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NEWTON AND STEFFENSEN TYPE METHODS

WITH FLEXIBLE ORDER OF CONVERGENCE

DIVYA JAIN

Abstract. New families of Newton and Steffensen type methods are derived by

amalgamating known methods. The methods in the new families are of higher order

than the methods amalgamated. The technique shows that it is possible to develop

methods of any desired order.

1. Introduction

Non-linear equations arise in almost all areas of sciences, in particular, in physi-

cal and mathematical sciences. Most of the times, it is not possible to solve these

equations analytically. Therefore, iterative methods are employed to get approximate

solutions of non-linear equations. One of the standard methods is the well known

Newton method

xn+1 = xn −
f(xn)

f ′(xn)
.

In the last two decades, numerous methods have been obtained by several mathe-

maticians and these methods have been claimed to be improvement over the previ-

ously obtained methods. As examples, please refer to [2], [3], [4], [7] and the standard

books [1] and [6].
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In the present paper, we too contribute in this direction and obtain families of

Newton and Steffensen type methods.

Very recently, Li, Peng, Zhou and Gao [5] obtained a family of family of Newton-

type method given by

(1.1) xn+1 = un+1 −
f(un+1)

f ′(vn+1)
,

where {un} and {vn} are the sequences of iterates of two methods for solving f(x) = 0

having order of convergence p and q respectively. It was proved that if f has a simple

zero and p > q, then the method (1.1) is of order at least p + q. It was remarked in

[5] that this method is useful because using this, one can generate a method of any

desired order of convergence. Indeed, in order to generate a method of order r, one

needs to plug in two known methods of order p and q with p + q = r into (1.1).

Let us point out that while establishing the convergence of the method (1.1), the

authors made an assumption that in the two methods that generate the sequences

{un} and {vn} as well as in the method (1.1) itself, the error at each corresponding

iterate is the same. However, this need not be the case. As one of the aims, in the

present paper, we shall remove this assumption.

2. Amalgamation of methods

In this section, we reinvestigate method (1.1) for its order of convergence. We

prove the following:

Theorem 2.1. Let f be a function having sufficient number of derivatives in a neigh-

borhood of α which is a simple root of the equation f(x) = 0. Let {un}, {vn} be the

sequences of iterates of two different methods for solving f(x) = 0 having order of

convergence p, q respectively with p ≥ q. Then the method (1.1) is of order p + q.
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Remark 2.2. Theorem 2.1 was already proved in [5]. But in their proof, the authors

assumed that when n → ∞

un − α = vn − α = xn − α,

i.e., the error in the methods which generate the sequences {un} and {vn} as well as

in (1.1) is the same at the corresponding iterates. But in practice, one calculates the

error only up to a finite stage and there, the three errors can be different. Our proof

below takes care of this restriction.

Proof of Theorem 2.1 By the assumption

(2.1) xn+1 = un+1 −
f(un+1)

f ′(vn+1)
,

where

(2.2) un+1 = F (xn)

and

(2.3) vn+1 = G(xn)

for some iteration functions F and G. Let an and bn be the errors at the nth-iterate

in the methods (2.2) and (2.3) respectively, i.e.,

un = α + an, vn = α + bn.

Since the methods (2.2) and (2.3) are of order p and q respectively, the corresponding

error equations can be written as

an+1 = A1e
p
n + A2e

p+1
n + ... + o(e2p

n )

and

bn+1 = B1e
q
n + B2e

q+1
n + ... + o(e2q

n ),
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where en is the error at the nth-iterate xn, i.e. en = xn − α and A′

ns and B′

ns are

certain constants.

