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RINGS ON TORSION-FREE GROUPS OF RANK ONE AND TWO

A. NAJAFIZADEH (1) AND A. M. AGHDAM (2)

Abstract. This paper gives a survey about the possible rings which may be de-

fined over torsion-free groups of rank one and two. In fact, we give a list of such

rings which have been studied by some mathematicians over the past decades. In

particular, we give a review of the authors’ studies to determine such rings.

1. Introduction

The construction of the rings with given additive group and the related problem

of characterizing the additive groups of rings satisfying various conditions has been

considered by some mathematicians in the past decades. The results for rings over

torsion-free Abelian groups are meager. The rings over a given torsion-free group of

rank one have been determined, and every such ring is either a zero-ring or isomorphic

to a subring of the field R of rational numbers (Redei and Szele [15], and Beaumont

and Zuckerman [8]). Szele [18] has given a sufficient condition that an arbitrary

torsion-free group be a nil group, and Ree and Wisner [16] have found necessary

and sufficient condition that a completely reducible torsion-free group be a nil group.

Beaumont [5] gave a construction which included all rings over free Abelian groups,

and Fuchs [10] extended this construction to divisible torsion-free groups. Redei [14]
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generalized [5] to obtain algebras with given additive module. Beaumont and Wisner

[7] considered torsion-free Abelian groups of rank two and gave a characterization

of a group A in terms of groups of rank one. They found a necessary and sufficient

condition that there exist a non-commutative ring over an Abelian group A and de-

termined all such rings. They proved that every ring without zero-devisors over A is

commutative. Moreover, they showed that a ring R is a ring without zero-divisors

over A if and only if R is isomorphic to a subring of a quadratic field extension R(α)

of the rationals R. Recently, the authors have studied torsion-free Abelian groups of

rank two using their type set. They have considered homogeneous groups in [2] and

non-homogeneous groups in [3] and listed all the possible rings over non-homogeneous

groups. This paper, reviews those studies over torsion-free groups of rank one and

two which give mainly a list of the possible rings over such groups. In order to make

the paper self-contained, the proofs of the results related to rings constructions, have

been provided with details. Our notations follow from [11].

2. Notations and Preliminaries

Let A be an Abelian group. If every element of A is of finite order, A is called a

torsion group, while A is torsion-free if all its elements, except for 0, are of infinite

order. Mixed groups contain both nonzero elements of finite order and elements

of infinite order. A system {a1, · · · , ak} of nonzero elements of A is called linearly

independent, or briefly independent, if n1a1 + · · ·nkak = 0 (ni ∈ Z) implies n1a1 =

· · · = nkak = 0. A system of elements is dependent if it is not independent. An infinite

system {ai}i∈I of elements of A is called independent, if every finite subsystem of L is

independent. An independent system M of A is maximal if there is no independent

system in A containing M properly. By the rank r(A) of a group A is meant the

cardinal number of a maximal independent system containing only elements of infinite
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and prime power orders. It is well-known that the rank of any group A is an invariant

of A. A group A is divisible if and only if nA = A for every positive n. A subgroup B

of A is called a pure subgroup of A if nB = B ∩ nA for every n ∈ Z. For a subset S

of A, the symbol < S >∗ denotes the unique minimal pure subgroup of A generated

by S. Indeed, < S >∗ is the intersection of all pure subgroups of A that contain S.

A torsion-free group A is said to be completely decomposable if it is a direct sum

of rank one groups. A set {Ai}i∈I of torsion-free groups 6= 0 is said to be a rigid

system if Hom(Ai, Aj) is isomorphic to a subgroup of rational numbers Q if i = j

and Hom(Ai, Aj) = 0 if i 6= j. A group A is rigid if the singleton {A} is a rigid

system.

Remark 1. Let A be a rigid group of rank ≥ 2. Then A is a nil group.

Proof. See [11, The comment proceeding Proposition 121.2]. �

Given a prime p, the largest integer k such that pk divides x in the torsion-free

group A (x ∈ A) is called the p−height , hp(x), of x; if no such maximal integer k

exists, then we set hA
p (x) = ∞. Now let p1, p2, · · · , pn, · · · be an increasing sequence

of all primes. Then, the sequence

χA(x) = (hA
p1

(x), hA
p2

(x), · · · , hA
pn

(x), · · · ),

is said to be the height-sequence of x. We omit the subscript A if no ambiguity arises.

For any two height-sequences χ = (k1, k2, · · · , kn, · · · ) and µ = (l1, l2, · · · , ln, · · · ), we

set χ ≥ µ if kn ≥ ln for all n. Moreover, χ and µ will be considered equivalent if
∑

n |kn − ln| is finite [we set ∞− ∞ = 0]. An equivalence class of height-sequences

is called a type. If χ(x) belongs to the type t, then we say that x is of type t. If

χ = (k1, k2, · · · , kn, · · · ) and µ = (l1, l2, · · · , ln, · · · ) are two height-sequences, then

their product is defined as χ.µ = (k1 + l1, k2 + l2, · · · , kn + ln, · · · ) where, naturally,

the sum of ∞ and anything is ∞. A height-sequence χ is idempotent (i.e., χ2 = χ)
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exactly if, for every n, either kn = 0 or kn = ∞. The multiplication of height-sequences

is compatible with the equivalence relation defined above, so we may speak of the

product t.t1 of types t and t1 and of an idempotent type (t2 = t). For two types t1, t2

we have t1 ≤ t2 if there exists χ ∈ t1 and µ ∈ t2 such that χ ≤ µ. The type set of A

is the partially ordered set of types, i.e.,

T (A) = {t(x) | x ∈ A \ 0}.

A torsion-free group A in which all non-zero elements are of the same type t is called

homogeneous. In this situation, we use the symbol t(A) to denote the type of the

group which is indeed the type of any non-zero element of A. A torsion-free group of

rank one is called of nil type if its type is not idempotent. Moreover, for a torsion-free

Abelian group A and a type t, the elements a in A whose types are ≥ t form a pure

subgroup of A which is denoted by A(t).

Given an Abelian group A, we call R a ring over A if the group A is isomorphic

to the additive group of R. In this situation we write R = (A, ∗), where ∗ denotes

the ring multiplication. This multiplication is not assumed to be associative. Every

group may be turned into a ring in a trivial way, by setting all products equal to

zero; such a ring is called a zero-ring. If this is the only multiplication over A, then

A is said to be a nil group.

A function µ : A× A −→ A is called a multiplication on A if it satisfies

(1) µ(a+ b, c) = µ(a, c) + µ(b, c),

(2) µ(a, b + c) = µ(a, b) + µ(a, c),

for all a, b, c ∈ A. Thus, we may think of a ring R as a pair (A, µ). Now for any two

multiplications µ and ν on A, we define

(µ+ ν)(a, b) = µ(a, b) + ν(a, b),
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which is a again multiplication on A. Under this rule of composition, the set of all

multiplications on A forms an Abelian group which is denoted by Mult(A).

Theorem 2.1. Let A be an Abelian group. Then

Mult(A) ∼= Hom(A⊗ A,A) ∼= Hom(A,End(A)).

