SOME RESULTS ON A CONE RECTANGULAR METRIC SPACE

SHISHIR JAIN $^{(1)}$ AND SHOBHA JAIN $^{(2)}$

ABSTRACT. The notion of cone rectangular metric spaces was introduced by A. Azam, M. Arshad and I. Beg in [1] (Applicable Analysis and Discrete Mathematics, 2009). The object of this paper is to prove some common fixed point result for two weakly compatible self maps satisfying a generalized contractive condition in a cone rectangular metric space. Our result generalizes the said result of [1]. All the results presented in this paper are new.

1. Introduction

There has been a number of generalizations of metric space. One such generalization was initiated by Huang and Zhang [4] in the name of cone metric space. In this space they replaced the set of real numbers of a metric space by an ordered Banach space and gave some fundamental results for a self map satisfying some contractive conditions. These results were generalized in Abbas and Jungck [6]. Papers [6] and [4] to [13] represent a comprehensive work in cone metric space. In [8] authors define compatibility in a cone metric space establishing some results which are known to be true in a metric space. A. Azam, M. Arshad and I. Beg in [1] introduced the concept of cone rectangular metric space proving Banach contraction principle with a simple contraction for one self map assuming the normality of cone associated with

 $^{2000\} Mathematics\ Subject\ Classification.\ 47 H10;\ 54 H25.$

Key words and phrases. Cone metric space, cone rectangular metric space, common fixed point, coincidence point and weakly compatible maps.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

the space. In this paper, we establish the existence of a unique common fixed point through weak compatibility, of two self maps satisfying a more general contractive condition than one adopted in [1] without assuming the normality of cone associated with the space. Our results generalize, extend and unify several well known results in this space.

2. Preliminaries

Definition 2.1 ([4]). Let E be a real Banach space and P be a subset of E and θ is the zero vector of E. Then P is called a cone if:

- (i) P is a closed, nonempty;
- (ii) $a, b \in R, a, b \ge 0, x, y \in P$ imply $ax + by \in P$;
- (iii) $x \in P, -x \in P \text{ imply } x = \theta.$

Given a cone $P \subseteq E$, we define a partial ordering " \preceq " in E by $x \preceq y$ if $y - x \in P$.

We write $x \prec y$ to denote $x \preceq y$ but $x \neq y$ and $x \ll y$ to denote $y - x \in P^{\circ}$, where P° stands for the interior of P.

The cone P is called normal if there exists some M > 0 such that for

$$x, y \in E, \theta \leq x \leq y \implies ||x|| \leq M|y||.$$

Proposition 2.1. Let P be a cone in a real Banach space E. If for $a \in P$ and $a \leq ka$, for some $k \in [0,1)$ then $a = \theta$.

Proof. For $a \in P, k \in [0,1)$ and $a \leq ka$ gives $(k-1)a \in P$ implies $-(1-k)a \in P$. Therefore by (ii) we have $-a \in P$, as 1/(1-k) > 0. Hence $a = \theta$, by (iii).

Proposition 2.2 ([13]). Let P be a cone is a real Banach space E with non-empty interior. If for $a \in E$ and $a \ll c$, for all $c \in P^{\circ}$, then $a = \theta$.

Remark 2.1 ([13]). $\lambda P^{\circ} \subseteq P^{\circ}$, for $\lambda > 0$ and $P^{\circ} + P^{\circ} \subseteq P^{\circ}$.

Definition 2.2 ([4]). Let X be a nonempty set and P be a cone in a real Banach space E. Suppose the mapping $d: X \times X \to E$ satisfies:

- (a) $\theta \leq d(x,y)$, for all $x,y \in X$ and $d(x,y) = \theta$, if and only if x = y;
- (b) d(x,y) = d(y,x), for all $x, y \in X$;
- (c) $d(x,y) \leq d(x,z) + d(z,y)$, for all $x, y, z \in X$.

Then d is called a cone metric on X, and (X, d) is called a cone metric space. If P is normal, then (X, d) is said to be a normal cone metric space.

For examples of cone metric spaces we refer Huang et al. [5].

Proposition 2.3 ([3]). Let (X, d) be a cone metric space and P be a cone in a real Banach space E. If $u \leq v, v \ll w$ then $u \ll w$.

