A DECOMPOSITION OF PAIRWISE CONTINUITY

K.M. ARIFMOHAMMED $^{(1)}$ AND M.THIRUMALAISWAMY $^{(2)}$

ABSTRACT. In this paper, we introduce and study the notions of some weaker forms of τ_i - θ -open sets and some stronger forms of (i, j) -t-sets and (i, j) -B-sets in bitopological spaces. Also, we introduce various forms of pairwise continuity

and using these we obtain some decompositions of pairwise continuity.

1. Introduction

authors [1, 2, 8, 10, 12, 13, 14, 17, 18] obtained various decompositions of continuity in topological spaces. In 1990, Jelic [3, 4] obtained some decompositions of pairwise

In 1961, Levine [6] provided a decomposition of continuity. After his work many

continuity in bitopological spaces. Ravi et al. [11] obtained a decomposition of

(1,2) - *-continuity and (1,2) - *- α -continuity, in 2009. In this paper, we introduce

and study the notions of some weaker forms of τ_i - θ -open sets and some stronger

forms of (i, j)-t-sets and (i, j)-B-sets in bitopological spaces. Also, we introduce

2000 Mathematics Subject Classification. 54A05.

 $\textit{Key words and phrases.} \quad (i,j) \text{ -} \theta \text{ -semi-open set}, \ (i,j) \text{ -} \theta \text{ -pre open set}, \ (i,j) \text{ -} \theta \text{ -} \alpha \text{ -open set},$

(i,j) - θ - β -open set, (i,j) - θ -t-set and (i,j) - θ_{β} -t-set.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: May 26, 2014

Accepted: March 12, 2015.

various forms of pairwise continuity and using these we obtain some decompositions of pairwise continuity.

2. Preliminaries

Throughout this paper, (X, τ_1, τ_2) and (Y, τ_1, τ_2) denote bitopological spaces on which no separation axioms are assumed unless explicitly stated. By τ_i -open set, we shall mean open set with respect to topology τ_i in X. We always use (i, j)- to denote the certain properties with respect to the topologies τ_i and τ_j respectively, where $i, j \in 1, 2$ and $i \neq j$. By τ_i -int(A) and τ_i -cl(A) we shall mean the interior and the closure of a subset A of X with respect to the topology τ_i . The complement of A is denoted by X - A or A^c . A set A of (X, τ) is called θ -closed [19] if $A = cl_{\theta}(A)$, where $cl_{\theta}(A) = \{x \in X : A \cap cl(U) \neq \emptyset \text{ for all } U \in \tau(X, x)\}$. The complement of a θ -closed set is called θ -open, alternatively, a set A of (X, τ) is called θ -open if $A = int_{\theta}(A)$, where $int_{\theta}(A) = \{x \in X : cl(U) \subseteq A \text{ for some } U \in \tau(X, x)\}$. Now, we recall some definitions.

Definition 2.1. A subset A of a bitopological space (X, τ_1, τ_2) is said to be

- (1) (i,j) -semi-open [7] if $A \subseteq \tau_j$ $cl(\tau_i int(A))$,
- (2) (i,j) α -open [15] $if A \subseteq \tau_i$ $int(\tau_j$ $cl(\tau_i$ int(A))),
- (3) (i,j) -pre-open [3] if $A \subseteq \tau_i$ $int(\tau_j cl(A))$,
- (4) (i,j) β -open [5] if $A \subseteq \tau_j$ $cl(\tau_i int(\tau_j cl(A)))$,
- (5) (i, j) t -set [16] if τ_i $int(A) = \tau_i$ $int(\tau_j$ cl(A)),
- (6) (i,j) B -set [16] if $A = U \cap V$, where U is τ_i -open and V is an (i,j) -t-set.

The complements of the above mentioned open sets in (X, τ_1, τ_2) are called their respective closed sets in (X, τ_1, τ_2) .

Definition 2.2. [9] A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be p-continuous if the induced mappings $f:(X, \tau_k) \to (Y, \sigma_k)$, (k = 1, 2) are continuous.

Definition 2.3. [16] A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be p-B-continuous if for every $V\in\sigma_k,\ k=1,\ 2,\ f^{-1}(V)$ is an (i,j)-B-set.

3. Weaker forms of τ_i - θ -open sets in bitopological spaces

Definition 3.1. A subset A of a space (X, τ_1, τ_2) is said to be an

- (1) (i,j) θ -semi-open set if $A \subseteq \tau_i$ $cl(\tau_i int_{\theta}(A))$,
- (2) (i,j) θ -pre open set if $A \subseteq \tau_i$ $int(\tau_j$ $cl_{\theta}(A))$,
- (3) $(i,j) \theta \alpha$ -open set if $A \subseteq \tau_i int(\tau_j cl(\tau_i int_{\theta}(A)))$,
- (4) $(i, j) \theta \beta$ -open set if $A \subseteq \tau_j cl(\tau_i int(\tau_j cl_\theta(A)))$,
- (5) (i,j) -weakly $\theta \beta$ -open set if $A \subseteq \tau_j cl_\theta(\tau_i int(\tau_j cl_\theta(A)))$.

Proposition 3.2. Every τ_i - θ -open set is (i, j) - θ -pre open, (i, j) - θ -semi-open, (i, j) - θ - α -open, (i, j) - θ - β -open and (i, j) -weakly θ - β -open.