We have by Taylor’s expansion

f(un+1) = f(α + an+1)

= an+1f
′(α) + a2

n+1

f ′′(α)

2
+ o(a3

n+1)

= f ′(α)
[

an+1 + Ca2
n+1 + o(a3

n+1)
]

,

where C =
f ′′(α)

2f ′(α)
. Also

f ′(vn+1) = f ′(α + bn+1)

= f ′(α) + bn+1f
′′(α) + o(b2

n+1)

= f ′(α)
[

1 + 2Cbn+1 + o(b2
n+1)

]

so that

f(un+1)

f ′(vn+1)
=

an+1 + Ca2
n+1 + o(a3

n+1)

1 + 2Cbn+1 + o(b2
n+1)

=
[

an+1 + Ca2
n+1 + o(a3

n+1)
] [

1 + 2Cbn+1 + o(b2
n+1)

]

−1

=
[

an+1 + Ca2
n+1 + o(a3

n+1)
] [

1 − 2Cbn+1 + o(b2
n+1)

]

=
[

an+1 − 2Can+1bn+1 + o(a2
n+1)

]

.

Thus the error equation for the method (1.1) can be written as

en+1 = an+1 −
[

an+1 − 2Can+1bn+1 + o(a2
n+1)

]

= 2Can+1bn+1 + o(a2
n+1)

= 2CA1B1e
p+q
n + o(ep+q+1

n ).

Noting that since p ≥ q, we find that 2p ≥ p + q and the assertion is proved. 2

If we consider un = vn for all n in (1.1), then we immediately have the following:
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Corollary 2.3. Let f be a function having sufficient number of derivatives in a

neighborhood of α which is a simple root of the equation f(x) = 0. Let {un} be a

sequence of iterates of a method for solving f(x) = 0 having order of convergence p.

Then the method

(2.4) xn+1 = un+1 −
f(un+1)

f ′(un+1)

is of order 2p.

Next, corresponding to the method (2.4), we propose the following Steffensen type

method by replacing f ′(un+1) with the ratio
f(un+1 + f(un+1)) − f(un+1)

f(un+1)
:

(2.5) xn+1 = un+1 −
f(un+1)

2

f(un+1 + f(un+1)) − f(un+1)
,

which can be made derivative free if the method that generates the sequence {un} is

chosen to be derivative free. We prove the following:

Theorem 2.4. Let f be a function having sufficient number of derivatives in a neigh-

borhood of α which is a simple root of the equation f(x) = 0. Let {un} be a sequence

of iterates of a method for solving f(x) = 0 having order of convergence p. Then the

method (2.5) is of order 2p.

Proof. As in the proof of Theorem 2.1, let an be the error at the nth iterate in the

method that generates the sequence {un}, i.e., un = α + an. Then

(2.6) an+1 = A1e
p
n + A2e

p+1
n + ... + o(e2p

n ),

where en is the error in the nth iterate xn of the method (2.5). Now, by Taylor series

expansion, we get

f(un+1) = an+1f
′(α) + a2

n+1

f ′′(α)

2
+ o(a3

n+1)
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so that

f(un+1)
2 = a2

n+1f
′(α)2 + o(a3

n+1).

We also have

f(un+1 + f(un+1))

=
[

an+1

(

1 + f ′(α)
)

+ a2
n+1

f ′′(α)

2
+ o(a3

n+1)
]

f ′(α)

+
[

an+1

(

1 + f ′(α)
)

+ a2
n+1

f ′′(α)

2
+ o(a3

n+1)
]2 f ′′(α)

2
+ o(a3

n+1)

= an+1

(

1 + f ′(α)
)

f ′(α) + a2
n+1

[f ′′(α)f ′(α)

2
+

(

1 + f ′(α)
)2 f ′′(α)

2

]

+ o(a3
n+1).

Therefore

f(un+1 + f(un+1)) − f(un+1) = an+1f
′(α)2

[

1 + Can+1

(

f ′(α) + 3
)

+ o(a2
n+1)

]

,

where C =
f ′′(α)

2f ′(α)
. Consequently, the error equation for the method (2.5) can be

written as

en+1 = an+1 −
a2

n+1f
′(α)2 + o(a3

n+1)

an+1f ′(α)2
[

1 + Can+1

(

f ′(α) + 3
)

+ o(a2
n+1)

]

= an+1 −
[

an+1 + o(a2
n+1)

][

1 + Can+1

(

f ′(α) + 3
)

+ o(a2
n+1)

]

−1

= an+1 −
[

an+1 + o(a2
n+1)

][

1 − Can+1

(

f ′(α) + 3
)

+ o(a2
n+1)

]

= C
(

f ′(α) + 3
)

a2
n+1 + o(a3

n+1)

which on using (2.6) gives

en+1 = A1C
(

f ′(α) + 3
)

e2p
n + o(e2p+1

n ).