Definition 2.3 ([1]). Let X be a nonempty set and P be a cone in a real Banach space E. Suppose the mapping $d: X \times X \to E$ satisfies:

- (a) $\theta \leq d(x, y)$, for all $x, y \in X$ and $d(x, y) = \theta$, if and only if x = y;
- (b) d(x,y) = d(y,x), for all $x, y \in X$;
- (c) $d(x,y) \leq d(x,w) + d(w,z) + d(z,y)$, for all $x,y \in X$ and for all distinct points $w,z \in X \setminus \{x,y\}$.

Then d is called a cone rectangular metric on X, and (X, d) is called a cone rectangular metric space. Let $\{x_n\}$ be a sequence in X and $x \in X$. If for every $c \in E$ with $\theta \ll c$ there is a positive integer N_c such that for all $n > N_c$, $d(x_n, x) \ll c$, then the sequence $\{x_n\}$ is said to converges to x, and x is called the limit of $\{x_n\}$. We write $\lim_{n\to\infty} x_n = x$ or $x_n \to x$, as $n \to \infty$. If for every $c \in E$ with $\theta \ll c$ there is a positive integer N_c such that for all $n, m > N_c$, $d(x_n, x_m) \ll c$, then the sequence $\{x_n\}$ is said to be a Cauchy sequence in X. If every Cauchy sequence in X is convergent in X then X is called a complete cone rectangular metric space.

In the following (X, d) will stand for a cone metric space with respect to a cone P with $P^{\circ} \neq \phi$ in a real Banach space E and \leq is partial ordering in E with respect to P.

Example 2.1 ([1]). Let $X = \mathbb{N}$, $E = \mathbb{R}^2$ and $P = \{(x,y) : x,y \geq 0\}$. Define $d: X \times X \to E$ as follows:

$$d(x,y) = \begin{cases} (0,0), & \text{if } x = y; \\ (3,9), & \text{if } x, y \in \{1,2\}, x \neq y; \\ (1,3), & \text{otherwise.} \end{cases}$$

Then (X, d) is a cone rectangular metric space but not a cone metric space because it lacks the triangular property:

$$(3,9) = d(1,2) \not\preceq d(1,3) + d(3,2) = (1,3) + (1,3) = (2,6)$$

as $(3,9) - (2,6) = (1,3) \in P$.

Lemma 2.1. Let (X, d) be a cone rectangular metric space and P be a cone in a real Banach space E and $k_1, k_2, k_3, k > 0$ are some fixed real numbers. If $x_n \to x, y_n \to y$ and $z_n \to z$ in X and for some $a \in E$

(1.1) $ka \leq k_1d(x_n, x) + k_2d(y_n, y) + k_3(z_n, z)$, for all n > N, for some integer N, then a = 0.

Proof. As $x_n \to x$, and $y_n \to y$ and $z_n \to z$ for $c \in P^0$ there exists a positive integer N_c such that

$$\frac{c}{(k_1+k_2+k_3)}-d(x_n,x), \frac{c}{(k_1+k_2+k_3)}-d(y_n,y), \frac{c}{(k_1+k_2+k_3)}-d(z_n,z) \in P^{\circ}$$

for all $n > \max\{N, N_c\}$. Therefore by Remark 2.1, we have

$$\frac{k_1c}{(k_1+k_2+k_3)}-k_1d(x_n,x), \frac{k_2c}{(k_1+k_2+k_3)}-k_2d(y_n,y), \frac{k_1c}{(k_1+k_2+k_3)}-k_3d(z_n,z) \in P.$$

Again by the above and Proposition 2.3, we have

$$c - k_1 d(x_n, x) - k_2 d(y_n, y) - k_3 d(z_n, z) \in P^{\circ} \text{ for all } n > \max\{N, N_c\}.$$

From (1.1), we have $ka \ll c$, for each $c \in P^{\circ}$. By Proposition 2.2, we have $a = \theta$, as k > 0.

Definition 2.4 ([6]). Let A and S be self maps of a set X. If w = Ax = Sx, for some $x \in X$, then x is called a coincidence point and w is called the point of coincidence of A and S corresponding to x.

Definition 2.5 ([10]). Let X be a nonempty any set. A pair (A, S) of self maps of X is said to be weakly compatible if $u \in X$, Au = Su imply SAu = ASu.

Proposition 2.4 ([6]). Let (f,g) be a pair of weakly compatible self maps of a set X. If f and g have a unique point of coincidence w = fx = gx, then w is the unique common fixed point of f and g.