Proof. Since A is τ_i - θ -open, we have

$$A = \tau_i - int_{\theta}(A)$$

$$\subseteq \tau_i - int(\tau_j - cl_{\theta}(A))$$

$$\subseteq \tau_j - cl(\tau_i - int(\tau_j - cl_{\theta}(A)))$$

$$\subseteq \tau_i - cl_{\theta}(\tau_i - int(\tau_j - cl_{\theta}(A))).$$

Thus A is (i, j) - θ -pre open, (i, j) - θ - β -open and (i, j) -weakly θ - β -open.

Now, $A = \tau_i - int_{\theta}(A)$

$$\subseteq \tau_i - int(\tau_j - cl(\tau_i - int_{\theta}(A)))$$

$$\subseteq \tau_i - cl(\tau_i - int_{\theta}(A)).$$

This shows that A is $(i, j) - \theta - \alpha$ -open and $(i, j) - \theta$ -semi-open.

Proposition 3.3. For a space (X, τ_1, τ_2) , the following hold:

- (1) Every (i, j) θ -semi-open set is (i, j) -semi-open.
- (2) Every (i, j)-pre open set is (i, j)- θ -pre open.
- (3) Every (i, j) θ α -open set is (i, j) α -open.
- (4) Every (i, j) β -open set is (i, j) θ β -open.

Proof. 1. Let A be an (i, j) - θ -semi-open set. Then

 $A \subseteq \tau_j - cl(\tau_i - int_\theta(A)) \subseteq \tau_j - cl(\tau_i - int(A))$. This shows that A is (i, j)-semi-open.

- **2.** Let A be an (i,j)-pre open set. Then $A \subseteq \tau_i int(\tau_j cl(A)) \subseteq \tau_i int(\tau_j cl_{\theta}(A))$. This shows that A is $(i,j) \theta$ -pre open.
- **3.** Let A be an (i, j) θ α -open set. Then

$$A \subseteq \tau_i \operatorname{-int}(\tau_j \operatorname{-cl}(\tau_i \operatorname{-int}_{\theta}(A)))$$

 $\subseteq \tau_i - int(\tau_j - cl(\tau_i - int(A)))$. This shows that A is $(i, j) - \alpha$ -open.

4. Let A be an (i,j)- β -open set. Then

$$A \subseteq \tau_i - cl(\tau_i - int(\tau_i - cl(A)))$$

 $\subseteq \tau_j$ - $cl(\tau_i$ - $int(\tau_j$ - $cl_{\theta}(A)))$. This shows that A is (i, j) - θ - β -open.

Proposition 3.4. For a space (X, τ_1, τ_2) , the following hold:

- (1) Every (i, j) θ -semi-open set is (i, j) θ β -open.
- (2) Every (i, j) θ -pre open set is (i, j) θ β -open.
- (3) Every $(i, j) \theta \alpha$ -open set is $(i, j) \theta$ -semi-open, $(i, j) \theta$ -pre open and $(i, j) \theta \beta$ -open.

Proof. 1. Let A be an (i, j)- θ -semi-open set. Then

 $A \subseteq \tau_j - cl(\tau_i - int_{\theta}(A)) \subseteq \tau_j - cl(\tau_i - int(\tau_j - cl_{\theta}(A)))$. This shows that A is $(i, j) - \theta - \beta$ -open.

2. Let A be an (i, j) - θ -pre open set. Then

$$A \subseteq \tau_i \operatorname{-int}(\tau_j \operatorname{-} \operatorname{cl}_{\theta}(A)) \subseteq \tau_j \operatorname{-} \operatorname{cl}(\tau_i \operatorname{-int}(\tau_j \operatorname{-} \operatorname{cl}_{\theta}(A))).$$

This shows that A is $(i, j) - \theta - \beta$ -open.

3. Let A be an (i, j) - θ - α -open set.

Then $A \subseteq \tau_i - int(\tau_j - cl(\tau_i - int_{\theta}(A))) \subseteq \tau_j - cl(\tau_i - int_{\theta}(A))$. That is, A is $(i, j) - \theta$ -semi-open. Also, $A \subseteq \tau_i - int(\tau_j - cl(\tau_i - int_{\theta}(A))) \subseteq \tau_i - int(\tau_j - cl_{\theta}(A))$ $\subseteq \tau_j - cl(\tau_i - int(\tau_j - cl_{\theta}(A)))$. This shows that A is $(i, j) - \theta$ -pre open and $(i, j) - \theta - \beta$ -open.

Proposition 3.5. Every (i, j) - θ -pre open (resp. (i, j) - θ -semi-open, (i, j) - θ - α - open and (i, j) - θ - β -open) set is (i, j) -weakly θ - β -open.

Proof. The proof is obvious.

Remark 3.6. From the following examples, the converses of the above propositions need not be true.

Example 3.7. Let $X = \{a, b, c\}$ with topologies $\tau_1 = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$ and $\tau_2 = \{\emptyset, \{b\}, \{c\}, \{b, c\}, \{a, c\}, X\}$. Then the set $A = \{c\}$ is (2, 1)-semi-open but it is not (2, 1)- θ -semi-open.

Example 3.8. Let $X = \{a, b, c\}$ with topologies $\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $\tau_2 = \{\emptyset, \{c\}, \{a, b\}, X\}$. Then the set $A = \{a, c\}$ is $(2, 1) - \theta$ -pre open and

6

(2,1) - θ - β -open but it is not τ_2 - θ -open, (2,1) -pre open, (2,1) - β -open and (2,1) - θ - α -open. Moreover, the set $B = \{b\}$ is (1,2) - α -open but it is not (1,2) - θ - α - open.

