QUASI αgrw -OPEN MAPS IN TOPOLOGICAL SPACES

N.SELVANAYAKI $^{(1)}$ AND GNANAMBAL ILANGO $^{(2)}$

ABSTRACT. We introduce the notions of α -generalized regular weakly open sets, Quasi α -generalized regular weakly open maps and Quasi α -generalized regular weakly closed maps in topological spaces.

1. Introduction

In 2010, A. Vadivel and K. Vairamanickam [5] introduced Quasi rw-open and Quasi rw-closed functions in topological spaces. In 2013, Varun Joshi et al. [6] introduced gprw-closed and gprw-Quasi closed functions in topological spaces. Recently, as a generalization of closed sets, the notion of αgrw -closed sets, αgrw -continuous maps and αgrw -open maps were introduced and studied in [2, 3]. In this paper we introduce and characterize the concept of quasi αgrw -open maps.

2. Preliminaries

Throughout this paper X, Y and Z denote topological spaces (X, τ) , (Y, σ) and (Z, η) respectively on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A), $\alpha cl(A)$, $\alpha int(A)$ and

 $^{2000\} Mathematics\ Subject\ Classification.\ 54A05.$

Key words and phrases. αgrw -open sets, Quasi αgrw -open maps, Quasi αgrw -closed maps and αgrw^* -closed maps.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan. Received: March 15, 2015 Accepted:May 31, 2015 .

 αgrw -cl(A) denote the closure, interior, α -closure, α -interior and αgrw -closure of A respectively. The complement of a set A of (X, τ) is denoted by A^c or (X - A).

Definition 2.1. [4] A subset A of a topological space (X, τ) is called *regular open* if A = int(cl(A)).

Definition 2.2. [1] A subset A of a topological space (X, τ) is called regular semiopen if there is a regular open set Usuch that $U \subseteq A \subseteq cl(U)$.

Definition 2.3. [2] A subset A of a topological space (X, τ) is called $\alpha grw\text{-}closed$ if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi-open.

Definition 2.4. [3] A map $f:(X,\tau)\to (Y,\sigma)$ is called

- (1) $\alpha grw\text{-}continuous$ if $f^{-1}(V)$ is an $\alpha grw\text{-}closed$ set of (X, τ) for every closed set V of (Y, σ) ,
- (2) αgrw -open if f(U) is αgrw -open in (Y, σ) for every open set U of (X, τ) .

Definition 2.5. [3] For a subset A of (X, τ) , αgrw -cl(A)= $\cap \{F : A \subset F, F \text{ is } \alpha grw$ -closed in X $\}$.

3. On α -generalized regular weakly open sets

Definition 3.1. A subset A in (X, τ) is called α -generalized regular weakly open (briefly αgrw -open) if A^c is αgrw -closed.

The family of all αgrw -open sets is denoted by $\alpha grwO(X,\tau)$ or $\alpha grwO(X)$.

Theorem 3.1. A subset A of (X, τ) is αgrw -open if and only if $F \subseteq \alpha int(A)$ whenever F is regular semi-closed and $F \subseteq A$.

Proof. Suppose that $F \subseteq \alpha int(A)$, whenever F is regular semi-closed and $F \subseteq A$. Let $A^c \subseteq U$, where U is regular semi-open. Then $U^c \subseteq A$, where U^c is regular semi-closed. By hypothesis $U^c \subseteq \alpha int(A)$, which implies $[\alpha int(A)]^c \subseteq U$. i.e., $\alpha cl(A^c) \subseteq U$. Thus A^c is αgrw -closed. Hence A is αgrw -open.

Conversely, suppose that A is αgrw -open, $F \subseteq A$ and F is regular semi-closed. Then F^c is regular semi-open and $A^c \subseteq F^c$. Therefore $\alpha cl(A^c) \subseteq F^c$ and so $F \subseteq [\alpha cl(A^c)]^c = \alpha int(A)$. Hence $F \subseteq \alpha int(A)$.

Lemma 3.1. If a subset A of X is αgrw -closed, then $\alpha cl(A) - A$ does not contain any non-empty regular semi-closed set.

Proof. Suppose that A is αgrw -closed in X. Let U be a regular semi-closed set such that $U \subseteq \alpha cl(A) - A$. Then $A \subseteq U^c$. Since A is αgrw -closed, we have $\alpha cl(A) \subseteq U^c$. Consequently, $U \subseteq [\alpha cl(A)]^c$. Thus $U \subseteq (\alpha cl(A)) \cap (\alpha cl(A))^c$. Hence $U = \emptyset$. Therefore $\alpha cl(A) - A$ does not contain any non-empty regular semi-closed set.