3. MAIN RESULTS

Lemma 3.1. Let (X,d) be a cone rectangular metric space with respect to a cone P with $P^{\circ} \neq \emptyset$ in a real Banach space E. Let A and S be self mappings on X satisfying: $(3.1.1) \ A(X) \subseteq S(X)$;

(3.1.2) there exist $\lambda, \mu, \delta, \beta \in [0, 1)$ such that $0 < \lambda + \mu + \delta + \beta < 1$ and the following inequality is satisfied:

$$d(Ax, Ay) \leq \lambda d(Ax, Sx) + \mu d(Ay, Sy) + \delta d(Sx, Sy) + \beta d(Ax, Sy)$$

for all $x, y \in X$.

For some $x_0 \in X$, define sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$Ax_n = Sx_{n+1} = y_n, \ n \in \mathbb{N}.$$

Suppose $d_n = d(y_n, y_{n+1})$, for all $n \ge 0$. Then:

(I) If the pair (A, S) has a coincidence point then it is unique.

- (II) If $y_n = y_{n+1}$, for some $n \in \mathbb{N}$, then $Sx_{n+1} = Ax_{n+1} = u$ (say) and thus the pair (A, S) has a unique point of coincidence u.
- (III) (a) there exists h < 1 such that $d_n \leq hd_{n-1}$, and so, $d_n \leq h^nd_0$ for all $n \in \mathbb{N}$, and if m > 1 then $d_{n+m} \prec d_n$.
 - (b) If $y_n = y_{n+p}$ for some $p \ge 1$, then p = 1. Thus, if two terms of $\{y_n\}$ are equal, then they are consecutive.
 - (c) If the sequence $\{y_n\}$ consist of all distinct terms then, $d(y_{n+2}, y_n) \leq kh^{n-1}d_0$, for some $0 \leq h < 1, k > 0$.

Proof. (of I) Suppose u and v are two coincidence points of the maps A and S, i.e., Au = Su and Av = Sv, for some $u, v \in X$. Taking x = u, y = v in (3.1.2) we have

$$d(Au, Av) \leq \lambda d(Au, Su) + \mu d(Av, Sv) + \delta d(Su, Sv) + \beta d(Au, Sv)$$

i.e., $d(Su, Sv) \leq (\delta + \beta)d(Su, Sv)$.

As $\delta + \beta < 1$, by Proposition 2.2, $d(Su, Sv) = \theta$. Hence, Su = Sv. This proves the uniqueness of point of coincidence of the pair (A, S).

Proof. (of II) By definition of y_n and y_{n+1} , the result follows.

Proof. (of III (a)): Taking $x = x_n, y = x_{n+1}$ in (3.1.2) we get,

$$d(Ax_n, Ax_{n+1}) \leq \lambda d(Ax_n, Sx_n) + \mu d(Ax_{n+1}, Sx_{n+1}) + \delta d(Sx_n, Sx_{n+1})$$
$$+ \beta d(Ax_n, Sx_{n+1})$$

i.e.,

$$d(y_n, y_{n+1}) \leq \lambda d(y_n, y_{n-1}) + \mu d(y_{n+1}, y_n) + \delta d(y_{n-1}, y_n) + \beta d(y_n, y_n)$$

$$= \lambda d(y_n, y_{n-1}) + \mu d(y_{n+1}, y_n) + \delta d(y_{n-1}, y_n)$$

$$\leq \lambda d(y_n, y_{n-1}) + \mu d(y_{n+1}, y_n) + \delta d(y_{n-1}, y_n).$$

Writing $d(y_n, y_{n+1}) = d_n$, we have $d_n \leq \lambda d_{n-1} + \mu d_n + \delta d_{n-1}$, i.e., $(1 - \mu)d_n \leq (\lambda + \delta)d_{n-1}$. Thus,

$$(3.1) d_n \leq h d_{n-1} for all n \in \mathbb{N}$$

where
$$h = \frac{\lambda + \delta}{1 - \mu}$$
. In view of (3.1.2) we have $0 \le h < 1$.