Proof. See [11, Theorem 118.1]. �

Proposition 2.1. Let A be a torsion-free group of finite rank. Then the length of

every chain in T (A) is at most equal to the rank of A.

Proof. See [9, Propoition 1]. �

Theorem 2.2. Let A be a torsion-free group of rank two. If A supports a non-zero

ring, then T (A) contains a unique minimal member and at most three elements.

Proof. See [17, Theorem 3.3]. �

Remark 2. The following cases are realized according to the proof of Theorem 2.2:

(1) If |T (A)| = 1, then the type must be idempotent.

(2) If |T (A)| = 2, then one type is minimal and the other is maximal.

(3) If |T (A)| = 3, then one type is minimal and two are maximal. In this case at

least one of the maximal types must be idempotent.

Proposition 2.2. Let C be a pure subgroup of a torsion-free group A such that:

(1) A/C is completely decomposable and homogeneous of type t;

(2) all the elements in A but not in C are of type t.

Then C is a direct summand of A.

Proof. See [11, Proposition 86.5]. �
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Proposition 2.3. (Aghdam [1]) If R is a finite rank, torsion-free ring without zero-

divisors, then R+ is homogeneous.

Proof. Let {x1, x2, · · · , xr} be a maximal independent subset of R+. Let x be in R,

x 6= 0. First we prove that xx1, xx2, · · · , xxr are independent. Suppose not. Then

there exist integers a1, a2, · · · , ar , not necessarily all equal to zero, such that

a1xx1 + a2xx2 + · · · + arxxr = 0.

Thus x(a1x1 + a2x2 + · · ·+ arxr) = 0; but R has no zero divisors, therefore

a1x1 + a2x2 + · · ·+ arxr = 0,

contradicting the independence of the set {x1, x2, · · · , xr}.

Hence if x 6= 0 6= y belong to R, then

my = m1xx1 +m2xx2 + · · ·+mrxxr = x(m1x1 +m2x2 + · · · +mrxr),

which implies t(x) ≤ t(y). And similarly

nx = n1yx1 + n2yx2 + · · ·+ nryxr = y(n1x1 + n2x2 + · · · + nrxr),

which implies t(y) ≤ t(x). Thus t(x) = t(y), consequently R is homogeneous. �

Proposition 2.4. (Aghdam [1]) If A is an indecomposable and homogeneous group

of rank two, then any non-zero element of EndZ(A) is monic.

Proof. Let ϕ ∈ EndZ(A), such that 0 6= Ker(ϕ) 6= A. Then A/Ker(ϕ) is of rank one

since A has rank two and Ker(ϕ) is a pure subgroup of A. We have A/Ker(ϕ) ∼=

Im(ϕ) � A. Assume ā = a + Ker(ϕ) ∈ A/Ker(ϕ) such that a does not belong to

Ker(ϕ). Then,

t(ā) = t(A/Ker(ϕ)) = t(Im(ϕ)) ≤ t(A) = t(a).
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On the other hand, t(ā) ≥ t(a), therefore t(ā) = t(a). Hence by Proposition 2.2,

Ker(ϕ) is a summand of A. But A is indecomposable, so Ker(ϕ) = 0, and ϕ is

monic. �

Corollary 2.1. If A is an indecomposable and homogeneous group of rank two, then

the endomorphism ring of A is associative and without zero-divisors.

Proof. The associativity is clear. For the second claim, we suppose that φ1 and φ2

are non-zero elements of EndZ(A) such that φ1.φ2 = 0. Hence, (φ1.φ2)(x) = 0 for all

x ∈ A. Now in view of Proposition 2.4, we get φ2(x) = 0 for all x ∈ A. This implies

that φ2 = 0, a contradiction. �

Let {x, y} be an independent set of a rank two torsion-free group A. We define

U, U0, V and V0 as subgroups of Q by:

U = {u ∈ Q : ux+ vy ∈ A, for some v ∈ Q}, U0 = {u0 ∈ Q : u0x ∈ A}.

V = {v ∈ Q : ux+ vy ∈ A, for some u ∈ Q}, V0 = {v0 ∈ Q : v0y ∈ A}.

Clearly, U0 ⊆ U, V0 ⊆ V. We call U, U0, V and V0 the groups of rank one belonging

to the independent set {x, y}.

Theorem 2.3. If there exists an associative ring with no non-trivial zero divisors

over the torsion-free group A of rank two, then A contains independent elements x

and y such that the groups of rank one U ⊇ U0 and V ⊇ V0 belonging to {x, y},

satisfy the following conditions:

(1) U ∼= V, U0
∼= V0;

(2) none of the groups U, U0, V and V0 are of nil type.

Proof. See [7, Theorem 5]. �
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3. Rank One Groups

The rings over torsion-free groups of rank one are determined in this section. We

need the following propositions.

Proposition 3.1. If A and C are torsion-free groups of rank one, then A⊗ C is of

rank one and t(A⊗ C) = t(A).t(C).

Proof. See [11, Proposition 85.3]. �

Proposition 3.2. If A and C are torsion-free groups of rank one, then Hom(A,C) is

0 if t(A) is not ≤ t(C), and is a torsion-free group of rank one and of type t(C) : t(A)

if t(A) ≤ t(C).

Proof. See [11, Proposition 85.4]. �

The following theorem gives the possible rings over torsion-free groups of rank one.

The proof is from [11, Theorem 121.1].

Theorem 3.1. (Redei and Szele [14], Beaumont and Zuckerman [8]) A torsion-free

ring of rank one is either a zero ring or isomorphic to a subring of the rational number

field of the form

mZ(q−1

j ; j ∈ J) with (m, qj) = 1,

where {qj}j∈J is the set of primes at which qjA = A. A torsion-free group of rank

one is not a nil group if and only if its type is idempotent.

Proof. Let t = t(A). From Propositions 3.1 and 3.2 we infer that for Mult(A) ∼=

Hom(A ⊗ A,A) 6= 0, it is necessary and sufficient that t2 = t, or equivalently, t be

idempotent. Thus, A is a nil group if and only if t is not idempotent. Now, all the rings

on A can be listed easily, under the hypothesis that t is idempotent. Choose a 6= 0 in

A such that χ(a) consists of 0s and ∞s. If R is a non-zero-ring on A, then a2 = ma
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for some rational number m 6= 0. Without loss of generality, it can be supposed that

m is a positive integer not divisible by any prime q at which χ(a) is ∞; otherwise

a could be replaced by a suitable rational multiple of a with the same characteristic

for which m > 0 is an integer of the stated kind. If {qj}j∈J is the set of primes at

which χ(a) is infinity [i.e., qjA = A], and if Z(q−1

j ; j ∈ J) denotes the subring of Q,

generated by all the q−1

j , then there is a ring-isomorphism R ∼= mZ(q−1

j ; j ∈ J). In

fact, it is readily seen that the map ra 7−→ mr for r ∈ Z(q−1

j ; j ∈ J) is bijective and

preserves both addition and multiplication. �

4. Non-Homogeneous Rank Two Groups

In this section, we consider the non-homogeneous groups. According to Remark 2,

the type set of the group may have two or three elements.