Theorem 3.2. If a subset A is αgrw -open in (X, τ) , then U = X whenever U is regular semi-open and $\alpha int(A) \cup A^c \subseteq U$.

Proof. Let A be αgrw -open, U be regular semi-open such that $\alpha int(A) \cup A^c \subseteq U$. This gives $U^c \subseteq [\alpha int(A) \cup A^c]^c = \alpha cl(A^c) - A^c$. Since A^c is αgrw -closed and U^c is regular semi-closed by Lemma 3.1, it follows that $U^c = \emptyset$. i.e., X = U.

Theorem 3.3. If A is αgrw -open and $\alpha int(A) \subseteq B \subseteq A$, then B is αgrw -open.

Proof. Suppose that $\alpha int(A) \subseteq B \subseteq A$ and A is αgrw -open. Then $A^c \subseteq B^c \subseteq \alpha cl(A^c)$ and since A^c is αgrw -closed, we have Theorem 3.26 [2], B^c is αgrw -closed i.e., B is αgrw -open.

Definition 3.2. Let (X, τ) be a topological space and $E \subseteq X$. αgrw -int(E) is the union of all αgrw -open sets contained in E.

i.e., αgrw -int(E)= $\cup \{E : E \subseteq A \text{ and E is } \alpha grw$ -open $\}$.

Lemma 3.2. Let A be a subset of a space (X, τ) . Then $X - \alpha grw\text{-}int(A) = \alpha grw\text{-}cl(X - A)$.

Proof. Let $x \in X - \alpha grw\text{-int}(A)$. Then $x \notin \alpha grw\text{-int}(A)$. That is, every αgrw open set B containing x is such that B is not contained in A. This implies every $\alpha grw\text{-open set B containing x is such that } B \cap (X - A) \neq \emptyset$. By Theorem 4.15 [3], $x \in \alpha grw\text{-cl}(X - A)$. Hence $(X - \alpha grw\text{-int}(A)) \subseteq \alpha grw\text{-cl}(X - A)$.

Conversely let $x \in \alpha grw\text{-}\mathrm{cl}(X-A)$ then by Theorem 4.15 [3], every αgrw -open set B containing x is such that $B \cap (X-A) \neq \emptyset$. That is every αgrw -open set B containing x is such that B is not contained in A. This implies, $x \notin \alpha grw\text{-}\mathrm{int}(A)$. Thus $x \in X - \alpha grw\text{-}\mathrm{int}(A)$. Hence $\alpha grw\text{-}\mathrm{cl}(X-A) \subseteq X - \alpha grw\text{-}\mathrm{int}(A)$. Hence the proof.

Theorem 3.4. Let (X, τ) be a topological space. Then the following hold:

- (1) If $A \subseteq X$ is αgrw -closed, then $\alpha cl(A) A$ is αgrw -open.
- (2) If A is αgrw -open and B is αgrw -open then $A \cap B$ is αgrw -open.
- (3) For any $E \subseteq X$, $int(E) \subseteq \alpha grw\text{-}int(E) \subseteq E$.

Proof.

- (1) Let A be αgrw -closed. Let F be regular semi-closed such that $F \subseteq \alpha cl(A) A$. Then by Lemma 3.1, F = : This implies $F \subseteq \alpha int(\alpha cl(A) - A)$. By Theorem 3.1, $\alpha cl(A) - A$ is αgrw -open.
- (2) Let A^c and B^c be αgrw -closed then $A^c \cup B^c$ is αgrw -closed by Theorem 3.19 [2]. This implies $A \cap B$ is αgrw -open.
- (3) Since every open set is αgrw -open, the proof follows immediately.

Definition 3.3. Let (X, τ) be a topological space. Let $\tau_{\alpha grw} = \{U \subseteq X : \alpha grw-cl(X-U) = X-U\}.$

Theorem 3.5. Let (X, τ) be a topological space. Then the following hold:

- (1) Every αgrw -closed set is α -closed if and only if $\tau_{\alpha grw} = \alpha O(X, \tau)$.
- (2) Every αgrw -closed set is closed if and only if $\tau_{\alpha grw} = \tau$.

Proof. 1. Necessity. Let $A \in \tau_{\alpha grw}$. Then $\alpha grw\text{-}cl(X-A) = X-A$. By hypothesis, $\alpha cl(X-A) \subseteq \alpha grw\text{-}cl(X-A) = X-A$. This implies X-A is α -closed and hence $A \in \alpha O(X,\tau)$. Let $A \in \alpha O(X,\tau)$, X-A is α -closed which implies $\alpha cl(X-A) = X-A$. Since every α -closed set is $\alpha grw\text{-}closed$, $\alpha grw\text{-}cl(X-A) \subseteq \alpha cl(X-A) = X-A$. Hence $A \in \tau_{\alpha grw}$.