Proof. (of III (b)) Suppose $y_n = y_{n+p}$ for some p > 1 Then,

$$d(y_n, y_{n+1}) = d(y_{n+p}, y_{n+1}) = d(Ax_{n+p}, Ax_{n+1}).$$

Taking $x = x_{n+p}, y = x_{n+1}$ in (3.1.2) we get,

$$d(Ax_{n+p}, Ax_{n+1}) \leq \lambda d(Ax_{n+p}, Sx_{n+p}) + \mu d(Ax_{n+1}, Sx_{n+1}) + \delta d(Sx_{n+p}, Sx_{n+1}) + \beta d(Ax_{n+p}, Sx_{n+1}).$$

Thus,

$$d_{n} \leq \lambda d_{n+p-1} + \mu d_{n} + \delta d(y_{n+p-1}, y_{n}) + \beta d(y_{n+p}, y_{n})$$

$$= \lambda d_{n+p-1} + \mu d_{n} + \delta d(y_{n+p-1}, y_{n+p})$$

$$= (\lambda + \delta) d_{n+p-1} + \mu d_{n}.$$

Hence, $d_n \leq \frac{\lambda+\delta}{1-\mu}d_{n+p-1} = hd_{n+p-1}$. This gives $d_n < d_{n+p-1}$. Thus $d_n < d_{n+m}$, for some m > 1. This contradicts III(a). Hence p = 1 and the result follows.

Proof. (of III (c)) Taking $x = x_n, y = x_{n+2}$ in (3.1.2) we have

$$d(Ax_n, Ax_{n+2}) \leq \lambda d(Ax_n, Sx_n) + \mu d(Ax_{n+2}, Sx_{n+2}) + \delta d(Sx_n, Sx_{n+2})$$
$$+\beta d(Ax_n, Sx_{n+2})$$

which implies that

$$d(y_n, y_{n+2}) \leq \lambda d(y_n, y_{n-1}) + \mu d(y_{n+2}, y_{n+1}) + \delta d(y_{n-1}, y_{n+1}) + \beta d(y_n, y_{n+1})$$

$$\leq \lambda d_{n-1} + \mu d_{n+1} + \delta [d(y_{n-1}, y_n) + d(y_n, y_{n+2}) + d(y_{n+2}, y_{n+1})] + \beta d_n$$

$$= \lambda d_{n-1} + \mu d_{n+1} + \delta [d_{n-1} + d(y_n, y_{n+2}) + d_{n+1}] + \beta d_n.$$

Thus,

$$(1 - \delta)d(y_n, y_{n+2}) \leq (\lambda + \delta)d_{n-1} + (\mu + \delta)d_{n+1} + \beta d_n$$

which implies that

$$d(y_n, y_{n+2}) \leq \frac{\lambda + \delta}{1 - \delta} d_{n-1} + \frac{\mu + \delta}{1 - \delta} d_{n+1} + \frac{\beta}{1 - \delta} d_n.$$

$$\leq \left(\frac{\lambda + \delta}{1 - \delta} h^{n-1} + \frac{\mu + \delta}{1 - \delta} h^{n+1} + \frac{\beta}{1 - \delta} h^n\right) d_0,$$

$$= \frac{\lambda + \mu + 2\delta + \beta}{1 - \delta} h^{n-1} d_0,$$

$$= kh^{n-1} d_0,$$

where
$$k = \frac{\lambda + \mu + 2\delta + \beta}{1 - \delta} > 0$$
, in view of (3.1.2).

Theorem 3.1. Let (X, d) be a cone rectangular metric space with respect to a cone P with $P^{\circ} \neq \phi$ in a real Banach space E. Let A and S be self mappings on X satisfying (3.1.1), (3.1.2) and

(3.2.1) Either A(X) or S(X) is complete.

Then the mappings A and S have a unique point of coincidence in X. Moreover, if the pair (A, S) is weakly compatible, then this coincidence point is the unique common fixed point of the maps A and S in X.

Proof. We construct two sequences $\{x_n\}$ and $\{y_n\}$ in X as defined in Lemma 3.1. If $y_n = y_{n+1}$ for some n, then from then from Lemma 3.1 the maps A and S have a unique point of coincidence in X and that the elements of the sequence $\{y_n\}$ are

all distinct or else some consecutive terms are equal. Now, it remains to prove the existence of unique point of coincidence when the terms of $\{y_n\}$ are all distinct. First, we show that $\{y_n\}$ is a Cauchy sequence in X, by considering $d(y_{n+p}, y_n)$ in two cases when p is odd and p is even.