Example 3.9. In Example 3.8, the set $A = \{a, b\}$ is $(1, 2) - \theta - \alpha$ -open but it is not $\tau_1 - \theta$ -open. In Example 3.7, the set $A = \{a, b\}$ is $(1, 2) - \theta - \beta$ -open but it is not $(1, 2) - \theta$ -semi-open. Moreover, the set $B = \{a, c\}$ is $(1, 2) - \theta - \beta$ -open but it is not $(1, 2) - \theta$ -pre open.

Example 3.10. Let $X = \{a, b, c, d\}$ with topologies

 $\tau_1 = \{\emptyset, \{d\}, \{a, d\}, \{b, c\}, \{b, c, d\}, X\} \text{ and } \tau_2 = \{\emptyset, \{d\}, \{a, b, c\}, X\}. \text{ Then the set } A = \{a, d\} \text{ is } (2, 1) - \theta \text{ -semi-open but it is not } \tau_2 - \theta \text{ -open and } (2, 1) - \theta - \alpha \text{ -open.}$

Example 3.11. In Example 3.8, the set $A = \{b\}$ is (2,1)-weakly θ - β -open but it is not (2,1)- θ -pre open, (2,1)- θ -semi-open, (2,1)- θ - α -open and (2,1)- θ - β -open.

4.
$$(i,j)$$
 - θ -T-SETS, (i,j) - θ_{β} -T-SETS AND (i,j) -STRONG θ_{β} -T-SETS

Definition 4.1. A subset A of a space (X, τ_1, τ_2) is said to be an

- (1) $(i,j) \theta$ -t-set if $\tau_i int(A) = \tau_i int(\tau_j cl_{\theta}(A))$,
- (2) $(i,j) \theta_{\beta}$ -t-set if $\tau_i int(A) = \tau_j cl(\tau_i int(\tau_j cl_{\theta}(A)))$,
- $(3) \ (i,j) \operatorname{-strong} \ \theta_{\beta} \operatorname{-t-set} \ if \ \tau_i \operatorname{-int}(A) = \tau_j \operatorname{-cl}_{\theta}(\tau_i \operatorname{-int}(\tau_i \operatorname{-cl}_{\theta}(A))).$

Proposition 4.2. For a subset A of a space (X, τ_1, τ_2) , the following hold:

- (1) If A is $\tau_i \theta$ -closed, then it is an $(i, j) \theta$ -t-set.
- (2) A is an (i, j) θ -t-set if and only if it is (j, i) θ -semi-closed.

Proof. 1. Since A is $\tau_j - \theta$ -closed, we have $A = \tau_j - cl_{\theta}(A)$. Thus $\tau_i - int(A) = \tau_i - int(\tau_j - cl_{\theta}(A))$. This shows that A is an $(i, j) - \theta$ -t-set.

2. Let A be an (i, j) - θ -t-set. Then τ_i - $int(\tau_j$ - $cl_{\theta}(A)) = \tau_i$ - $int(A) \subseteq A$. This implies A is (j, i) - θ -semi-closed.

Conversely, let A be (j,i) - θ -semi-closed, τ_i - $int(\tau_j$ - $cl_{\theta}(A)) \subseteq A$. Thus τ_i - $int(\tau_j$ - $cl_{\theta}(A)) \subseteq \tau_i$ - $int(A) \subseteq \tau_i$ - $int(\tau_j$ - $cl_{\theta}(A))$. This implies τ_i - $int(A) = \tau_i$ - $int(\tau_j$ - $cl_{\theta}(A))$ and so A is an (i,j) - θ -t-set.

Example 4.3. The converse of Proposition 4.2(1) need not be true. In Example 3.8, the set $A = \{c\}$ is a (2,1) - θ -t-set but not a τ_1 - θ -closed set.

Proposition 4.4. A subset A of a space (X, τ_1, τ_2) is $(i, j) - \theta$ -pre open and an $(i, j) - \theta$ -t-set if and only if τ_i -int $(\tau_j - cl_\theta(A)) = A$.

Proof. The proof is obvious.

Proposition 4.5. For a space (X, τ_1, τ_2) , the following hold:

- (1) Every (i,j) θ -t-set is an (i,j) -t-set.
- (2) Every (i, j) θ_{β} -t-set is an (i, j) θ -t-set.
- (3) Every (i,j)-strong θ_{β} -t-set is an (i,j)- θ -t-set and an (i,j)- θ_{β} -t-set.

Proof. 1. Let A be an (i, j) - θ -t-set.

Now,
$$\tau_i - int(\tau_j - cl(A)) \subseteq \tau_i - int(\tau_j - cl_{\theta}(A))$$

$$= \tau_i - int(A)$$

$$\subseteq \tau_i - int(\tau_j - cl(A)).$$

This shows that A is an (i, j)-t-set.

2. Let A be an (i, j) - θ_{β} -t-set.

Now,
$$\tau_i - int(\tau_j - cl_{\theta}(A)) \subseteq \tau_j - cl(\tau_i - int(\tau_j - cl_{\theta}(A)))$$

$$= \tau_i - int(A)$$

$$\subseteq \tau_i - int(\tau_j - cl_{\theta}(A)).$$

This shows that A is an (i, j) - θ -t-set.

3. Let A be an (i,j)-strong θ_{β} -t-set.

Now,
$$\tau_i - int(\tau_j - cl_{\theta}(A)) \subseteq \tau_j - cl(\tau_i - int(\tau_j - cl_{\theta}(A)))$$

$$\subseteq \tau_j - cl_{\theta}(\tau_i - int(\tau_j - cl_{\theta}(A)))$$

$$= \tau_i - int(A)$$

$$\subseteq \tau_i - int(\tau_j - cl_{\theta}(A))$$

$$\subseteq \tau_i - cl(\tau_i - int(\tau_j - cl_{\theta}(A))).$$

This shows that A is an (i, j) - θ -t-set and an (i, j) - θ_{β} -t-set.

