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WHEELS

M.S.A. BATAINEH (1), M.M.M. JARADAT (2) AND A.M.M. JARADAT (3)

A�������. Let k ≥ 4 be a positive integer. Let G(n;Wk) denote the class of graphs

on n vertices containing no wheel Wk as a subgraph. In this paper, we study the

following: (1) Edge maximal graphs containing no odd wheels. Furthermore, we

characterize the extremal graphs. (2) The edge maximal graph containing no even

wheels. (3) The edge maximal graph containing no specific even wheels.
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1. I��������	��.

Unless otherwise specified a graph G is finite, undirected, and has no loops or

multiple edges. We denote the vertex set of G by V (G), the edge set of G by E(G)

and the number of edges of G by E(G). The cycle on n vertices is denoted by Cn. A

wheel graph Wn, n ≥ 4 is defined to be a cycle Cn−1 to which we add a new vertex

that is adjacent each vertex of Cn−1. Let G be a graph, and u ∈ V (G). The degree of

a vertex u in G, denoted by dG(u), is the number of edges of G incident to u. ∆(G)

stands for the maximum degree in G. The neighbor set of a vertex u of G is the

set of adjacent vertices to u, and denoted by NG(u). For vertex disjoint subgraphs
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H1 and H2 of G we let E(H1, H2) = {xy ∈ E(G) : x ∈ V (H1), y ∈ V (H2)} and

E(H1,H2) = |E(H1,H2)|.

For a positive integer n and a set of graphs F , let G(n;F) denote the class of

non-bipartite F -free graphs on n vertices, and

f(n;F) = max{E(G) : G ∈ G(n;F)}.

An important problem in extremal graph theory is to determine the value of the

function f(n;F) and to characterize the extremal graphs of G(n;F) in which f(n;F)

is attained. This problem has been studied by many authors, see [2, 3, 5 , 13]. We

state the following powerful result which determines the asymptotic behavior of the

maximal graphs in many situations:

Theorem 1.1. (Erdos-Stone-Simonovits) Let F be any finite set of graphs and r be

the minimum chromatic number of F ∈ F . Then

f(n;F) = (1−
1

r − 1
)





n

2



+ o(n2).

One can notice that if r = 2 (i.e., if any of the subgraphs of F is bipartite), then this

theorem does not tell us much.

Moon [13] proved that, if G is a graph on n vertices containing no wheels, then

E(G) ≤ ⌊n
2

4
⌋+ ⌊n+1

4
⌋. Furthermore, he characterized the extremal graphs. Alrhayyel

and et al [1] proved that (1) f(n;W5) =
⌊

n−2
4

⌋

+
⌊

s
4

⌋

for n ≥ 3 where s = n if

n 
= 4k + 2 and s = n− 1 if n = 4k + 2 and (2) f(n;W6) =
⌊

n2

3

⌋

for n ≥ 6.

The results cited above trigger off the following question: Can we determine the

exact value of f(n;F), and characterize the extremal graphs for the following cases?:

(1) F = {W5,W7, . . . , W2k+1, . . .} which is the family of all odd wheels.

(2) F = {W4,W6, . . . ,W2k, . . .} which is the family of all even wheels.
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(3) F = {W2k} which consists of a specific even wheel where k ≥ 2 is a positive

integer.

(4) F = {W2k+1}which consists of specific even wheel where k ≥ 2 is a positive

integer.

In this paper we determine the extremal function for the class of graphs that con-

tains no odd wheels and characterize the extremal graphs as well which is the answer

for question 1. Furthermore, we determine the edge maximal graphs containing no

even wheels and graphs containing no specific even wheels which answers the first

part of question 2 and 3. We pose the other problems as future ideas to explore. The

following theorem will be used in proving our results which can be found in [6].

Lemma 1.2. (Bondy) Let G be a graph on n vertices with E(G) >
⌊

n2

4

⌋

. Then G

contains cycles of every length l for 3 ≤ l ≤
⌊

n+3
2

⌋

.

2. E��
 ���	��� Wk ��

 ������

We begin with some constructions which are similar to the constructions made in

[13]. Let G be a graph with n ≥ 5 vertices, let Hn denote the class of graphs obtained

by splitting the vertices of G into two sets, P andQ, with ⌊n+1
2
⌋ and ⌊n

2
⌋, respectively.