By using rectangular inequality and Lemma 3.1 III (a), we have

$$d(y_{n+2m+1}, y_n) \leq d(y_{n+2m+1}, y_{n+2m}) + d(y_{n+2m}, y_{n+2m-1}) + d(y_{n+2m-1}, y_n)$$

$$= d_{n+2m} + d_{n+2m-1} + d(y_{n+2m-1}, y_n),$$

$$\leq d_{n+2m} + d_{n+2m-1} + d_{n+2m-2} + d_{n+2m-3} + \dots + d_n,$$

$$\leq h^{n+2m} d_0 + h^{n+2m-1} d_0 + \dots + h^n d_0,$$

$$= h^n (1 + h + h^2 + \dots + h^{2m}) d_0,$$

$$\leq \frac{h^n}{1 - h} d_0,$$

as h < 1 and P is closed. Thus

(3.2)
$$d(y_{n+2m+1}, y_n) \leq \frac{h^n}{1-h} d_0.$$

Again, from Lemma 3.1 (III (c)), we have

$$d(y_{n+2m}, y_n) \leq d(y_{n+2m}, y_{n+2m-1}) + d(y_{n+2m-1}, y_{n+2m-2}) + d(y_{n+2m-2}, y_n)$$

$$= d_{n+2m-1} + d_{n+2m-2} + d(y_{n+2m-2}, y_n)$$

$$\leq d_{n+2m-1} + d_{n+2m-2} + d_{n+2m-3} + d_{n+2m-4} + \cdots$$

$$+ d_{n+2} + d(y_{n+2}, y_n)$$

$$= d(y_{n+2}, y_n) + d_{n+2} + d_{n+3} + \cdots + d_{n+2m-1}$$

$$\leq kh^{n-1}d_0 + h^{n+2}(1 + h + h^2 + \cdots + h^{2m-3})d_0$$

$$\leq kh^{n-1}d_0 + h^{n+2}\frac{d_0}{1 - h},$$

as h < 1 and P is closed. Thus

(3.3)
$$d(y_{n+2m}, y_n) \leq kh^{n-1}d_0 + h^{n+2}\frac{d_0}{1-h}.$$

Now for $c \in P^{\circ}$, there exists r > 0 such that $c/2 - y \in P^{\circ}$, if ||y|| < r. Choose a positive integer N_c such that for all $n \geq N_c$, $||(h^n d_0)/(1-h)|| < r$, $||kh^{n-1}d_0|| < r$, and $||\frac{h^{n+2}}{1-h}d_0|| < r$, for all $n > N_c$. This implies $\frac{c}{2} - \frac{h^{n+2}}{1-h}d_0$, $\frac{c}{2} - kh^{n-1}d_0$, $c - \frac{h^n}{1-h}d_0 \in P^{\circ}$. Hence by remark 2.1, we have $c - \frac{h^{n+2}}{1-h}d_0 - kh^{n-1}d_0 \in P^{\circ}$, and $c - \frac{h^n}{1-h}d_0 \in P^{\circ}$, for all $n > N_c$. Also from (3.2) and (3.3), $\frac{h^{n+2}}{1-h}d_0 + kh^{n-1}d_0 - d(y_{n+2m}, y_n) \in P$ and $\frac{h^n}{1-h}d_0 - d(y_{n+2m+1}, y_n) \in P$. Hence by Proposition 2.3, $c - d(y_{n+2m}, y_n) \in P^{\circ}$ and $c - d(y_{n+2m+1}, y_n) \in P^{\circ}$, for all $n > N_c$. Thus $\{y_n\}$ is a Cauchy sequence in $S(X) \cap A(X)$. Now, we show that the mappings A and S have a unique point of coincidence.

Case I: S(X) is complete

In this case $y_n = Sx_{n+1}$ is a Cauchy sequence in S(X), which is complete. So $\{y_n\} \to z \in S(X)$. Hence there exist $u \in X$ such that z = Su Now,

$$d(Au, Su) \leq d(Au, Ax_n) + d(Ax_n, Ax_{n+1}) + d(Ax_{n+1}, Su),$$

$$= d(Au, Ax_n) + d(y_n, y_{n+1}) + d(y_{n+1}, Su),$$

$$= d_n + d(y_{n+1}, Su) + d(Ax_n, Au)$$

$$\leq d_n + d(y_{n+1}, Su) + \mu d(Au, Su) + \lambda d(Ax_n, Sx_n) + \delta d(Su, Sx_n) + \beta d(Au, Su)$$

$$= d_n + d(y_{n+1}, Su) + \mu d(Au, Su) + \lambda d(y_n, y_{n-1}) + \delta d(Su, y_{n-1}) + \beta d(y_n, Su).$$