Proposition 4.1. (Aghdam [1]) Let A be a torsion-free group of rank two, T (A) =

{t1, t2} and t1 < t2. Let x, y ∈ A be such that t(x) = t1, t(y) = t2. Assume U, U0, V, V0

are the rank one groups belonging to {x, y}. If t(U0) = t(U) then < y >∗ is a direct

summand of A. In particular, if kU ≤ U0 or kV ≤ V0 for some integer k 6= 0, then

A is decomposable.

Proof. We have A/ < y >∗∼= U, hence t(A/ < y >∗) = t(U). Let a be in A but not in

< y >∗; then t(a) = t1. By assumption we have t(U) = t(U0) = t1, therefore the type

of all elements in A but not in < y >∗ are equal t(U) = t(A/ < y >∗). By Proposition

2.2, < y >∗ is a direct summand of A. In particular, if kU ≤ U0 or kV ≤ V0 for some

integer k 6= 0, then because of U/U0
∼= V/V0 we have that t(U) = t(U0), and hence

A is decomposable. �

Theorem 4.1. (Najafizadeh, Aghdam and Karimi [12]) Let A be a torsion-free group

of rank two and T (A) = {t1, t2} such that t1 < t2. Let x, y ∈ A be such that

t(x) = t1, t(y) = t2. Then
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(1) xy = cy, yx = dy, y2 = ey, for some c, d, e ∈ Q.

(2) If t21 6= t1 then x2 = by for some b ∈ Q.

(3) If t22 6= t2 then y2 = 0.

(4) If t1t2 > t2 then xy = yx = 0.

Proof. 1) The hypothesis t1 < t2 implies that t(xy) ≥ t(y) = t2, hence xy and y

belong to A(t2) which is a rank one subgroup of A. Therefore xy and y are dependent

elements. That is xy = cy for some c ∈ Q. By the same reasoning we deduce that

xy = dy and y2 = ey for some b, c ∈ Q.

2) Clearly t(x2) > t(x) = t1 since t21 6= t1. But T (A) = {t1, t2}, hence t(x2) = t2. This

implies that x2 ∈ A(t2). Thus x2 = by for some b ∈ Q.

3) If t2 is not idempotent then t(y2) > t(y) = t2. Therefore t(y2) /∈ T (A) which

implies y2 = 0.

4) We have t(xy) ≥ t(x)t(y) = t1t2 > t2, thus t(xy) /∈ T (A), that is xy = 0. By the

similar way yx = 0. �

Theorem 4.2. (Aghdam [1]) Let A be a torsion-free indecomposable Abelian group

of rank two. Let T (A) = {t1, t2} such that t1 < t2. If {x, y} is an independent set

such that t(x) = t1, t(y) = t2, then all non-trivial rings on A satisfy the following

multiplication table:

x2 = by, xy = yx = y2 = 0, b is a rational number.

Proof. Let (A, ∗) be a non-trivial ring over A. Since t1 < t2, in general we have

x2 = ax + by, xy = cy, yx = dy, y2 = ey.

We are going to prove that a = c = d = e = 0.
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Let U, U0, V, V0 be the rank one groups belonging to {x, y}. We claim xy = yx. If

not, then c 6= d, and for an arbitrary element g = ux+ vy of A,

gx = ux2 + vyx, xg = ux2 + vxy, gx− xg = v(d− c)y,

implying that (d− c)v ∈ V0 for all v ∈ V. Hence there is an integer k 6= 0 such that

kV ≤ V0. Now by Proposition 4.1, < y >∗ is a direct summand of A, which is a

contradiction. Hence c = d and xy = yx = cy.

We claim that a = 0. If not, take two arbitrary elements g1 = ux+vy, g2 = rx+sy

of A. Then

g1g2 = urx2 + (su+ rv)xy + vsy2 = aurx+ (urb+ suc+ rvc+ vse)y.

This implies that aU 2 ≤ U ≤ U2, whence t(U) = t(U 2). Consequently,

if a 6= 0 then t(U) is idempotent.(4.1)

A is not homogeneous, hence by Proposition 2.3, A should have two non-zero

elements X = rx+ sy and Y = αx+ βy such that XY = 0, i.e.

XY = (rx+ sy)(αx+ βy) = aαrx+ (αrb+ sαc+ rβc+ βse)y = 0.

Since x, y are independent elements, aαr = 0. By assumption a 6= 0, hence we should

have one of the following cases:

(1) α = 0, r = 0,

(2) α = 0, r 6= 0,

(3) α 6= 0, r = 0.

In case (1), s and β must be non-zero, as X 6= 0, Y 6= 0. Hence, 0 = XY = sβy2 =

sβey, which implies that e = 0.

In case (2), {X = rx+ sy, y} is an independent set of A, and

0 = XY = (rx+ sy)(βy) = β(rx+ sy)y,
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since α = 0. However, Y 6= 0, therefore β 6= 0 so that

Xy = (rx+ sy)y = 0.(4.2)

Let H,H0, F, F0 be the rank one groups belonging to {X, y}, and let g = hX + fy

be an arbitrary element of A where h ∈ H, f ∈ F. By (4.2) and by the assumption

that y2 = ey we have

gy = hXy + fy2 = efy,

so we conclude that ef belongs to F0 for all f ∈ F. If e 6= 0 then there is an integer

k 6= 0 such that kF ≤ F0, so by Proposition 4.1, < y >∗ is a direct summand of A,

contradicting the indecomposability of A. Hence e = 0.

Similarly, in case (3) we also conclude that e = 0. Therefore,

if a 6= 0 then e = 0.(4.3)

Let g = ux+ vy be an arbitrary element of A with u ∈ U, v ∈ V. By (4.3) we have

gy = uxy + vy2 = cuy, so if c is not zero then cU ≤ V0, hence

t(U) ≤ t(V0).(4.4)

Now, using (4.1) and (4.4) we prove that t(U) = t(U0). By (4.1), t(U) is idempotent,

therefore hU
p (1) = 0 or ∞ except for finitely many prime numbers. U0 ≤ U implies

that t(U0) ≤ t(U), so that hU
p (1) = 0 implies hU0

p (1) = 0 and hU
p (1) < ∞ implies

hU0

p (1) < ∞. It remains to prove that hU0

p (1) = ∞ if hU
p (1) = ∞. Let 1/pn ∈ U

and hU
p (1) = ∞. Then by the definition of U there is K/m ∈ V such that g =

(1/pn)x + (K/m)y ∈ A. Let m = m′pi where (m′, p) = 1. Then

g = (1/pn)x+(K/m′pi)y, m′g = (m′/pn)x+(K/pi)y, (m′g−K(y/pi)) = (m′/pn)x.

By (4.4), 1/pi ∈ V0, so that 1/pn ∈ U0. This is correct for all n <∞, hence hU0

p (1) =

∞, so we conclude that t(U0) ≤ t(U). But t(U0) ≤ t(U), therefore t(U) = t(U0). By
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Proposition 4.1, < y >∗ will be a direct summand of A which is in contradiction with

indecomposability. Consequently c = 0.