Remark 4.6. From the following examples, we see that the converses of the above proposition need not be true.

Example 4.7. Let $X = \{a, b, c\}$ with topologies $\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $\tau_2 = \{\emptyset, \{c\}, \{b, c\}, X\}$. Then the set $A = \{c\}$ is a (2, 1)-t-set but it is not a (2, 1)- θ -t-set.

Example 4.8. Let $X = \{a, b, c, d\}$ with topologies $\tau_1 = \{\emptyset, \{d\}, \{a, c\}, \{a, c, d\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{d\}, \{a, d\}, X\}$. Then the set $A = \{d\}$ is a $(1, 2) - \theta$ -t-set but it is not a $(1, 2) - \theta_{\beta}$ -t-set.

Example 4.9. In Example 3.8, the set $A = \{c\}$ is a (2,1) - θ -t-set and (2,1) - θ_{β} -t-set but it is not a (2,1) -strong θ_{β} -t-set.

Proposition 4.10. Intersection of two (i, j) - θ -t-sets is an (i, j) - θ -t-set.

Proof. Let A and B be two $(i, j) - \theta$ -t-sets in (X, τ_1, τ_2) .

Then,
$$\tau_i - int(A) = \tau_i - int(\tau_i - cl_{\theta}(A))$$
 and

$$\tau_i - int(B) = \tau_i - int(\tau_i - cl_{\theta}(B)).$$

Now,
$$\tau_i - int(A \cap B) \subseteq \tau_i - int(\tau_i - cl_\theta(A \cap B))$$

$$\subseteq \tau_i \operatorname{-int}(\tau_j \operatorname{-cl}_\theta(A) \cap \tau_j \operatorname{-cl}_\theta(B))$$

$$= \tau_i - int(\tau_i - cl_{\theta}(A)) \cap \tau_i - int(\tau_i - cl_{\theta}(B))$$

$$= \tau_i - int(A) \cap \tau_i - int(B)$$

$$= \tau_i - int(A \cap B).$$

This implies $\tau_i - int(A \cap B) = \tau_i - int(\tau_j - cl_{\theta}(A \cap B))$. Therefore, $A \cap B$ is an $(i, j) - \theta$ -t-set.

Proposition 4.11. Intersection of two (i, j) - θ_{β} -t-sets is an (i, j) - θ_{β} -t-set.

Proof. Let A and B be two (i, j) - θ_{β} -t-sets in (X, τ_1, τ_2) .

Then,
$$\tau_i - int(A) = \tau_j - cl(\tau_i - int(\tau_j - cl_{\theta}(A)))$$
 and

$$\tau_i - int(B) = \tau_j - cl(\tau_i - int(\tau_j - cl_{\theta}(B))).$$

Now,
$$\tau_i - int(A \cap B) \subseteq \tau_j - cl(\tau_i - int(\tau_j - cl_{\theta}(A \cap B)))$$

$$\subseteq \tau_j - cl(\tau_i - int(\tau_j - cl_\theta(A) \cap \tau_j - cl_\theta(B)))$$

$$= \tau_j \operatorname{-cl}(\tau_i \operatorname{-int}(\tau_j \operatorname{-cl}_\theta(A)) \cap \tau_i \operatorname{-int}(\tau_j \operatorname{-cl}_\theta(B)))$$

$$\subseteq \tau_j - cl(\tau_i - int(\tau_j - cl_{\theta}(A))) \cap \tau_j - cl(\tau_i - int(\tau_j - cl_{\theta}(B)))$$

$$= \tau_i - int(A) \cap \tau_i - int(B)$$

$$= \tau_i - int(A \cap B).$$

This implies $\tau_i - int(A \cap B) = \tau_j - cl(\tau_i - int(\tau_j - cl_{\theta}(A \cap B))).$

Therefore, $A \cap B$ is an $(i, j) - \theta_{\beta}$ -t-set.

Proposition 4.12. Intersection of two (i, j)-strong θ_{β} -t-sets is an (i, j)-strong θ_{β} -t-set.

Proof. Let A and B be two (i, j)-strong θ_{β} -t-sets in (X, τ_1, τ_2) .

Then,
$$\tau_i - int(A) = \tau_j - cl_{\theta}(\tau_i - int(\tau_j - cl_{\theta}(A)))$$
 and
$$\tau_i - int(B) = \tau_j - cl_{\theta}(\tau_i - int(\tau_j - cl_{\theta}(B))).$$

Now,
$$\tau_i - int(A \cap B) \subseteq \tau_j - cl_{\theta}(\tau_i - int(\tau_j - cl_{\theta}(A \cap B)))$$

$$\subseteq \tau_j - cl_{\theta}(\tau_i - int(\tau_j - cl_{\theta}(A) \cap \tau_j - cl_{\theta}(B)))$$

$$= \tau_j - cl_{\theta}(\tau_i - int(\tau_j - cl_{\theta}(A)) \cap \tau_i - int(\tau_j - cl_{\theta}(B)))$$

$$\subseteq \tau_j - cl_{\theta}(\tau_i - int(\tau_j - cl_{\theta}(A))) \cap \tau_j - cl_{\theta}(\tau_i - int(\tau_j - cl_{\theta}(B)))$$

$$= \tau_i - int(A) \cap \tau_i - int(B)$$

$$= \tau_i - int(A \cap B).$$

This implies

$$\tau_i$$
 - $int(A \cap B) = \tau_j$ - $cl_{\theta}(\tau_i$ - $int(\tau_j$ - $cl_{\theta}(A \cap B)))$.