Hence, the order of the method (2.5) is at least 2p. 2
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Remark 2.5. It is possible to consider a method more general than (2.5) by taking

two different iterative methods. If {un} and {vn} be sequences of iterates of two such

methods, then the corresponding method looks like

(2.7) xn+1 = un+1 −
f(un+1)f(vn+1)

f(vn+1 + f(vn+1)) − f(vn+1)
.

Using the arguments as in Theorems 2.1 and 2.4, we can prove the following conver-

gence result for the method (2.7). We omit the details for conciseness.

Theorem 2.6. Let f be a function having sufficient number of derivatives in a neigh-

borhood of α which is a simple root of the equation f(x) = 0. Let {un}, {vn} be the

sequence of iterates of two different methods for solving f(x) = 0 having order of

convergence p, q respectively with p ≥ q. Then the method (2.7) is of order p + q.

3. Increasing the Order of Convergence

In this section, we consider methods with order of convergence higher than the

ones considered in the previous section. In this direction, we consider the following

method:

(3.1) xn+1 = un+1 −
f(un+1)

f ′(un+1) − ξf(un+1)

for a suitable real number ξ (to be found). Note that for ξ = 0, (3.1) is just the method

(2.4). We prove below that if the method generating the iterative sequence {un} has

the order p, then for all ξ, the method (3.1) is of order 2p while for ξ =
f ′′(un+1)

2f ′(un+1)
, it

is of order 3p.

Theorem 3.1. Let f be a function having sufficient number of derivatives in a neigh-

borhood of α which is a simple root of the equation f(x) = 0. Let {un} be a sequence

of iterates of a method for solving f(x) = 0 having order of convergence p. Then, for

all ξ, the method (3.1) is of order 2p. Moreover, if ξ =
f ′′(un+1)

2f ′(un+1)
, then the method

is of order 3p.
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Proof. Let us rewrite (3.1) as

xn+1 = un+1 −
f(un+1)

f ′(un+1)
[

1 − ξ
f(un+1)
f ′(un+1)

]

= un+1 −
f(un+1)

f ′(un+1)

[

1 − ξ
f(un+1)

f ′(un+1)

]

−1

= un+1 −
f(un+1)

f ′(un+1)

[

1 + ξ
f(un+1)

f ′(un+1)
+ ξ2

{

f(un+1)

f ′(un+1)

}2

+ . . .

]

= un+1 −
f(un+1)

f ′(un+1)
− ξ

{

f(un+1)

f ′(un+1)

}2

− . . .(3.2)

As in the proof of Theorem 2.4, we can take un = α + an so that

(3.3) an+1 = A1e
p
n + A2e

p+1
n + ... + o(e2p

n ).

By Taylor’s expansion

f(un+1) = an+1f
′(α) + a2

n+1

f ′′(α)

2
+ o(a3

n+1)

and

f ′(un+1) = f ′(α) + an+1f
′′(α) + a2

n+1

f (3)(α)

2
+ o(a3

n+1)

so that

f(un+1)

f ′(un+1)
=

[

an+1 + a2
n+1

f ′′(α)

2f ′(α)
+ o(a3

n+1)

] [

1 + an+1
f ′′(α)

f ′(α)
+ o(a2

n+1)

]

−1

=
[

an+1 + Ca2
n+1 + o(a3

n+1)
] [

1 − 2Can+1 + o(a2
n+1)

]

= an+1 − Ca2
n+1 + o(a3

n+1),(3.4)

where C =
f ′′(α)

2f ′(α)
. Therefore

(3.5)

[

f(un+1)

f ′(un+1)

]2

= a2
n+1 + o(a3

n+1).
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Using (3.4) and (3.5) in (3.2), we find that the error equation of the method (3.1)

reads

(3.6) en+1 = (C − ξ)a2
n+1 + o(a3

n+1)

which on using (3.3) becomes

en+1 = A2
1(C − ξ)e2p

n + o(e2p+1
n ).