There are as many edges joining pairs of vertices in P (and analogously in Q) as are

consistent with the requirement that no two of these edges have a vertex in common.In

addition, each vertex in P is adjacent to each vertex in Q. If n ≡ 2 mod4, let Ln

denote the class of graphs obtained as above except that P and Q have n
2
+ 1 and

n
2
−1 vertices. Let l be a positive integer, then the following properties of these graph

can readily be verified: (2.1) Hn and Ln each have ⌊
n2

4
⌋+ ⌊n

2
⌋ edges if n 
= 4l+2 and

⌊n
2

4
⌋ + ⌊n−1

2
⌋ edges if n = 4l + 2.

(2.2) Neither Hn nor Ln contain any odd wheels.



110 M.S.A. BATAINEH, M.M.M. JARADAT AND A.M.M. JARADAT

(2.3) At least one odd wheel is formed when any new edge is added to Hn or

Ln.

Theorem 2.1. Let

∅(n) =































4l2 + 2l, if n = 4l

4l2 + 4l, if n = 4l + 1

4l2 + 6l + 1, if n = 4l + 2

4l2 + 8l + 3, if n = 4l + 3.

Then the only graphs with n ≥ 5 vertices and at least ∅(n) edges which contain no

odd wheels are Hn or Ln. Furthermore, f(n,F) = ∅(n) where F = {W5,W7, . . . ,

W2k+1, . . .} which is the family of all odd wheels.

Proof : We use induction on n to prove the theorem:

n = 5. One can easily see that the only graph G on 5 vertices and 8 edges containing

no odd wheels is K4 plus a vertex v adjacent to two vertices of K4 (see Figure 1).

Thus, G = H5.

F	���
 1. Represents the situation when n = 5

n = 6. Let G be a graph on 6 vertices, 11 edges and contains no odd wheels. Since

(4)(6) > (2)(11), by Handshaking Lemma, G must have a vertex with degree less than

or equal 3, say f . If the degree of f is equal to 1 or 2, then E(G−f) = 11−deg(f) ≥ 9.

And so, by the Case n = 5, G− f has a W5 as a subgraph. To this end, dG(f) = 3.



EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS 111

Let H be the graph obtained by removing f . Using the case n = 5 and (2.3) one can

see that H = H5. Let {a, b, c, d, v} be the vertex set of H5 as in Figure 1. Note that

f can not be adjacent to three vertices of {a, b, c, d} as otherwise a W5 is produced.

Also, if f is adjacent to v and adjacent to one vertex of {a, b}, say a, and one vertex

of {c, d}, say c, then f is adjacent to every vertex of the 4-cycle vcabv. Thus, W5 is

produced. Hence f is adjacent to v and adjacent to either one of the following (1)

a and b and so G must be H6 (see Figure 2.A) or (2) c and d and so G must be L6

(see Figure 2.B).

F	���
 2. Represents the situation when n = 6

n = 7. Let G be a graph on 7 vertices, 15 edges and contains no odd wheels. Note

that (5)(7) > (2)(15). Then G contains a vertex with degree at most 4, say x. If

degree of x is less than or equal to 3, then E(G− x) = 15− dG(x) ≥ 12. And so, by

the Case n = 6, G − x has a W5 as a subgraph. To this end, dG(x) = 4. Let H be

the graph obtained by removing x . Using the case n = 6 and (2.3), we get that H

must be either H6 (as in Figure 2.A) or L6 (as in Figure 2.B).
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As in above, x can not be adjacent to three vertices of {a, b, c, d}. So x is adjacent

to v and f and to two vertices of {a, b, c, d}. Now we consider the case H = H6. It

is easy to see that if x is adjacent to a vertex of {a, b} and a vertex of {c, d}, then

W5 is produced. Therefore, x is adjacent to either one of the following (1) both a and

b or (2) both c and d. Note that either (1) or (2) implies that G = H7 (see Figure

3A and B). To end this, we consider that H = L6. As in above, one can see that if x

is adjacent to one vertex of {a, b} and a vertex of {c, d} or is adjacent to both c and

d, then W5 is produced. Thus, x must be adjacent to both a and b which implies that

G = H7 (see Figure 3C).

F	���
 3. Represents the situation when n = 7

n = 8. Let G be a graph on 8 vertices and 20 edges. A similar argument to

arguments in case n = 7 will show that there needs to be a vertex of degree 5 in

G, say z. Consider H to be the graph obtained by removing z . Then, by similar

arguments to above, H = H7 (we may assume it as in Figure 3A) . Also, z is adjacent

to v, f, x and to two vertices of {a, b, c, d}. Furthermore, if z is adjacent to one vertex

of {a, b} and one vertex of {c, d} or to both vertices c and d, then W5 is produced.