Therefore,

 $A \cap B$ is an (i, j)-strong θ_{β} -t-set.

Remark 4.13. Following examples show that in a bitopological space (X, τ_1, τ_2) ,

- (1) Union of two (i, j) - θ -t-sets need not be an (i, j) - θ -t-set.
- (2) Union of two (i, j) - θ_{β} -t-sets need not be an (i, j) - θ_{β} -t-set.
- (3) Union of two (i, j)-strong θ_{β} -t-sets need not be an (i, j)-strong θ_{β} -t-set.

Example 4.14. In Example 3.8, the sets $A = \{a\}$ and $B = \{c\}$ are $(2,1) - \theta$ -t-sets and $(2,1) - \theta_{\beta}$ -t-sets but $A \cup B = \{a,c\}$ is neither a $(2,1) - \theta$ -t-set nor a $(2,1) - \theta_{\beta}$ -t-set.

Example 4.15. Let

 $X = \{a, b, c, d\}$ with topologies $\tau_1 = \{\emptyset, \{d\}, \{a, d\}, \{b, c\}, \{b, c, d\}, X\}$ and $\tau_2 = \{\emptyset, \{a, d\}, X\}$. Then the sets $A = \{b\}$ and $B = \{a, d\}$ are (2, 1)-strong θ_{β} -t-sets but $A \cup B = \{a, b, d\}$ is not a (2, 1)-strong θ_{β} -t-set.

5. $(i, j) - \theta$ -B-sets, $(i, j) - \theta_{\beta}$ -B-sets and (i, j) -strong θ_{β} -B-sets

Definition 5.1. A subset A of a space (X, τ_1, τ_2) is said to be an

- (1) (i,j) θ -B-set if $A = U \cap V$, where $U \in \tau_i$ and V is an (i,j) θ -t-set,
- (2) (i,j) θ_{β} -B-set if $A = U \cap V$, where $U \in \tau_i$ and V is an (i,j) θ_{β} -t-set,
- (3) (i, j)-strong θ_{β} -B-set if $A = U \cap V$, where $U \in \tau_i$ and V is an (i, j)-strong θ_{β} -t-set.

Proposition 5.2. Let (X, τ_1, τ_2) be a space. Then the following hold:

- (1) Every τ_i θ -closed set is (i,j) θ -B-set.
- (2) Every τ_i -open set is (i, j)- θ -B-set, (i, j)- θ_β -B-set and (i, j)-strong θ_β -B-set.
- (3) Every (i, j) θ -t-set is (i, j) θ -B-set.
- (4) Every $(i, j) \theta_{\beta}$ -t-set is $(i, j) \theta_{\beta}$ -B-set.
- (5) Every (i, j)-strong θ_{β} -t-set is (i, j)-strong θ_{β} -B-set.

Proof. The proof is straight forward.

Proposition 5.3. Let (X, τ_1, τ_2) be a space. Then the following hold:

- (1) Every $(i, j) \theta_{\beta}$ -B-set is $(i, j) \theta$ -B-set.
- (2) Every $(i, j) \theta$ -B-set is (i, j)-B-set.
- (3) Every (i,j)-strong θ_{β} -B-set is (i,j)- θ -B-set and (i,j)- θ_{β} -B-set.

Proof. The proof is straight forward.

Remark 5.4. The converses of the above propositions need not be true as seen from the following examples.

Example 5.5. Let $X = \{a, b, c\}$ with topologies $\tau_1 = \{\emptyset, \{c\}, \{a, b\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$. Then the set $A = \{a, b\}$ is a $(1, 2) - \theta$ -B-set but it is not a $\tau_2 - \theta$ -closed set. Moreover, the set $A = \{a, b\}$ is a $(1, 2) - \theta$ -B-set and a $(1, 2) - \theta_\beta$ -B-set but neither a $(1, 2) - \theta$ -t-set nor a $(1, 2) - \theta_\beta$ -t-set.

Example 5.6. In Example 3.8, the set $A = \{c\}$ is a (1,2) - θ -B-set, (1,2) - θ_{β} -B-set and a (1,2) -strong θ_{β} -B-set but it is not a τ_1 -open set.

Example 5.7. In Example 4.7, the set $A = \{a, c\}$ is a (2, 1)-B-set but not a (2, 1)- θ -B-set.

Example 5.8. Let $X = \{a, b, c, d\}$ with topologies $\tau_1 = \{\emptyset, \{d\}, \{a, c\}, \{a, c, d\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, X\}$. Then the set $B = \{a, b, c\}$ is a (1, 2) - θ -B-set but it is not a (1, 2)-strong θ_β -B-set.

Example 5.9. In Example 5.8, the set $A = \{a, b, c\}$ is a (1, 2) - θ -B-set but it is not a (1, 2) - θ_{β} -B-set. In Example 4.8, the set $A = \{a, c, d\}$ is a (1, 2)-strong θ_{β} -B-set but it is not a (1, 2)-strong θ_{β} -t-set.

Example 5.10. In Example 5.5, the set $A = \{b, c\}$ is a (1, 2)- θ_{β} -B-set but it is not a (1, 2)-strong θ_{β} -B-set.

Proposition 5.11. For a subset A of a space (X, τ_1, τ_2) , the following are equivalent:

- (1) A is τ_i -open.
- (2) A is an (i, j) θ -pre open set and an (i, j) θ -B-set.
- (3) A is an (i, j) θ β -open set and an (i, j) θ_{β} -B-set.
- (4) A is an (i, j)-weakly θ - β -open set and an (i, j)-strong θ_{β} -B-set.