Sufficiency. Suppose $\tau_{\alpha grw} = \alpha O(X, \tau)$. Let A be αgrw -closed set. Then αgrw -cl(A)=A. This implies $X - A \in \tau_{\alpha grw} = \alpha O(X, \tau)$. So A is α -closed.

2. Necessity. Let $A \in \tau_{\alpha grw}$. Then $\alpha grw\text{-}cl(X-A) = X-A$. By hypothesis, $cl(X-A) \subseteq \alpha grw\text{-}cl(X-A) = X-A$. This implies X-A is closed and hence $A \in \tau$. Let $A \in \tau$, X-A is closed which implies cl(X-A) = (X-A). Since every closed set is $\alpha grw\text{-}closed$, $\alpha grw\text{-}cl(X-A) \subseteq cl(X-A) = (X-A)$. Hence $A \in \tau_{\alpha grw}$.

Sufficiency. Suppose $\tau_{\alpha grw} = \tau$. Let A be αgrw -closed set. Then αgrw -cl(A) = A. This implies $X - A \in \tau_{\alpha grw} = \tau$. So A is closed.

Theorem 3.6. If $\alpha grwO(X, \tau)$ is closed under arbitrary union, then $\tau_{\alpha grw}$ is a topology.

Proof. 1. Clearly, $\emptyset, X \in \tau_{\alpha qrw}$.

- **2.** Let $\{A_i : i \in \Lambda\} \in \tau_{\alpha grw}$. Then $\alpha grw\text{-}cl(X (\bigcup A_i)) = \alpha grw\text{-}cl(\bigcap (X A_i)) \subseteq \bigcap \alpha grw\text{-}cl(X A_i) = \bigcap (X A_i) = X (\bigcup A_i)$. Therefore $\bigcup A_i \in \tau_{\alpha grw}$.
- 3. Let $A, B \in \tau_{\alpha grw}$. Now, $\alpha grw\text{-}cl(X (A \cap B)) = \alpha grw\text{-}cl(X A) \cup \alpha grw\text{-}cl(X B) = (X A) \cup (X B) = X (A \cap B)$. Then $A \cap B \in \tau_{\alpha grw}$.

Hence $\tau_{\alpha grw}$ is a topology.

4. Quasi αgrw -open maps

Definition 4.1. A map $f:(X,\tau)\to (Y,\sigma)$ is said to be quasi αgrw -open if the image of every αgrw -open set in X is open in Y.

Definition 4.2. A map $f:(X,\tau)\to (Y,\sigma)$ is said to be quasi αgrw -closed if the image of every αgrw -closed set in X is closed in Y.

It is evident that the concepts of quasi αgrw -openness (resp. αgrw -closedness) and αgrw -continuity coincide if the map is bijection.

Theorem 4.1. Every quasi αgrw -open map is open.

Proof. Let U be an open set in X. Since every open set is αgrw -open, U is αgrw -open in X. Then f(U) is open in Y, since f is quasi αgrw -open map. Hence f is open.

Corollary 4.1. Every quasi αgrw -open map is αgrw -open.

Proof. It follows from Theorem 4.1 and Theorem 4.8(i) [3].

Remark 1. The converses of Theorem 4.1 and its corollary need not be true as seen from the following example.

Example 4.1. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}, X\}$, $Y = \{p, q, r\}$ and $\sigma = \{\emptyset, \{p\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a) = f(b) = p, f(c) = q and f(d) = r. Then f is open and αgrw -open but it is not quasi αgrw -open.

Theorem 4.2. A map $f:(X,\tau)\to (Y,\sigma)$ is said to be quasi αgrw -open if for every subset U of X, $f(\alpha grw$ -int $(U))\subseteq int(f(U))$.

Proof. Assume that U is αgrw -open set in X. Then $f(U) = f(\alpha grw\text{-}int(U)) \subseteq int(f(U))$ but $int(f(U)) \subseteq f(U)$. Consequently, f(U) = int(f(U)). Hence f(U) is open in Y. Therefore f is quasi αgrw -open.

Theorem 4.3. Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\eta)$ be two maps and $g\circ f:(X,\tau)\to (Z,\eta)$ be quasi αgrw -open. If g is continuous injective, then f is quasi αgrw -open.

Proof. Let U be a αgrw -open set in X. Then, we have $(g \circ f)(U)$ is open in Z, since $(g \circ f)$ is quasi αgrw -open. Again g is an injective continuous map, $g^{-1}[(g \circ f)(U)] = f(U)$ is open in Y. This shows that f is quasi αgrw -open.