By assuming a 6= 0 we got c = 0 and e = 0, that is x2 = ax+by, xy = yx = y2 = 0.

Thus {z = ax + by, y} is an independent set of A, and z2 = a2x2 + b2y2 + 2abxy =

a2x2 = a2z, zy = yz = y2 = 0. Let W,W0, T, T0 be the rank one groups belonging

to {z, y}. Let g = wz + ty be an arbitrary element of A and w ∈ W, t ∈ T. Then

gz = wz2 = a2wz.

Since we supposed a 6= 0, we have a2W ≤ W0 ≤ W, hence t(W0) ≤ t(W ). Again

by Proposition 4.1, < y >∗ is a direct summand of A which is a contradiction. All

contradictions are due to the assumption a 6= 0. Consequently a = 0.

So far we proved that

x2 = by, xy = yx = cy, y2 = ey.

Let g = ux+ vy be an arbitrary element of A. Then

gx = uby + vcy = (ub+ cv)y, gy = cuy + evy = (cu+ ev)y

hence

ub+ cv = v0, cu+ ev = v′0 for some v0, v
′

0 in V0.

This implies that (c2 − be)v = v′′0 for some v′′0 in V0. If c2 − be 6= 0 then there is an

integer k 6= 0 such that kU ≤ U0, which implies by Proposition 4.1 that < y >∗ is a

direct summand of A. This is a contradiction. Therefore

c2 − be = 0.(4.5)

If b = 0 then gy = uxy + vy2 = evy. Again this is a contradiction, hence

b 6= 0.(4.6)
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By (4.5) and (4.6)

e = 0 if and only if c = 0.(4.7)

If e 6= 0 and c 6= 0 then {z1 = −cx + by, y} is an independent set of A. We get

z2

1 = (−cx + by)2 = c2x2 + b2y2 − 2cbxy = c2by + eb2y − 2c2by = b(eb− c2)y = 0,

z1y = yz1 = −cxy + by2 = −c2y + eby = (−c2 + eb)y = 0 (by (4.5)),

y2 = ey.

Let M,M0, N,N0 be the rank one groups belonging to {z1, y}, and let g = mz1 + ny

be an arbitrary element of A where m ∈ M and n ∈ N. Then gy = ny2 = eny,

hence eN ≤ N0. It follows now that there is an integer k 6= 0 such that kN ≤

N0, so by Proposition 4.1, < y >∗ is a direct summand of A, contradicting the

indecomposability of A. Therefore c = 0 or e = 0, whence by (4.7) c = 0 and

e = 0. �

Theorem 4.3. (Aghdam and Najafizadeh [3]) Let A be a torsion-free group of rank

two and T (A) = {t0, t1, t2} such that t0 < t1 and t0 < t2. Let x, y ∈ A such that

t(x) = t1 and t(y) = t2. If t1, t2 are incomparable, then any ring on A satisfies

x2 = ax, y2 = by, xy = yx = 0 for some a, b ∈ Q.

Proof. Let z ∈ A such that t(z) = t0. Then z 6∈ A(t1). But since A(t1) is a pure

subgroup of A, it is of rank one. Now since t(x2) ≥ t(x) = t1, both x2 and x belong

to A(t1) so they are dependent, that is, x2 = ax for some a ∈ Q. Similarly, y2 = by

for some b ∈ Q.

On the other hand, t(yx) ≥ t(x), so yx and x belong to A(t1), therefore yx = ex

for some e ∈ Q and similarly yx = fy for some f ∈ Q. Now if yx 6= 0 then

t(x) = t(xy) = t(y), contrary to our hypothesis, therefore yx = 0. By the same

reasoning, xy = 0. �
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Theorem 4.4. (Aghdam and Najafizadeh [3]) Let A be a torsion-free group of rank

two and T (A) = {t0, t1, t2} such that t0 < t1 and t0 < t2. Let x, y ∈ A such that

t(x) = t1 and t(y) = t2. If t21 = t1 and t22 6= t2, then any ring on A satisfies x2 =

ax, y2 = xy = yx = 0 for some a ∈ Q.

Proof. The hypotheses ensure that t1 6= t2. Moreover, in view of Proposition 2.1, t1

and t2 are incomparable. Now let R be an arbitrary non-trivial ring on A. Then by

Theorem 4.3,

x2 = ex, xy = yx = 0, y2 = by,

for some a, b ∈ Q. If b 6= 0, then t(y) = t(y2) ≥ t2(y), which implies that t(y) is

idempotent, a contradiction to our hypothesis, so y2 = 0. Furthermore, since R is

non-trivial, a is non-zero. �

Theorem 4.5. (Aghdam and Najafizadeh [3]) Let A be a torsion-free group of rank

two and T (A) = {t0, t1, t2} such that t0 < t1, t0 < t2 and t1, t2 incomparable. Let

x, y ∈ A such that t(x) = t1 and t(y) = t2. If t21 = t1 and t22 = t2, then any ring on

A satisfies x2 = ax, y2 = by, xy = yx = 0 for some rational numbers a and b which

are not both zero.

Proof. Follows from Theorem 4.3. �

Proposition 4.2. (Aghdam, Karimi and Najafizadeh [4]) Let A = A1 ⊕ A2 be a

completely decomposable non-homogeneous group of rank two with t(A1) = t1 and

t(A2) = t2. Let x and y be non-zero elements of A1 and A2 respectively. If A is

non-nil, then any ring on A satisfies one of the following cases:

(1) T (A) = {t0, t1, t2} with t0 < t1 and t0 < t2.

(a) t1 and t2 are incomparable and in general x2 = ax, y2 = by, xy = yx = 0

for some a ∈ U0 and b ∈ V0.

(b) If t21 = t1 and t22 6= t2, then x2 = ax, y2 = xy = yx = 0 for some a ∈ U0.
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(c) If t21 = t1 and t22 = t2, then x2 = ax, y2 = by, xy = yx = 0 for some

a ∈ U0 and b ∈ V0.

(2) T (A) = {t1, t2} with t1 < t2.

(d) If t21 6= t1 and t22 = t2, then x2 = ay, y2 = by, xy = cy, yx = dy for

some a, b, c, d, f ∈ V0.

(e) If t21 6= t1 and t22 6= t2, then x2 = ay, y2 = 0, xy = cy, yx = dy, for

some a, c, d ∈ V0.

(f) If t21 = t1 and t22 = t2, then x2 = a′x + by, y2 = cy, xy = dy, yx = fy,

for some a′ ∈ U0 and b, c, d, f ∈ V0, in which if b 6= 0, then a′ 6= 0.

(g) If t21 = t1 and t22 6= t2, then x2 = a′x + by, y2 = 0, xy = dy, yx = fy,

for some a′ ∈ U0 and a, b, c, d, f ∈ V0, in which if b 6= 0, then a′ 6= 0.

Proof. 1) See [3, Proposition 2.7, Lemma 3.1 and Lemma 3.3].