Proof. (1) \Rightarrow (2), (1) \Rightarrow (3) and (1) \Rightarrow (4) are obvious, since X is $(i, j) - \theta$ -t-set, (i, j)-strong θ -t-set and $(i, j) - \theta_{\beta}$ -t-set and since $A \subseteq \tau_j - cl_{\theta}(A)$.

(2) \Rightarrow (1). Let A be (i,j)- θ -pre open and an (i,j)- θ -B-set. Then we have $A = U \cap V$, where $U \in \tau_i$ and V is an (i,j)- θ -t-set. Now,

$$A = U \cap A$$

$$\subseteq U \cap \tau_i - int(\tau_i - cl_\theta(A))$$

$$=U\cap \tau_i$$
 - $int(\tau_i$ - $cl_{\theta}(U\cap V))$

$$\subseteq U \cap \tau_i - int(\tau_j - cl_\theta(U) \cap \tau_j - cl_\theta(V))$$

$$=U\cap \tau_i$$
 - $int(\tau_j$ - $cl_{\theta}(U))\cap \tau_i$ - $int(\tau_j$ - $cl_{\theta}(V))$

$$= U \cap \tau_i - int(\tau_j - cl_{\theta}(U)) \cap \tau_i - int(V) \text{ [since V is an } (i, j) - \theta \text{ -t-set]}$$

$$= U \cap \tau_i - int(V) \text{ [since } U = \tau_i - int(U) \subseteq \tau_i - int(\tau_j - cl_{\theta}(U)) \text{]}$$

That is, $A \subseteq U \cap \tau_i - int(V)$ and also $A = U \cap V \supseteq U \cap \tau_i - int(V)$.

Therefore $A = U \cap \tau_i - int(V) = \tau_i - int(A)$. Hence A is τ_i -open.

 $(3) \Rightarrow (1)$. Let A be an (i,j)- θ - β -open set and an (i,j)- θ_{β} -B-set. Then we have $A = U \cap V$, where $U \in \tau_i$ and V is an (i,j)- θ_{β} -t-set. Now,

$$A = U \cap A$$

$$\subseteq U \cap \tau_j - cl(\tau_i - int(\tau_j - cl_\theta(A)))$$

$$= U \cap \tau_j - cl(\tau_i - int(\tau_j - cl_\theta(U \cap V)))$$

$$\subseteq U \cap \tau_j \operatorname{-} cl(\tau_i \operatorname{-} int(\tau_j \operatorname{-} cl_\theta(U) \cap \tau_j \operatorname{-} cl_\theta(V)))$$

$$= U \cap \tau_j - cl(\tau_i - int(\tau_j - cl_\theta(U)) \cap \tau_i - int(\tau_j - cl_\theta(V)))$$

$$\subseteq U \cap \tau_j - cl(\tau_i - int(\tau_j - cl_{\theta}(U))) \cap \tau_j - cl(\tau_i - int(\tau_j - cl_{\theta}(V)))$$

$$= U \cap \tau_j - cl(\tau_i - int(\tau_j - cl_{\theta}(U))) \cap \tau_i - int(V) \text{ [since V is an } (i, j) - \theta_{\beta} - t - set]$$

$$= U \cap \tau_i - int(V) \text{ [since } U = \tau_i - int(U) \subseteq \tau_j - cl(\tau_i - int(\tau_j - cl_{\theta}(U)))]$$

That is, $A \subseteq U \cap \tau_i - int(V)$ and also $A = U \cap V \supseteq U \cap \tau_i - int(V)$.

Therefore $A = U \cap \tau_i - int(V) = \tau_i - int(A)$. Hence A is τ_i -open.

 $(4) \Rightarrow (1)$. Let A be (i, j)-weakly θ - β -open and an (i, j)-strong θ_{β} -B-set. Then we have $A = U \cap V$, where $U \in \tau_i$ and V is an (i, j)-strong θ_{β} -t-set. Now,

$$A = U \cap A$$

set]

$$\subseteq U \cap \tau_{j} - cl_{\theta}(\tau_{i} - int(\tau_{j} - cl_{\theta}(A)))$$

$$= U \cap \tau_{j} - cl_{\theta}(\tau_{i} - int(\tau_{j} - cl_{\theta}(U \cap V)))$$

$$\subseteq U \cap \tau_{j} - cl_{\theta}(\tau_{i} - int(\tau_{j} - cl_{\theta}(U) \cap \tau_{j} - cl_{\theta}(V)))$$

$$= U \cap \tau_{j} - cl_{\theta}(\tau_{i} - int(\tau_{j} - cl_{\theta}(U)) \cap \tau_{i} - int(\tau_{j} - cl_{\theta}(V)))$$

$$\subseteq U \cap \tau_{j} - cl_{\theta}(\tau_{i} - int(\tau_{j} - cl_{\theta}(U))) \cap \tau_{j} - cl_{\theta}(\tau_{i} - int(\tau_{j} - cl_{\theta}(V)))$$

$$= U \cap \tau_{j} - cl_{\theta}(\tau_{i} - int(\tau_{j} - cl_{\theta}(U))) \cap \tau_{i} - int(V) \text{ [since V is an } (i, j) \text{-strong } \theta_{\beta} \text{-t-}$$

$$=U \cap \tau_i - int(V)$$
 [since $U = \tau_i - int(U) \subseteq \tau_j - cl_\theta(\tau_i - int(\tau_j - cl_\theta(U)))$]

That is, $A \subseteq U \cap \tau_i - int(V)$ and also $A = U \cap V \supseteq U \cap \tau_i - int(V)$.