Thus, z must be adjacent only to both vertices a and b and hence, G = H8.
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Now, suppose that the result holds for m ≥ 8. Let G be a graph with m+1 vertices

and at least ∅(m + 1) edges which contains no odd wheels. First we assume that G

has exactly ∅(m + 1) edges. Now, we show that G = Hm+1 or Lm+1. We consider

four cases according to m.

Case 1: m = 4l. Then G has 4l+1 vertices and 4l2+4l edges. Since (4l+1)(2l+

2) > 2(4l2 + 4l), there is a vertex x in G with degree d where d ≤ 2l + 1. If d < 2l,

then E(G − x) = 4l2 + 4l − d > 4l2 + 2l. And so, by the induction step, G − x has

a W5 as a subgraph. To this end, d ∈ {2l, 2l + 1}. Let G
′

be the graph obtained by

removing x . Then G
′

has 4l vertices. We now consider the following two subcases

:

Subcase 1.1: d = 2l. Then G
′

has no odd wheels, 4l vertices and ∅(4l+ 1)− d =

∅(4l + 1) − 2l = ∅(4l). It follows from the induction hypothesis and (2.1) that

G
′

= Hm and d = 2l. Hence G consists of Hm and the vertex x which adjacent to

precisely 2l vertices of Hm. Clearly, each of P and Q contains only 2l vertices.

Now, observe that x can not be adjacent to more than one vertex of P and to

one vertex of Q simultaneously, for if x is adjacent to two vertices of P , say p1 and

p2, and to one vertex of Q say q1, then q1 is adjacent to every vertex of the cycle

p1xp2q2p1 which forms W5 as a subgraph of G, where q2 is the neighbor of q1 in Q, a

contradiction. Analogously, x can not be adjacent to more than one vertex of Q and

to one vertex of P simultaneously.

This observation and the fact that both P and Q have 2l vertices, leave the following

alternatives: The vertex x is adjacent to every vertex of P and to no vertex of Q or x

is adjacent to every vertex of Q and to no vertex of P , which implies that G = Hm+1.

Subcase 1.2: d = 2l + 1. Then G
′

has 4l vertices and 4l2 + 4l− 2l− 1 edges. Since

4l(2l+ 1) > 2(4l2 + 2l− 1), as a result G
′

has a vertex, say y, such that dG′ (y) ≤ 2l.

By the same argument as in the above, we need only to consider dG′ (y) = 2l , so we

consider this case only. Let G
′′

= G
′

− y. Then G
′′

has 4l − 1 vertices and 4l2 − 1



114 M.S.A. BATAINEH, M.M.M. JARADAT AND A.M.M. JARADAT

edges, so by induction step, G
′′

must be H4l−1. Moreover, P contains only 2l and Q

contains only 2l − 1 vertices. Now, G
′

consists of H4l−1 and the vertex y which is

adjacent to precisely 2l vertices of H4l−1. Clearly, as in Subcase 1.1, y can not be

adjacent to more than one vertex of both P and Q simultaneously. This observation

and the fact that y must be adjacent to at least one vertex of P , since Q contains

only 2l − 1 vertices, leaves the following alternatives:

(a) The vertex y is adjacent to every vertex of P and to no vertex of Q.

(b) The vertex y is adjacent to 2l − 1 vertices of P and to one vertex of Q.

(c) The vertex y is adjacent to every vertex of Q and to one vertex of P .

We know that G consists of G
′

plus the vertex x which is adjacent to precisely 2l+1

vertices of G
′

. So we have the following possibilities according to the alternative (a),

(b) and (c):

(I) Alternative (a) implies that G
′

is a graph obtained by splitting the vertices of

G
′

into two sets, P1 and Q1 each of which contains only 2l vertices. There are two

nonadjacent vertices, say q1 and q2, in Q1 (one of them is y) each of which is adjacent

to no vertex of Q1. Further, there are as many edges joining pairs of vertices in P1

(and analogously Q1) as are consistent with the requirement that no two of these edges

have a vertex in common. In addition, each vertex in P1 is adjacent to each vertex

in Q1. As in the observation of Subcase 1.1, x can not be adjacent to more than one

vertex of both P1 and Q1 simultaneously. This observation and the fact that x should

be adjacent to at least one vertex of P or Q, since both P and Q have 2l vertices,

leaves the following possibilities:

(i) x is adjacent to 2l vertices of P1and to one vertex, say q, of Q1. If this is the

case, then q ∈ {q1, q2} and so G = Hm+1 since otherwise q is adjacent to every vertex

of the cycle p1xp2q
∗p1 where q∗ is the neighbor of q in Q1 and p1, p2 are two vertices

of P1 which forms W5 as a subgraph of G, a contradiction.
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(ii) x is adjacent to 2l vertices of Q1 and to one vertex p1 of P1. If this is the case,

then by interchanging Q1 and P1 in (i) we get the same contradiction.