2) (d) Clearly, t(x2) = t(x)2 = t21 > t1. Now the hypothesis that T (A) contains two

elements, implies that t(x2) = t2. This yields x2 = ay for some a ∈ V0. By the same

reasoning, the other parts are obtained. �

5. Homogeneous Rank Two Groups

In this section, we investigate the rings over rank two homogeneous groups. The

works are due to Aghdam and Najafizadeh [3]. These results give some properties of

the rings over homogeneous rank two groups; and are not about the rings structures

over such groups. At first, we recall some notions related to this case. An element

x in a ring R is called a semi-identity element if there exist an integer m ≥ 1 such

that xy = yx = my for all y ∈ R. A generalized number n is a formal infinite

product of powers of primes. The exponent of a prime p in a generalized number n is

denoted by hp(n) which may be a natural number, 0 or ∞. Generalized numbers are

multiplied by adding corresponding exponents with the convention that ∞ + a = ∞

for all a. A natural number is identified with the generalized number by its prime
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decomposition. Two generalized numbers n and m are said to be equivalent if there

exist natural numbers a and b with an = bm.

Let A be a torsion-free Abelian group. Following [7], we define the nucleus N =

N(A) of A by

N = {α ∈ Q : α.x ∈ A, ∀x ∈ A}.

Clearly, N is a subgroup of Q. Moreover, N is a subring of Q, which implies that

the type of N is idempotent. It is clear from the definition that A may be treated as

an N−module. A consequence of this observation is that every element of A has the

type greater than or equal to the type of N. If A is homogeneous and the type of A is

idempotent, then type of N is equal with the type of A. Indeed, N may be embedded

in the endomorphism ring EndZ(A) as the pure subring of EndZ(A) generated by the

identity IA of EndZ(A).

Let A be an indecomposable homogeneous group with idempotent type and R a

subring of rational numbers containing 1 and having the same type as t(A) = t(N).

Let {x, y} be an independent set of A. Then, A/(Rx + Ry) is a torsion group. In

particular,

A/(Rx+Ry) ∼=

∞⊕

i=1

Zp
αi

i

.

We call the generalized number n =
∏

∞

i=1
pαi

i the cocharacteristic of (x, y) in A. The

cotype of A is the set of cocharacteristics of independent pairs in A and is denoted

by cot(A). A generalized number n is idempotent if and only if hp(n) is 0 or ∞ for

all primes p, but a finite number of primes. The cotype of A is idempotent if there

exists an idempotent cocharacteristic in A.

Proposition 5.1. Let n be a cocharacteristics in A. Then m is also a cocharacteristic

in A if and only if m is equivalent to n.

Proof. See [13, Proposition 2.7]. �
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Proposition 5.2. The cotype of A is an equivalence class of generalized numbers.

Proof. See [13, Proposition 2.8]. �

Let A and B be torsion-free Abelian groups of rank two. Let n and m be cochar-

acteristics of A and B respectively. Moreover, suppose that

χ(n) = (α1, α2, · · · , αi, · · · ), χ(m) = (β1, β2, · · · , βi, · · · )

where αi = hpi
(n) and βi = hpi

(m). Then, we say that cot(A) ≤ cot(B) exactly if

(1) αi = βi if αi = ∞,

(2) αi ≤ βi for all but a finite number of i.

By Proposition 5.1, this definition of the inequality is independent of the cotype

representatives chosen. We recall that given two torsion-free groups A and B, we say

that they are quasi-isomorphic if there exist subgroups A′ ⊆ A and B′ ⊆ B such that

A′ ∼= B′ and A′, B′ have finite index in A and B respectively. In this situation, we

write A ∼ B.

Proposition 5.3. (Aghdam and Najafizadeh [2]) Let A and B be homogeneous torsion-

free Abelian groups of rank two such that A ⊆ B. If t(A) = t(B), then cot(A) ≤

cot(B).

Proof. Straightforward. �

Theorem 5.1. (Aghdam and Najafizadeh [2]) Let A be a torsion-free Abelian group

of rank two. If there exists an associative ring without zero-divisors over A, then

cot(A) is idempotent.

Proof. By Theorem 2.3, A contains independent elements x and y such that U, U0, V

and V0, the groups of rank one belonging to {x, y}, are idempotent. Now we define

φ : A/ < x >∗ ⊕ < y >∗−→ U/U0



RINGS ON TORSION-FREE GROUPS OF RANK ONE AND TWO 139

φ(ā) = ū

where a = ux + vy. Clearly, φ is onto. Moreover, If φ(ā) = 0 for some a = ux + vy,

then u ∈ U0, that is (a − ux) = vy ∈< y >∗ . Hence a ∈< x >∗ ⊕ < y >∗ . We

deduce that Ker(φ) = 0. Consequently,

A/ < x >∗ ⊕ < y >∗∼= U/U0
∼=

∞⊕

i=1

Zp
αi

i

with only finitely many αi ∈ (0,∞). By Proposition 2.3, A is homogeneous. Let R

be a subring of the rational numbers containing 1 and t(A) = t(R). Take X = x/m

and Y = y/n with integers m,n ≥ 1 and hp(X), hp(Y ) ∈ {0,∞} for all primes p.

Then RX =< x >∗ and RY =< y >∗ . Moreover, {X, Y } is an independent set in

A. Thus,

A/RX ⊕ RY = A/ < x >∗ ⊕ < y >∗∼= U/U0
∼=

∞⊕

i=1

Zp
αi

i

with only finitely many αi ∈ (0,∞). Therefore, cot(A) is idempotent. �

Theorem 5.2. (Aghdam and Najafizadeh [2]) Let A be an indecomposable homoge-

neous torsion-free group of rank two. Then, EndZ(A) is a homogeneous group with

rank less than or equal to two. Moreover, if t(A) is idempotent, then

(1) t(A) = t(EndZ(A)).

(2) If EndZ(A) is of rank two, then cot(EndZ(A)) ≤ cot(A). Furthermore, EndZ(A)

has idempotent cotype.

Proof. Let x0 be a fixed non-zero element of A. Now we define

ψ : EndZ(A) −→ A

ψ(φ) = φ(x0),
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where φ ∈ EndZ(A). Let ψ(φ) = 0. Then φ(x0) = 0. But x0 6= 0 hence, in view of

Proposition 2.4, φ = 0. We conclude that ψ is a monomorphism. Therefore,

EndZ(A) ∼= Im(ψ) ⊆ A.(5.1)

This implies that EndZ(A) has rank less than or equal to the rank of A. Hence, the

rank of EndZ(A) is less than or equal to two. Now from Proposition 2.3 and Corollary

2.1, we get that EndZ(A) is a homogeneous group.

For the rest of proof, we suppose that t(A) is idempotent. Then,

(1) We observe that EndZ(A) is homogeneous. Hence

t(A) = t(< IA >∗) = t(EndZ(A)).(5.2)

(2) By Corollary 2.1, EndZ(A) is associative and without zero-divisors. Hence,

if EndZ(A) has rank two, then by Theorem 5.1, EndZ(A) has idempotent

cotype. Now in view of (5.1), (5.2) and Proposition 5.3, we have

cot(EndZ(A)) ≤ cot(A).