Therefore $A = U \cap \tau_i - int(V) = \tau_i - int(A)$. Hence A is τ_i -open.

Remark 5.12. From the following examples we see that in a bitopological space (X, τ_1, τ_2) ,

(1) The notions of (i, j) - θ -pre open sets and (i, j) - θ -B-sets are independent. (Example 5.13)

- (2) The notions of (i, j) θ β -open sets and (i, j) θ_{β} -B-sets are independent. (Example 5.14 and Example 5.15)
- (3) The notions of (i, j)-weakly θ - β -open sets and (i, j)-strong θ_{β} - β -sets are independent. (Example 5.14 and Example 5.15)

Example 5.13. Let $X = \{a, b, c, d\}$ with topologies $\tau_1 = \{\emptyset, \{d\}, \{a, c\}, \{a, c, d\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, c, d\}, X\}$. Then the set $A = \{a\}$ is $(1, 2) - \theta$ -pre open but it is not a $(1, 2) - \theta$ -B-set. Moreover, $B = \{c, d\}$ is a $(1, 2) - \theta$ -B-set but it is not $(1, 2) - \theta$ -pre open.

Example 5.14. In Example 5.8, the set $A = \{a, b, c\}$ is a (1, 2)-weakly θ - β -open set but it is not a (1, 2)-strong θ_{β} - β -set. In Example 3.11, the set $B = \{a\}$ is a (1, 2)- θ - β -open set but it is not a (1, 2)- θ_{β} - β -set.

Example 5.15. In Example 3.8, the set $A = \{c\}$ is $(1,2) - \theta_{\beta}$ -B-set but it is not $(1,2) - \theta - \beta$ -open. Let $X = \{a,b,c,d\}$ with topologies $\tau_1 = \{\emptyset, \{d\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{d\}, \{a,d\}, \{a,b,c\}, X\}$. Then the set $B = \{a,b,c\}$ is a (1,2)-strong θ_{β} -B-set but it is not (1,2)-weakly θ - β -open.

Remark 5.16. From the above propositions, we have the following diagram. None of the implications is reversible.

6. Decompositions of Pairwise continuity

Definition 6.1. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be p- θ -precontinuous if for every $V\in\sigma_k,\ k=1,2,\ f^{-1}(V)$ is an (i,j)- θ -pre open in (X,τ_1,τ_2) .

Definition 6.2. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be $p-\theta-\beta$ continuous if for every $V\in\sigma_k$, $k=1,2,\ f^{-1}(V)$ is an $(i,j)-\theta-\beta$ -open set in (X,τ_1,τ_2) .

Definition 6.3. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be p-weakly θ pre-continuous if for every $V\in\sigma_k$, $k=1,2,\ f^{-1}(V)$ is an (i,j)-weakly θ -pre
open set in (X,τ_1,τ_2) .

Definition 6.4. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be $p-\theta$ -B-continuous if for every $V\in\sigma_k$, k=1,2, $f^{-1}(V)$ is an (i,j)- θ -B-set in (X,τ_1,τ_2) .

Definition 6.5. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be $p-\theta_\beta$ -B-continuous if for every $V\in\sigma_k$, $k=1,2,\ f^{-1}(V)$ is an $(i,j)-\theta_\beta$ -B-set in (X,τ_1,τ_2) .

Definition 6.6. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be p-strong θ_β -B-continuous if for every $V\in\sigma_k$, $k=1,2,\ f^{-1}(V)$ is an (i,j)-strong θ_β -B-set in (X,τ_1,τ_2) .

Proposition 6.7. For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following hold: (1) Every $p - \theta$ - B -continuous function is p - B -continuous.

- (2) Every $p \theta_{\beta} B$ -continuous function is $p \theta B$ -continuous.
- (3) Every p-strong θ_{β} -B-continuous function is p- θ -B-continuous and p- θ_{β} -B-continuous.

Proof. The proof is obvious from Proposition 4.5.

Theorem 6.8. For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following are equivalent:

- (1) f is p-continuous.
- (2) f is $p \theta$ -pre-continuous and $p \theta$ -B-continuous.
- (3) f is $p \theta \beta$ -continuous and $p \theta_{\beta}$ -B-continuous.
- (4) f is p-weakly θ - β -continuous and p-strong θ_{β} -B-continuous.

Proof. This is an immediate consequence of Proposition 5.11.

Remark 6.9. From the following examples we see that in a bitopological space (X, τ_1, τ_2) ,

- The notions of p θ -pre-continuity and p θ -B-continuity are independent.
 (Example 6.10 and Example 6.11)
- (2) The notions of $p \theta \beta$ -continuity and $p \theta_{\beta}$ -B-continuity are independent. (Example 6.10 and Example 6.12)
- (3) The notions of p-weakly θ - β -continuity and p-strong θ_{β} - β -continuity are independent. (Example 6.13 and Example 6.14)

Example 6.10. Let $X = \{a, b, c\}$ with topologies $\tau_1 = \{\emptyset, \{a\}, \{a, b\}, X\}, \tau_2 = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, X\}$ and let $Y = \{p, q, r\}$ with topologies $\sigma_1 = \{\emptyset, \{q\}, \{p, r\}, Y\}$ and $\sigma_2 = \{\emptyset, \{p, r\}, Y\}$. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a function defined

as f(a) = p, f(b) = q and f(c) = r. Then f is $p - \theta$ -pre-continuous and $p - \theta - \beta$ continuous but neither $p - \theta$ -B-continuous nor $p - \theta_{\beta}$ -B-continuous.