(II) Alternative (b) and (2.3) imply that G
′

is a graph obtained by splitting the

vertices of G
′

into two sets, P1 and Q1 each of which contains only 2l vertices.

There are as many edges joining pairs of vertices in P1 (and analogously Q1) as are

consistent with the requirement that no two of these edges have a vertex in common.

In addition, each vertex in P1 is adjacent to each vertex in Q1 except that there is a

vertex q = y in Q1 which is not adjacent to a vertex p in P1. As above, x can not be

adjacent to more than one vertex of both P1 and Q1 simultaneously. Similarly, this

observation and the fact that x should be adjacent to at least one vertex of P or Q,

since both P and Q have 2l vertices, leaves the following possibilities:

(i) x is adjacent to 2l vertices of P1 and to one vertex q of Q1. If this is the case,

then the vertex q is adjacent to every vertex of the cycle p∗xp2q
∗p∗ where q∗ is the

neighbor of q in Q1 and p∗, p2 are two vertices of P1 which forms W5 as a subgraph

of G, so this case is impossible.

(ii) x is adjacent to 2l vertices of Q1 and to one vertex of P1, then as in the above

(i), W5 is produced.

(III) By using observation of Subcase 1.1, the alternative (c) is impossible, and so

this case is impossible.

Case 2: m = 4l + 1. Then G has 4l + 2 vertices and 4l2 + 6l + 1 edges. Since

(4l + 2)(2l + 2) > 2(4l2 + 6l + 1), as in Case 1, we need only to consider that there

is a vertex, say x, in G of degree d where d ≤ 2l + 1. Let G
′

be the graph obtained

by removing x . Then G
′

has 4l +1 vertices and contains no odd wheels. Further

∅(4l + 2) − d ≥ ∅(4l + 2) − (2l + 1) = ∅(4l + 1). It follows from the induction

hypothesis, (2.1) and a similar argument to as in Case 1, we get that G
′

= Hm and

d = 2l + 1. Hence G consists of Hm and the vertex x which joins to precisely 2l + 1

vertices of Hm. We now consider the possibilities. First, suppose that G
′

= Hm.
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Clearly, P contains only 2l + 1 vertices and Q contains only 2l vertices. As in Case

1, x can not be adjacent to more than one vertex of both P and Q simultaneously.

This observation and the fact that x must be adjacent to at least one vertex of P ,

since Q contains 2l vertices, leaves the following alternatives:

a) The vertex x is adjacent to every vertex of P and to no vertex of Q.

b) The vertex x is adjacent to 2l vertices of P and to one vertex q1 of Q.

c) The vertex x is adjacent to one vertex p1 of P and to every vertex of Q.

Alternative (a) implies that G = Hm+1, by definition. Alternative (b) is impossible

for the same reason as in the observation of Subcase 1.1. In alternative (c) if p1

is adjacent to another vertex p2 in P , then p1 is adjacent to every vertex of the

cycle q2xq1p2q2 where q1, q2 are two vertices in Q which forms W5 as a subgraph.

Hence p1 is the only vertex that is adjacent to no other vertices of P . This implies G =

Lm+1.

Case 3: m = 4l+2. Then G has 4l+3 vertices and 4l2 +8l+3 edges. By using

Handshaking lemma, there is some vertex x in G of degree d where d ≤ 2l + 2. As

in the argument in Case 1 in which we excluded the case d < 2l, it is easy to show

that if d < 2l − 1, then G has W5. So, we consider that d = 2l + 2. Let G
′

be the

graph obtained by removing x and its d incident edges from G. Then by using the

same argument as in Case 1 and by the inductive hypothesis G
′

must be either Hm

or Lm. Hence G consists of Hm (or Lm) and the vertex x which joins to precisely

2l + 2 vertices of Hm (or Lm). We now consider the possibilities. First, suppose

that G
′

= Hm. Clearly, each of P and Q contains only 2l + 1 vertices. As in the

observation of Subcase 1.1, x can not be adjacent to more than one vertex of both P

and Q simultaneously. This observation and the fact that x must be adjacent to at

least one vertex in P or Q, since both P and Q contain only 2l + 1 vertices, leaves

the following alternatives:

a) The vertex x is adjacent to every vertex of P and one vertex q1 of Q.
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b) The vertex x is adjacent to one vertex p1 of P and to every vertex of Q.