Writing $d_n = d(x_n, x_{n+1})$ we obtain

$$d(Au, Su) \leq d_n + d(y_{n+1}, Su) + \mu d(Au, Su) + \lambda d_{n-1} + \delta d(Su, y_{n-1}) + \beta d(y_n, Su).$$

Rearranging the terms we obtain:

$$(1 - \mu)d(Au, Su) \leq d_n + d(y_{n+1}, Su) + \lambda d_{n-1} + \delta d(Su, y_{n-1}) + \beta d(Su, y_n)$$

$$\leq h^n d_0 + \lambda h^{n-1} d_0 + d(y_{n+1}, Su) + \delta d(Su, y_{n-1}) + \beta d(Su, y_n)$$

$$\leq (1 + \lambda)h^n d_0 + d(Su, y_{n+1}) + \delta d(Su, y_{n-1}) + \beta d(Su, y_n).$$

Thus,

$$(3.4) \quad (1-\mu)d(Au, Su) - (1+\lambda)h^n d_0 \leq d(Su, y_{n+1}) + \delta d(Su, y_{n-1}) + \beta d(Su, y_n).$$

As $\beta \geq 0, \delta \geq 0$ and $y_{n-1}, y_n, y_{n+1} \rightarrow Su$, by Lemma 2.1 for $c \in P^{\circ}$ there exists a positive integer N_c such that

$$c - d(Su, y_{n+1}) - \delta d(Su, y_{n-1}) - \beta d(Su, y_{n-1}) \in P^{\circ}$$
 for all $n > N_c$.

This implies that

$$d(Su, y_{n+1}) + \delta d(Su, y_{n-1}) + \beta d(Su, y_n) \ll c$$
 for all $n > N_c$.

Using Proposition 2.3 and equation 3.4, we get

$$(1-\mu)d(Au,Su)-(1+\lambda)h^nd_0\ll c$$
 for all $n>N_c$.

As h < 1, we have $(1 - \mu)d(Au, Su) \ll c$ for all $c \in P^{\circ}$. Using Proposition 2.2 it follows that $d(Au, Su) = \theta$ and we get Au = Su. Thus, the pair (A, S) has a point of coincidence z = Au = Su.

Case II: A(X) is complete.

In this case $y_n = Ax_n$ is a Cauchy sequence in A(X) which is complete. So $\{y_n\} \to Ax_n$

z = Aw, for some $w \in X$. As $A(X) \subseteq S(X)$ there exists $v \in X$ such that Aw = Sv. Thus $\{y_n\} \to Sv$. It follows from case I that Av = Sv. Thus in both the cases the pair (A, S) has a point of coincidence, which is unique in view of Lemma 2.2 As (A, S) is weakly compatible from Proposition 2.4, it follows that the point of coincidence of A and S is their unique common fixed point in X.

Theorem 3.2. Let (X, d) be a cone rectangular metric space with respect to a cone P with $P^{\circ} \neq \phi$ in a real Banach space E. Let A and S be self mappings on X satisfying (3.1.1), (3.1.2) and

(3.3.1) there exists $\lambda, \mu, \delta, \alpha \in [0, 1)$ such that $0 < \lambda + \mu + \delta + \alpha < 1$ and the following inequality is satisfied:

$$d(Ax, Ay) \leq \lambda d(Ax, Sx) + \mu d(Ay, Sy) + \delta d(Sx, Sy) + \alpha d(Ay, Sx)$$

for all $x, y \in X$.

Then the mappings A and S have a unique coincidence point in X. Moreover, if the pair (A, S) is weakly compatible, then A and S have a unique common fixed point in X.

Proof. we have,

$$d(Ax, Ay) = d(Ay, Ax) \leq \lambda d(Ay, Sy) + \mu d(Ax, Sx) + \delta d(Sx, Sy) + \alpha d(Ax, Sy).$$

Interchanging λ and μ and writing α as β , we get

$$d(Ax, Ay) \leq \lambda d(Ax, Sx) + \mu d(Ay, Sy) + \delta d(Sx, Sy) + \beta d(Ax, Sy).$$