�

Theorem 5.3. (Aghdam and Najafizadeh [2]) Let A be an indecomposable homo-

geneous torsion-free group of rank two. If A is a non-nil group, then cot(A) =

cot(EndZ(A)). Moreover, cot(A) and cot(EndZ(A)) are idempotent.

Proof. Let (A, .) be a non-trivial ring over A. If EndZ(A) has rank one, then A is a

rigid group. Hence, by Remark 1, A is a nil group, a contradiction. Therefore, by

Theorem 5.2, EndZ(A) has rank equal to two. Moreover, by part (2) of Theorem 5.2,

cot(EndZ(A)) is idempotent and

cot(EndZ(A)) ≤ cot(A).(5.3)
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Now we define

φ : A −→ EndZ(A)

φ(x) = Lx

where Lx : A −→ A is the left multiplication by x. In view of Proposition 2.4, φ

is a monomorphism. Hence, A ∼= Im(φ) ≤ EndZ(A). By part (2) of Theorem 5.2,

t(A) = t(EndZ(A)). Now by Proposition 5.3, we get

cot(A) ≤ cot(EndZ(A)).(5.4)

Consequently, by (5.3) and (5.4) we have cot(A) = cot(EndZ(A)). Moreover, both

cot(A) and cot(EndZ(A)) are idempotent. �

Proposition 5.4. (Aghdam and Najafizadeh [2]) Let A and B be torsion-free groups

such that A ∼ B. Then, B is a non-nil group exactly if A is.

Proof. Let A ∼ B. Then, there exists an isomorphism φ : A → B and an integer

n ≥ 1 such that nB ⊆ φ(A). If B a non-nil group, then define the multiplication in

A as follows:

x.y = φ−1[nφ(x)φ(y)].

�

Theorem 5.4. (Aghdam and Najafizadeh [2]) Let A be an indecomposable homo-

geneous torsion-free group of rank two. Then A is a non-nil group if and only if

A ∼ EndZ(A).

Proof. =⇒) Let A be a non-nil group. Then by Theorem 5.3,

cot(A) = cot(EndZ(A)).

Now in view of (5.1) in the proof of the Theorem 5.2, it is clear that the index of

Im(α) in EndZ(A) is finite. Consequently A ∼ EndZ(A).
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⇐=) Suppose that A ∼ EndZ(A). Then there exist a ring over the endomorphism

group EndZ(A). Hence, by Proposition 5.4, A is a non-nil group. �

For the case of indecomposable homogeneous rank two torsion-free groups, we have

the following theorem.

Theorem 5.5. (Aghdam [1], Aghdam and Najafizadeh [2]) Let A be an indecompos-

able homogeneous torsion-free group of rank two. Then any non-trivial ring over A is

without zero divisors. Moreover, such a ring is associative, commutative and contains

a semi-identity.

Proof. Let (A, .) be a ring over A and let xy = 0 for some x, y ∈ A, x 6= 0, y 6=

0. By Proposition 2.4, any non-trivial element of EndZ(A) is monic. For the left

multiplication Lx we have Lx(y) = xy = 0, which implies that Lx = 0, so

x2 = Lx(x) = 0.(5.5)

Let {x, z} be an independent set of A. Then we have

xz = Lx(z) = 0.(5.6)

Furthermore, since the right multiplication Rz is 0 or monic, and Rz(x) = xz = 0,

therefore Rz = 0. Hence,

z2 = Rz(z) = 0.(5.7)

Taking now the left multiplication Lz, by (5.7) we get that Lz is 0, so

zx = Lz(x) = 0.(5.8)

By assumption {x, z} is an independent set of A, consequently by (5.5), (5.6), (5.7)

and (5.8), (A, .) is a trivial ring, a contradiction. This shows that any non-trivial ring

over A is without zero-divisors.
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Clearly, φ1 : A −→ EndZ(A) and φ2 : A −→ EndZ(A) which are defined as

φ1(x) = Lx and φ2(x) = Rx respectively, for any x ∈ A, are group homomorphisms.

By Proposition 2.4, φ1 and φ2 are monic, hence

A ∼= Im(φ1) = {Lx : x ∈ A}, A ∼= Im(φ2) = {Rx : x ∈ A}.

By Lemma 5.4, A ∼ EndZ(A). Hence,

Im(φ1) ∼ EndZ(A), Im(φ2) ∼ EndZ(A).

This shows that there exist integer numbers m,n > 1 such that

mEndZ(A) ⊆ Im(φ1), nEndZ(A) ⊆ Im(φ2).

We deduce that there exist x, w in A such that mIA = Lx and nIA = Rw. Thereby,

for all y ∈ A we have

my = xy and ny = yw.(5.9)

In particular,

mw = xw and nx = xw.

The latest equation implies that mw = nx, hence w = nx/m. Moreover, (5.9) implies

that ny = y(nx/m). Hence my = yx. Now in view of (5.9), we have xy = yx = my

for every y ∈ A. Therefore, x is a semi-identity for the ring (A, .).

Now let {x, y} be an independent subset of A where x is a semi-identity. Then

xy = yx implies that the ring is commutative.

Now we prove that this ring is associative. To do this, we only need to prove the

followings:

(1) x2x = xx2,

(2) x2y = x(xy),

(3) (xy)x = x(yx),

(4) (xy)y = xy2,
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(5) y2x = y(yx),

(6) y2y = yy2.

We observe that (1) and (6) hold by the commutativity of the ring. For the others,

we use:

(1) x2 = mx,

(2) xy = yx = my,

(3) y2x = xy2 = my2.

�

For the case of decomposable homogeneous rank two torsion-free groups, we have

the following proposition.

Proposition 5.5. Let A = A1 ⊕ A2 be a completely decomposable homogeneous

torsion-free group of rank two. Let x and y be non-zero elements of A1 and A2,

respectively. If A is non-nil, then

x2 = a1x + b1y, y
2 = a2x + b2y, xy = a3x+ b3y, yx = a4x + b4y,

for some ai, bi ∈ Q, i = 1, 2, 3, 4.

Proof. Obvious. �

6. Commutative and Non-Commutative Rank Two Rings

In this section, a necessary and sufficient condition for the existence of a non-

commutative ring over an Abelian group A is given. Moreover, all such rings are

determined. The works are due to R. A. Beaumont and R. J. Wisner [7].

Let A be a torsion-free Abelian group, let x1, x2, · · · , xn be elements of A, and let

a1/b1, a2/b2, · · · , an/bn be rational numbers. Denote the least common multiple of
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the integers bi (i = 1, 2, · · · , n) by [bi]. If the equation

[bi]x =

n∑

j=1

[bi](aj/bj)xj

has a solution x ∈ A, then this solution is unique and we write

x =

n∑

j=1

(aj/bj)xj.

Let x =
∑n

j=1
rjxj and y =

∑n

j=1
sjxj, where ri and si (i = 1, 2, · · · , n) are rational

numbers, be elements of A as described above. Then it is routine to check that

x± y =

n∑

j=1

(rj ± sj)xj.