If the alternative (a) is the case, then by using the same argument as in the al-

ternative (c) of Case 2, we can show that q1 is the only vertex adjacent to no other

vertices of Q. This implies G = Hm+1. Similarly, if alternative (b) is the case, then

G = Hm+1.

Now we consider the case G
′

= Lm. By the definition of Lm, P contains only 2l+2

and Q contains only 2l vertices. As above x can not be adjacent to two vertices of P

and two vertices of Q, simultaneously. This observation and the fact that x must be

adjacent to at least one vertex of P , since Q contains 2l vertices, leave the following

alternatives:

(a) x is adjacent to 2l + 2 vertices of P .

(b) x is adjacent to 2l + 1 vertices of P and one vertex of Q. If alternative (a) is

the case, then G = Hm+1. By observation of Subcase 1.1, alternative (b) is impossible

to happen.

Case 4: m = 4l−1. Similarly to the other cases, we see that there is a vertex x of

degree at most 2l+1. However, it is impossible for the degree to be less than or equal

to 2l because otherwise as in Case 1, W5 is a subgraph of G. Further, the subgraph G
′

that is obtained by removing x is Hm. Hence G consists of G
′

= Hm plus the vertex

x which joins to precisely 2l + 1 vertices of Hm. Clearly P contains only 2l vertices

and Q contains only 2l −1 vertices. As above, it is clear that x can not be adjacent

to more than one vertex of both P and Q simultaneously. This observation and the

fact that x must be adjacent to at least 2 vertices of P , and Q contains 2l−1 vertices,

leave the following alternatives: The vertex x is adjacent to every vertex of P and

one vertex q1 of Q. By a similar argument as in alternative (c) of Case 2, q1 can

only be the vertex adjacent to no other vertices of Q. This implies that G = Hm+1.

For the case where G has ∅(m+1)+α edges where α ≥ 1, consider H ′ be a graph

obtained from G by deleting any α edges. Then H ′ has ∅(m + 1) edges. By the
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above cases H ′ is either Hm or Lm and so by (2.3) G has an odd wheel. The proof is

completed.

Now, we consider edge maximal graphs without W2k. Let W(n) be the class of

complete tripartite graph Kn1,n2,n3
where n = n1 + n2 + n3 is a partition of n into

three parts which are as equal as possible. Note that if G ∈ W(n), then G is a W2k-

free graph and E(G) = ⌊n2

3
⌋. Thus, f(n;W2k) ≥ ⌊n

2

3
⌋. In the following theorem, we

determine the edge maximal graphs containing no even wheel.

Theorem 2.2. Let k ≥ 2 be a positive integer and G be a graph containing no

even wheel of order 2k. Then for n ≥ 6(k − 1)

E(G) ≤

⌊

n2

3

⌋

.

Furthermore, the bound is best possible.

Proof: Let G be a graph containing no even wheel of order 2k. Let u ∈ V (G) such

that ∆(G) = dG(u), say dG(u) = m for some positive integer m.If m < ⌈2n
3
⌉, then

2E(G) =
∑

v∈V (G)

dG(v) <

⌈

2n

3

⌉

n.

Hence, E(G) < ⌊n
2

3
⌋. So we need to consider the case when m ≥ ⌈2n

3
⌉. Let NG(u) =

{v1, v2, ..., vm} be the neighbors of u in G. Define H1 = G[v1, v2, ..., vm] and H2 =

G− (H1 ∪ {u}). Observe that H1 contains no odd cycle of length 2k− 1 as otherwise

G would have W2k as a subgraph. Thus, by Lemma 1.2, E(H1) ≤
⌊

m2

4

⌋

. Further,

dG(w) ≤ m for every w ∈ V (H2), and hence E(H2) + E(H1, H2) ≤ m(n −m − 1).
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So we have

E(G) = E(u,H1 ∪H2) + E(H1) + E(H2) + E(H1,H2)

≤ m+
m2

4
+m(n−m− 1)

= m+
m2

4
+ nm−m2 −m

= nm−
3m2

4
.

Define g(m) = nm− 3m2

4
. Observe that g has the maximum value at m = 2n

3
. So we

get that E(G) ≤ ⌊n
2

3
⌋. One notes that the bound is achievable by G ∈ W(n). The

proof is completed.

Corollary 2.1 Let G be a graph on n vertices containing no even wheels. Then

E(G) ≤

⌊

n2

3

⌋

.

Furthermore, the bound is best possible.

We conclude this work by posing the following problem: Determine the extremal

function for the class of graphs that contains no specific odd wheel and characterize

the extremal graphs as well.
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