with P ◦ 6= φ in a real Banach space E. Let A and S be two weakly compatible

self mappings on X such that A(X) or S(X) is complete. Suppose that the following

inequality is satisfied:

d(Ax, Ay) ≤ λu, where u ∈ {d(Ax, Sx), d(Ay, Sy), d(Sx, Sy), d(Ax, Sy)}

for all x, y ∈ X, where λ ∈ (0, 1). Then A and S have a unique common fixed point

in X.

The following definition and Theorem appears in D. Ilic, V. Rakocevic [2].

Definition 3.1 (Quasi contraction [2]). A self-map f on a cone metric space (X, d)

is said to be a quasi contraction if for a fixed λ ∈ (0, 1) and for all x, y ∈ X

d(fx, fy) ≤ λu, where u ∈ {d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)}.
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Theorem 3.5 ([2]). Let (X, d) be a complete cone metric space and P be normal

cone. Then a Quasi contraction f has a unique fixed point in X, and for each x ∈ X,

the iterative sequence {fn(x)} converges to this fixed point.

Remark 3.3. Taking S = I, the identity mapping in Corollary 3.4 it follows that

the above result of [2] is true even for non-normal complete cone rectangular metric

spaces. The above result has been established in [5] for a complete metric space.
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