Further, if R is a ring with A as its additive group, the distributive laws in R yield

x.y =

n∑

i,j=1

(rj.sj)(xi.xj).(6.1)

Now let x ba an element of a torsion-free Abelian group A, and Rx be the set of

rational numbers r such that rx ∈ A. We recall that the nucleus D of A is D =
⋂

x∈ARx.

Lemma 6.1. (Beaumont and Wisner [7]) Let R be a ring over a torsion-free group

A of rank two. If R is non-commutative, then the elements z and z2 are dependent

elements of A for every z ∈ R. If R is commutative and if R contains an element

x ∈ R such that x2 6= 0, then there exist an element z ∈ R such that z and z2 are

independent elements of A.

Proof. Suppose first that R is non-commutative and let z ∈ R. If z and z2 were

independent, then every element of A could be written rz+ sz2 for rationals r, s, and

this implies that R is commutative by (6.1).

Now suppose that R is commutative and that R contains an element x such that

x2 6= 0. Assume that z and z2 are dependent for every z ∈ R. Let x and y be
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independent elements of A. Then we have

x2 = rx, y2 = sy, xy = yx = tx + uy,

for rationals r, s, t, u, where we may assume that r 6= 0. We obtain x2y = rxy and

x2y = tx2 + uxy = rtx+ uxy. Hence (r − u)xy = rtx, and we consider two cases:

Case I: r = u. Here t = 0 and xy = yx = uy = ry. We have (x + y)2 = rx +

ry + ry + sy. By hypothesis, (x + y)2 = a(x + y) for some rational number a. Hence

(r − a)x + (2r + s− a)y = 0, and this implies r = a, r + s = 0. Similarly (x− y)2 =

rx− ry− ry+ sy and (x− y)2 = b(x− y) yields r = b, r = s. Hence r+ s = 2r = 0,

which is a contradiction.

Case II: r 6= u. Here (r − u)xy = rtx combined with

(r − u)xy = (r − u)tx+ (r − u)uy

yields u = 0. From y2x = syx and y2x = tyx + uy2 = tyx, we obtain either s = t in

which case xy = yx = sx, or xy = yx = 0. As in case I, the computation of (x+ y)2

and (x− y)2 yields r = 0, whichever of the alternatives holds.

Hence in each case, the assumption that z and z2 are dependent for every z ∈ R

leads to a contradiction, and this completes the proof of the lemma. �

Lemma 6.2. (Beaumont and Wisner [7]) Let R be a non-commutative ring over a

torsion-free group A of rank two. Then there exist independent elements x, y ∈ A

and a rational number a 6= 0 in the nucleus D of A such that x and y satisfy one of

the following multiplication tables:

x2 = ax, xy = ay, yx = 0, y2 = 0;(6.2)

x2 = ax, xy = 0, yx = ay, y2 = 0.(6.3)
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Proof. By Lemma 6.1, for every z ∈ A, the elements z and z2 are dependent elements

of A. Let A =< x, y >∗ where x and y are the independent elements of A, let

x2 = ax, y2 = by, xy = cx + dy, yx = ex + fy, where a, b, c, d, e, f are rational

multipliers. Let K,L ∈ R, where K = mx+ ny and L = sx+ ty. By (6.1),

KL = msx2 +mtxy + nsyx+ nty2.

If a = b = 0, then KL = mtxy + nsyx, and R would have a trivial commutative

multiplication if xy = yx = 0. Hence not both xy = 0 and yx = 0, say xy 6= 0. Then

0 = xy2 = cxy+dy2 = cxy implies c = 0, and 0 = x2y = dxy implies d = 0. But then

xy = cx+dy = 0, which is a contradiction. Similarly yx 6= 0 leads to a contradiction.

Hence we may assume not both a = 0 and b = 0 and we consider the case a 6=

0, b = 0. By calculating xy2, y2x, x2y, yx2 we find c = e = f = 0, a = d. Thus we

have

x2 = ax, y2 = 0, xy = ay, yx = 0.

If a = 0, b 6= 0, we similarly obtain

x2 = 0, y2 = by, xy = 0, yx = bx.

Suppose now that a 6= 0, b 6= 0. If xy = 0 then 0 = (xy)x = x(yx) = ex2+fxy = ex2

implies e = 0, and 0 = y(xy) = (yx)y = exy + fy2 = fy2 implies f = 0, so that

yx = ex + fy = 0. But with xy = yx = 0, R would be commutative. Hence either

c 6= 0 or d 6= 0. Since axy = x2y = x(xy) = cx2 + dxy = acx + dxy, we have

(a− d)xy = acx. Now a = d implies c = 0, and a 6= d implies d = 0 since otherwise

there would be a dependency between x and y. Thus we have two cases to consider.

Case I: c = 0, d 6= 0. Then a = d and xy = ay.

Case II: c 6= 0, d = 0. Then bxy = xy2 = (xy)y = cxy implies b = c. So that xy = bx.
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By an analysis similar to the above, we can show that either yx = bx or yx = ay.

Thus there are two apparent cases where R is not commutative.

x2 = ax, xy = ay, yx = bx, y2 = by;(6.4)

x2 = ax, xy = bx, yx = ay, y2 = by.(6.5)

Now let z = xy− yx. If (6.4) holds, then z = ay− bx and x and z are independent

elements of A such that

x2 = ax, xz = az, zx = 0, z2 = 0, a 6= 0.(6.6)

If (6.5) holds, z = bx− ay and we have

x2 = ax, xz = 0, zx = az, z2 = 0.(6.7)

We complete the proof of the lemma by showing that a ∈ D. Let mx + nz be an

arbitrary element of A. Then by (6.6) x(mx + nz) = mx2 + nxz = max + naz =

a(mx + nz) ∈ A. Hence a ∈ D. Similarly if (6.7) holds, (mx + nz)x = max + naz =

a(mx + nz) ∈ A. �

Lemma 6.3. (Beaumont and Wisner [7]) Let R be a ring over a torsion-free group A

of rank two such that there exist independent elements x, y ∈ A which satisfy (6.2) or

(6.3) of Lemma 6.2, and let U be the group of rank one belonging to x. Then aU ⊆ D.

Proof. Let r ∈ U. Then there exists z ∈ A such that z = rx + sy. Let w = ex + fy

be an arbitrary element of A. Then by (6.2), zw = rfax + rfay = arw ∈ A. Hence

ar ∈ D for all r ∈ U. Similarly by (6.3), wz = arw ∈ A. �

Theorem 6.1. (Beaumont and Wisner [7]) Let A be a torsion-free group of rank two.

Then R is a non-commutative ring over A if and only if multiplication in A is defined

by xy = ξ(x)y or xy = ξ(y)x, for x, y ∈ A, where ξ is a non-trivial homomorphism

of A into the nucleus D of A.
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Proof. If R is a non-commutative ring over A, then by Lemma 6.2, A =< x1, x2 >
∗

where x1, x2 satisfy (6.2) or (6.3). Suppose (6.2) is satisfied. For rx1 + sx2, mx1 +

nx2 ∈ A, we have

(rx1 + sx2)(mx1 + nx2) = rmax1 + rnax2 = ra(mx1 + nx2).