Definition 4.3. A map $f:(X,\tau)\to (Y,\sigma)$ is called αgrw^* -closed (resp. αgrw^* -open) map if the image of each αgrw -closed (resp. αgrw -open) subset in X is αgrw -closed (resp. αgrw -open) in Y.

Theorem 4.4. For a topological space (X, τ) , the following hold:

- (1) Every quasi αgrw -closed map is αgrw^* -closed.
- (2) Every αgrw^* -closed map is αgrw -closed.

Proof. Obvious.

Remark 2. The converses of the above theorem need not be true as seen from the following examples.

Example 4.2. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$, $Y = \{p, q, r\}$ and $\sigma = \{\emptyset, \{r\}, \{q, r\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a) = f(b) = p, f(c) = q and f(d) = r. Then f is αgrw^* -closed but not quasi αgrw -closed.

Example 4.3. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$, $Y = \{p, q, r, s\}$ and $\sigma = \{\emptyset, \{p\}, \{q\}, \{p, q\}, \{p, q, r\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a) = s, f(b) = q, f(c) = p and f(d) = r. Then f is αgrw -closed but not αgrw^* -closed.

Theorem 4.5. Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\eta)$ be two maps on topological spaces.

- (1) If f is αgrw -closed and g is quasi αgrw -closed then $g \circ f : (X, \tau) \to (Z, \eta)$ is closed.
- (2) If f is quasi αgrw -closed and g is αgrw -closed then $g \circ f : (X, \tau) \to (Z, \eta)$ is αgrw^* -closed.
- (3) If f is αgrw^* -closed and g is quasi αgrw -closed then $g \circ f : (X, \tau) \to (Z, \eta)$ is quasi αgrw -closed.
- *Proof.* 1. Let F be a closed set in X. Since f is αgrw -closed, f(F) is αgrw -closed set in Y and also g is a quasi αgrw -closed map therefore g(f(F)) is closed in Z. Hence $g \circ f$ is a closed map.
- **2.** Let F be a αgrw -closed set in X. Since f is quasi αgrw -closed, f(F) is closed set in Y and also g is an αgrw -closed map therefore g(f(F)) is αgrw -closed in Z. Hence $g \circ f$ is an αgrw^* -closed map.
- **3.** Let F be a αgrw -closed set in X. Since f is αgrw^* -closed, f(F) is αgrw -closed set in Y and also g is a quasi αgrw -closed map therefore g(f(F)) is closed in Z. Hence $g \circ f$ is a quasi αgrw -closed map.

Theorem 4.6. Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\eta)$ be two maps such that $g\circ f:(X,\tau)\to (Z,\eta)$ be a quasi $\alpha grw\text{-}closed$ map. If g is $\alpha grw\text{-}continuous$ and injective map then f is $\alpha grw^*\text{-}closed$.

Proof. Suppose that F is any αgrw -closed set in X. Since $g \circ f$ is quasi αgrw -closed therefore $(g \circ f)(F)$ is closed in Z and also g is αgrw -continuous and injective map therefore $g^{-1}[(g \circ f)(F)] = f(F)$, which is αgrw -closed in Y. Hence f is αgrw^* -closed.

References

- [1] D. E.Cameron, Properties of S-closed spaces, Pro. Amer. Math. Soc., 72,(1978), 581 586.
- [2] N. Selvanayaki and Gnanambal Ilango, On α-Generalized Regular Weakly Closed sets in topological spaces, Scientia Magna, 9(1),(2013), 52 58.

- [3] N. Selvanayaki and Gnanambal Ilango, On α -Generalized Regular Weakly Continuous Functions in topological spaces, Bulletin of Kerala Mathematics Association, **11(1)**(2014), 103 112.
- [4] M.Stone Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41,(1937), 374-381.
- [5] A. Vadivel and K. Vairamanickam *Quasi rw-Open and Quasi rw-Closed Functions*, Int. Journal of Math. Analysis, **4(9)**, (2010), 445 452.
- [6] V. Joshi, S.Gupta, N.Bhardwaj and R.Kumar On gprw-closed and gprw-Quasi Closed Functions in Topological Spaces, Pure Mathematical Sciences, 2(1), (2013), 13 21.
- (1) Department of Mathematics, Akshaya College of Engineering and Technology, Coimbatore, Tamilnadu, INDIA

E-mail address: selvanayaki.nataraj@gmail.com

(2) Department of Mathematics, Government Arts College, Coimbatore, Tamilnadu, INDIA

 $E ext{-}mail\ address: gnanamilango@yahoo.co.in}$