Rest follows from Theorem 3.1

Example 3.1. (of Theorem 3.2) Let $X = \{1, 2, 3, 4\}, E = \mathbb{R}^2, P = \{(x, y) \in \mathbb{R}^2 : x \geq 0, y \geq 0\} \subset \mathbb{R}^2$, be a cone in E. Define $d: X \times X \to E$ as follows: d(x, y) = 0 if x = y,

$$d(1,2) = d(2,1) = (3,6)$$

$$d(2,3) = d(3,2) = d(1,3) = d(3,1) = (1,2)$$

$$d(1,4) = d(4,1) = d(2,4) = d(4,2) = d(3,4) = d(4,3) = (2,4)$$

Then, (X, d) is a complete rectangular cone metric space. In fact it is not a cone metric space as d(1,3) + d(3,2) < d(1,2). Define the mappings A and S on X as follows:

$$A(1) = 3, A(2) = 3, A(3) = 3, A(4) = 1$$

S(1)=2, S(2)=1, S(3)=3, S(4)=2. Then the maps A and S are weakly compatible and $A(X) \subset S(X)$. The conditions (3.2.1) and (3.1.2) are satisfied with $\lambda = \mu = 1/4$ and $\beta = \delta = 1/8$ and the pair (A,S) has a unique common fixed point $x=3 \in X$.

Taking S = I, the identity mapping in Theorems 3.2 and 3.3, we have the following results:

Theorem 3.3. Let (X, d) be a cone rectangular metric space with respect to a cone P with $P^{\circ} \neq \phi$ in a real Banach space E. Let A be self mappings on X and there exist $\lambda, \mu, \delta, \beta \in [0, 1)$ such that $0 < \lambda + \mu + \delta + \beta < 1$ and the following inequality is satisfied:

$$d(Ax, Ay) \leq \lambda d(Ax, x) + \mu d(Ay, y) + \delta d(x, y) + \beta d(Ax, y)$$

for all $x, y \in X$. Then the mapping A has a unique fixed point in X.

Theorem 3.4. Let (X, d) be a cone rectangular metric space with respect to a cone P with $P^{\circ} \neq \phi$ in a real Banach space E. Let A be self mapping on X and there exist $\lambda, \mu, \delta, \alpha \in [0, 1)$ such that $\lambda + \mu + \delta + \beta < 1$ and the following inequality is satisfied:

$$d(Ax, Ay) \leq \lambda d(x, Ax) + \mu d(y, Ay) + \delta d(x, y) + \alpha d(x, Ay)$$

for all $x, y \in X$. Then the mapping A has a unique fixed point in X.

Again, taking $\lambda = \mu = \alpha = 0$ and $\delta = k$ in Theorem 3.3, we have the following result:

Corollary 3.1. Let (X, d) be a cone rectangular metric space with respect to a cone P with $P^{\circ} \neq \phi$ in a real Banach space E. Let A and S be self mappings on X satisfying (3.1.1) and for some $k \in [0, 1)$ and for all $x, y \in X$,

$$d(Ax, Ay) \leq kd(Sx, Sy).$$

If A(X) or S(X) is complete and the pair (A, S) is weakly compatible then the mappings A and S have a unique common fixed point in X.

Remark 3.1. On taking S = I, the identity mapping in Corollary 3.1 the result of Azam et all [1], Theorem 2 follows.

Again taking $\lambda = \mu = k$ and $\alpha = \delta = 0$ in Theorem 3.2, we have the following result:

Corollary 3.2. Let (X, d) be a cone rectangular metric space with respect to a cone P with $P^{\circ} \neq \phi$ in a real Banach space E. Let A and S be self mappings on X satisfying (3.1.1) and for some $k \in (0, 1/2)$ and for all $x, y \in X$,

$$d(Ax,Ay) \preceq k[d(Ax,Sx) + d(Ay,Sy)]$$

If A(X) or S(X) is complete and the pair (A, S) is weakly compatible then the mappings A and S have a unique common fixed point in X.

Finally, taking $\beta = 0$ in Theorem 3.3, we have the following result

Corollary 3.3. Let (X, d) be a cone rectangular metric space with respect to a cone P with $P^{\circ} \neq \phi$ in a real Banach space E. Let A and S be self mappings on X satisfying

(3.1.1),(3.2.1) and there exist $\lambda,\mu,\delta\in[0,1)$ such that $0<\lambda+\mu+\delta<1$ and the following inequality is satisfied:

$$d(Ax, Ay) \leq \lambda d(Sx, Ax) + \mu d(Sy, Ay) + \delta d(Sx, Sy)$$

for all $x, y \in X$. If the pair (A, S) is weakly compatible then the mappings A and S have a unique common fixed point in X.

Remark 3.2. Corollaries 3.1 and 3.2 are known to be true in a normal cone metric space from Abbas and Jungck [6]. Corollary 3.3 is known to be true in a normal cone metric space from P. Vetro [7]. Also, an ordered version of this corollary and a consequence of this can be seen in [11, 12].