It follows from Lemma 6.3 that the mapping ξ : A −→ D defined ξ(rx1 + sx2) = ra

is a non-trivial homomorphism of A into D. Similarly, if (6.3) is satisfied, (rx1 +

sx2)(mx1 + nx2) = ma(rx1 + sx2) = ξ(mx1 + nx2)(rx1 + sx2).

Conversely, if ξ is a non-trivial homomorphism of A into D, then multiplication

defined by xy = ξ(x)y for x, y ∈ A is associative and distributive with respect to

addition. Since ξ is non-trivial, there exists K ∈ A such that ξ(K) 6= 0. Since A has

rank two, there exists L ∈ A such that K and L are independent. If KL = LK, then

ξ(K)L = ξ(L)K which implies ξ(K) = ξ(L) = 0, which is a contradiction. Hence the

multiplication yields a non-commutative ring R over A. An analogous discussion can

be given for xy = ξ(y)x. �

Corollary 6.1. (Beaumont and Wisner [7]) If A is a torsion-free Abelian group of

arbitrary rank and if ξ is a non-trivial homomorphism of A into the nucleus D of A,

then multiplication defined by xy = ξ(x)y or xy = ξ(y)x, for x, y ∈ A yields a (non-

zero) ring R over A. R is non-commutative if and only if the rank of A is greater

than one.

Proof. The fact that the given multiplication is well-defined, associative, and dis-

tributive with respect to addition does not depend on the rank of A, and hence the

result follows as in Theorem 6.1.

If R is non-commutative, then A cannot have rank 1. In fact, by Theorem 3.1, the

only (non-zero) rings over torsion-free groups of rank one are isomorphic to subrings
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of the field of rational numbers. Conversely, if the rank of A is at least two, the fact

that R is non-commutative follows from the proof of Theorem 6.1. �

Corollary 6.2. (Beaumont and Wisner [7]) A non-commutative ring R over a torsion-

free group of rank two contains an ideal I such that

(1) I2 = 0,

(2) the additive group I+ of I has rank one.

In particular, R contains proper divisors of zero.

Proof. We note that < y >∗, the pure subgroup of A generated by y in (6.2) and

(6.3), Lemma 6.2, is an ideal in R with the stated properties.

The non-commutative rings R over A occur in anti-isomorphic pairs, defined by

xy = ξ(x)y and xy = ξ(y)x in Theorem 6.1. Thus, to determine the essentially

different rings over A, we need only consider those defined by xy = ξ(x)y. �

Now we consider the rings over a torsion-free group of rank two which contain no

proper divisors of zero. By Corollary 6.2, such a ring is necessarily commutative.

The next theorem characterizes those rings over A which contain no proper divisors

of zero.

Theorem 6.2. (Beaumont and Wisner [7]) Let A be a torsion-free group of rank two.

Then R is a ring over A without proper divisors of zero if and only if R is isomorphic

to a subring of a quadratic extension R(α) of R.

Proof. Let R be a ring over A without divisors of zero. Then, as remarked above, R

is commutative. Hence, by Lemma 6.1, there exists x ∈ A such that x and x2 are

independent. Then x3 = rx+sx2, where r = r1/r2 and s = s1/s2. Hence [r2, s2]x and

([r2, s2]x)
2 are independent elements of A where ([r2, s2]x)

3 = ([r2, s2])
2r([r2, s2]x) +

[r2, s2]s([r2, s2]x)
2, so we may assume that x and x2 are independent elements of A,

where x3 = ax + bx2 with a and b integers.
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Consider the polynomial X2 − bX − a, and let α and β be its zeros. Then α and

β are not rational. For suppose the contrary. Then x4 − bx3 − ax2 = 0, and since

α + β = b and α.β = −a, we have

x4 − bx3 − ax2 = (x2 − αx)(x2 − βx) = 0.

Since α and β are integers, and since x and x2 are independent, x2 −αx and x2 − βx

are non-zero elements of R. But this contradicts the hypothesis that R has no divisors

of zero.

Since α is a zero of X2− bX−a, we have α3 = αa+ bα2. Hence the correspondence

ϕ : R → R(α) defined by mx+nx2 → mα+nα2 is a ring homomorphism. Moreover,

ϕ is an isomorphism for mα + nα2 = 0 implies (m + nb)α + na = 0, and since α is

not rational, this yields m + nb = 0 and na = 0. But again since α is not rational,

a 6= 0. Hence m = n = 0.

Conversely, any subring of a quadratic extension R(α) of R is an integral domain.

�

In order to derive a necessary condition for the existence of a ring R without

zero-divisors over the group A, Beaumont and Wisner find additional necessary and

sufficient conditions that a ring R over A has no zero-divisors.

Theorem 6.3. (Beaumont and Wisner [7]) Let A be a torsion-free group of rank two.

Then R is a ring over A without zero divisors if and only if there exists an element

y ∈ R such that

(1) y and y2 are independent.

(2) y3 = cy, where c is a non-square integer.

Proof. In the proof of Theorem 6.2, x can be chosen so that x3 = ax + bx2 where

b = 2q is even (since the element x in the proof of Theorem 6.2 can be replaced by
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2x). Now α2 − 2qα− a = 0 so that we have

(α− q)2 = q2 + a; (aα− aq)2 = a2(q2 + a);

aα− aq = aα− q(α− q)2 + q3 = aα− q(α2 − 2qα) = (a + 2q)α− qα2;(6.8)

[(a+ 2q)α− qα2]2 = (aα− aq)2 = a2(q2 + a);(6.9)

[(a+ 2q)α− qα2]3 = a2(q2 + a)[(a+ 2q)α− qα2].(6.10)

Now let y = (a+2q)x−qx2. Then ϕ(y) = (a+2q)α−qα2, where ϕ is the isomorphism

of R into R(α) given in Theorem 6.2. We note first that y and y2 are independent.

For if ey + fy2 = 0 for integers e and f, we would have eϕ(y) + fϕ(y2) = 0, which

by (6.8) and (6.9) would yield

e(aα− aq) + fa2(q2 + a) = 0.

But this implies that α is rational unless e = f = 0.

It is immediate from (6.10) that y3 = a2(q2 + a)y where a2(q2 + a) is a non-square

integer.

Conversely, suppose that there exists an element y ∈ R which satisfies (1) and

(2). Assume that R has proper divisors of zero, so that there exist non-zero elements

ry + sy2 and uy + vy2 such that (ry + sy2)(uy + vy2) = 0. Using (2), this yields

c(rv + su)y + (ru+ svc)y2 = 0.

Since y and y2 are independent, we have

c(rv + su) = 0 and ru+ svc = 0.

Since c 6= 0 by (2), and not both r and s are zero, we obtain

0 = uv − uvc = uv(1 − c)
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which implies (since c 6= 1 by (2)) that u = 0 or v = 0. Suppose u = 0. Then

crv = svc = 0, which implies r = s = 0, since not both u and v are zero. But this is

a contradiction. Similarly, a contradiction is obtained if v = 0. �
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