Example 6.11. Let $X = \{a, b, c, d\}$ with topologies $\tau_1 = \{\emptyset, \{d\}, \{a, c\}, \{a, c, d\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, X\}$. and let $Y = \{p, q, r\}$ with topologies $\sigma_1 = \{\emptyset, \{p\}, Y\}$ and $\sigma_2 = \{\emptyset, \{q\}, Y\}$. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function defined as f(a) = f(b) = f(c) = p and f(d) = q. Then f is $p - \theta$ -B-continuous but not $p - \theta$ -precontinuous.

Example 6.12. Let $X = \{a, b, c\}$ with topologies $\tau_1 = \{\emptyset, \{c\}, \{a, b\}, X\}, \tau_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$ and let $Y = \{p, q, r\}$ with topologies $\sigma_1 = \{\emptyset, \{p\}, Y\}$ and $\sigma_2 = \{\emptyset, \{p, q\}, Y\}$. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a function defined as f(a) = p, f(b) = q and f(c) = r. Then f is $p - \theta_\beta$ -B-continuous but not $p - \theta - \beta$ -continuous.

Example 6.13. Let $X = \{a, b, c, d\}$ with topologies

 $\tau_1 = \{\emptyset, \{d\}, \{a, d\}, \{b, c\}, \{b, c, d\}, X\}, \quad \tau_2 = \{\emptyset, \{d\}, \{a, b, c\}, X\} \text{ and let } Y = \{p, q, r\} \text{ with topologies } \sigma_1 = \{\emptyset, \{p, q\}, Y\} \text{ and } \sigma_2 = \{\emptyset, \{p, r\}, Y\}. \text{ Let } f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \text{ be a function defined as } f(a) = r, f(b) = q \text{ and } f(c) = f(d) = p. \text{ Then } f \text{ is } p\text{-weakly } \theta - \beta\text{-continuous but not } p\text{-strong } \theta_\beta - B\text{-continuous.}$

Example 6.14. Let $X = \{a, b, c, d\}$ with topologies $\tau_1 = \{\emptyset, \{d\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, X\}$ and let $Y = \{p, q\}$ with topologies $\sigma_1 = \{\emptyset, \{p\}, Y\}$ and $\sigma_2 = \{\emptyset, \{q\}, Y\}$. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function defined as f(a) = f(b) = f(c) = p, and f(d) = q. Then f is p-strong θ_β -B-continuous but not p-weakly θ - β -continuous.

Acknowledgement

The authors wish to thank the referee's for their suggestions towards the improvement.

References

- [1] M. Ganster and I.L. Reilly, A decomposition of continuity, Acta Math. Hungar., 56(3-4)(1990), 299-301.
- [2] E. Hatir, T. Noiri and S. Yuksel, A decomposition of continuity, Acta Math. Hungar., 70(1-2)(1996), 145-150.
- [3] M. Jelic, A decomposition of pairwise continuity, J. Inst. Math. Comput. Sci. Math, Ser. 3(1990), 25-29.
- [4] M. Jelic, On a decomposition of p-continuity, J. Inst. Math. Comput. Sci. Math, Ser. 4(1991), 57-60.
- [5] F. H. Khedr, S. M. Al Areefi and T. Noiri, Pre continuity and semi-pre-continuity in bitopological spaces, Indian J. Pure appl. Math. 23(9)(1992), 625-633.
- [6] N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68(1961), 44-46.
- [7] S. N. Maheshwari and R. Prasad, Semi-open sets and semi-continuous function in bitopological spaces, Math Notae, 26 (1977-78), 29-37.
- [8] T. Noiri and O. Sayed, On decomposition of continuity, Acta Math. Hungar., 111(1-2)(2006), 01-08.
- [9] W. J. Pervin, Connectedness in bitopological spaces, Indag. Math. 29 (1967), 369-372.
- [10] M. Rajamani, Studies on decompositions of generalized continuous maps in topological spaces, Ph. D thesis, Bharathiar University (2001).
- [11] O. Ravi, M. Lellis Thivagar, and E. Hatir, Decomposition of (1,2) -*-continuity and (1,2) -*- α -continuity, Miskolc Mathematical Notes, 10(2)(2009), 163-171.

K.M. ARIFMOHAMMED AND M.THIRUMALAISWAMY

20

[12] I.L. Reilly and M.K. Vamanamurthy, On α -continuity in topological spaces, Acta Math.

Hungar., 45(1-2)(1985), 2732.

[13] D. A. Rose, On Levine's decomposition of continuity, Canad. Math. Bull., 21(1978), 477-481.

[14] D. A. Rose, A note on Levines decomposition of continuity, Indian J. Pure Appl. Math.,

21(11)(1990), 985987.

[15] S. Sampath Kumar, On decomposition of pairwise continuity, Bull. Cal. Math. Soc. 89 (1997),

441-446.

[16] P. Sundaram and M. Rajamani, On decomposition of pairwise continuity, Proc. of the Annual

Conference of KMA and International Seminar on Mathematics Tradition of Kerala, St.

Dominic's College, Kanjirapally, Jan. 17-19 (2000), 67-69.

[17] J. Tong, A decomposition of continuity, Acta Math. Hungar., 48 (1986), 11-15.

[18] J. Tong, On decomposition of continuity in topological spaces, Acta Math. Hungar.,

54(1-2)(1989), 51-55.

[19] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78(2) (1968), 103-118.

(1) Department of Science and Humanities, Karpagam College of Engineering,

Coimbatore - 641 032, Tamil Nadu, India

E-mail address: arifjmc9006@gmail.com

(2) Department of Mathematics, NGM College, Pollachi - 642 001, Tamil Nadu,

India.

E-mail address: mathimrp@gmail.com