Keeping one of the constants $\alpha, \beta, \gamma, \delta, \mu$ non-zero and all others equal to zero in Theorems 3.1 and 3.2, we have the following result:

Corollary 3.4. Let (X,d) be a cone rectangular metric space with respect to a cone P with $P^{\circ} \neq \phi$ in a real Banach space E. Let A and S be two weakly compatible self mappings on X such that A(X) or S(X) is complete. Suppose that the following inequality is satisfied:

$$d(Ax, Ay) \le \lambda u$$
, where $u \in \{d(Ax, Sx), d(Ay, Sy), d(Sx, Sy), d(Ax, Sy)\}$

for all $x, y \in X$, where $\lambda \in (0,1)$. Then A and S have a unique common fixed point in X.

The following definition and Theorem appears in D. Ilic, V. Rakocevic [2].

Definition 3.1 (Quasi contraction [2]). A self-map f on a cone metric space (X, d) is said to be a quasi contraction if for a fixed $\lambda \in (0, 1)$ and for all $x, y \in X$

$$d(fx, fy) \le \lambda u$$
, where $u \in \{d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)\}.$

Theorem 3.5 ([2]). Let (X, d) be a complete cone metric space and P be normal cone. Then a Quasi contraction f has a unique fixed point in X, and for each $x \in X$, the iterative sequence $\{f^n(x)\}$ converges to this fixed point.

Remark 3.3. Taking S = I, the identity mapping in Corollary 3.4 it follows that the above result of [2] is true even for non-normal complete cone rectangular metric spaces. The above result has been established in [5] for a complete metric space.

Acknowledgement

We would like to thank Dr. Lal Bahadur, Retd. Principal, Govt. Arts and Commerce college, Indore, India; and the referees for their valuable suggestions and comments on this paper.

References

- A. Azam, M. Arshad and I. Beg, Banach contraction principle in cone rectangular metric spaces,
 Appl. Anal. Discrete Math., 3 (2009), 236-241.
- [2] D.Ilic, V. Rakocevic, *Quasi-contraction on a cone metric space*, Applied Mathematics Letters, **22** (2009), 728–731.
- [3] G. Jungck, S. Radenović, S. Radojević. and V. Rakŏcević, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl., 57 (2009), article ID 643840, 13 pages.
- [4] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476.
- [5] Lj. B. Ciric, A generalization of Banach contraction principle, Proc. Amer.Math. Soc., 45 (1974), 999–1006.
- [6] M. Abbas, G Jungck, Common fixed point results for non commuting mappings without continuity in Cone metric spaces, J. Math. Anal. Appl., 341 (2008), 416–420.
- [7] P.Vetro, Common fixed points in cone metric spaces, Rendiconti Del Circolo Matematico Di Palermo, Series II, Tomo, LVI (2007), 464–468.

- [8] S. Jain, S. Jain and LalBahadur, Compatibility and weak compatibility for four self maps in cone metric spaces, Bulletin of Mathematical Analysis and Application, 2 (2010), 15–24.
- [9] S. Jain, S. Jain and LalBahadur, Weakly compatible maps in cone metric spaces, Rendiconti Del Semnario matematico, 3 (2010), 13–23.
- [10] S. Jain, S. Jain and LalBahadur, On Banach contraction principlein a cone metric space, J. Nonlinear Sc. and Application, 5 (2012), 252–258.
- [11] S.K. Malhotra, J.B. Sharma, S. Shukla, g-weak contraction in ordered cone rectangular metric spaces, The Scientific World Journal, 2013, (2013), Article ID 810732, 7 pages.
- [12] S. K. Malhotra, S. Shukla, and R. Sen, Some fixed point theorems for ordered Reich type contractions in cone rectangular metric spaces, Acta Mathematica Universitatis Comenianae, LXXXII(2), (2013), 165–175.
- [13] Sh. Rezapour and R. Hamlbarani, Some notes on the paper Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 345 (2008), 719–724.
- [14] W-S Du, A note on cone metric fixed point theory and its equivalence, J. Nonlinear Analysis, 72 (2010), 2259–2261.
- (1) Shri Vaishnav Institute of Technology & Science, Department of Applied Mathematics , Gram Baroli Sanwer Road, Indore (M.P.) 453331, India.

E-mail address: (1) jainshishir11@rediffmial.com

E-mail address: (2) shobajain1@yahoomail.com