This shows that the method (3.1) is of order at least 2p.

Moreover, if ξ = C, i.e., ξ =
f ′′(α)

2f ′(α)
, then in view of (3.6)

en+1 ≈ o(a3
n+1) ≈ o(e3p

n ),

i.e., the method will become of order at least 3p This suggests that in order to achieve

3p order of convergence of the method (3.1), we must take

ξ =
f ′′(un+1)

2f ′(un+1)

and the proof is complete. 2

Remark 3.2. According to Theorem 3.1, we have proved that the following method

is of order at least 3p:

(3.7) xn+1 = un+1 −
2f(un+1)f

′(un+1)

2f ′(un+1)2 − f(un+1)f ′′(un+1)

Next, as done in (2.5), we replace f ′(un+1) by the ratio
f(un+1 + f(un+1)) − f(un+1)

f(un+1)
in method (3.1) to obtain the following Steffensen type method:

(3.8) xn+1 = un+1 −
f(un+1)

2

f(un+1 + f(un+1)) − f(un+1) − ξf(un+1)2
.

On the lines similar to Theorem 2.4, we can prove the following theorem:
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Theorem 3.3. Let f be a function having sufficient number of derivatives in a neigh-

borhood of α which is a simple root of the equation f(x) = 0. Let {un} be a sequence

of iterates of a method for solving f(x) = 0 having order of convergence p. Then, for

all ξ, the method (3.8) is of order 2p. Moreover, if ξ =
f ′′(un+1)

2f ′(un+1)
, then the method

is of order 3p.

4. Examples

Weerakoon and Fernando [7] obtained the following third order method:

(4.1) xn+1 = xn −
2f(xn)

f ′(xn) + f ′

(

xn − f(xn)
f ′(xn)

) ,

using the trapezoidal rule and another third order method:

(4.2) xn+1 = xn −
f(xn)

f ′

(

xn − f(xn)
2f ′(xn)

) ,

using the mid-point rule. If {un}denote the sequence of iterates obtained from (4.2),

then the method corresponding to (2.7) is given by

(4.3) xn+1 = un −
2f(un)

f ′(un) + f ′

(

un − f(un)
f ′(un)

) ,

where

un+1 = xn −
f(xn)

f ′

(

xn − f(xn)
2f ′(xn)

)

which is of order 6.

As a demonstration, we consider the equation

x4 − x − 10 = 0.

On this equation, we implement Newton’s method, method (4.1) and the present

method (4.3) by taking the initial approximation x0 = 1 and compare. The iterations

are tabulated in Table 1 while the corresponding errors are presented in Table 2. One

can see that the present method (4.3) converges much faster.
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Table 1. Approximation of root for x4 − x − 10 = 0

n Newton’s method Method (4.1) Present Method (4.3 )

1. 4.333333333333333 1.0141600944238205 1.07882976880465

2. 4.0933256159208504 1.0318238873221415 1.299711307249156

3. 3.8556641054445349 1.0546924411883298 1.7334833236262615

4. 3.6210723963257019 1.0857899224096075 1.8322768727999328

5. 3.3905434513600063 1.1309437577774215 1.850565597217553

6. 3.1654491343634539 1.2023033405710548 1.8544781757117466

7. 2.9476888240388743 1.3251897883310351 1.855339454918026

8. 2.7398758224381905 1.5279704048002487 1.8555302049741234

9. 2.5455309907024075 1.7187748390408146 1.8555724842689785

10. 2.3691800726439118 1.7979624763160538 1.8555818450978918

11. 2.2161151347155212 1.8297659548859817 1.8555839540167354

12. 2.0914433355868671 1.843694619393581 1.855584423385485

13. 1.9982167161074493 1.8500420917516538 1.8555845143971677

14. 1.9353735328593944 1.8529865488370527 1.8555845423493709

15. 1.8973715686618002 1.8543635942351657 1.8555845703015723

16. 1.8764677122429578 1.8550100769967048 1.855584535194281

17. 1.8657276625888046 1.8553141104870268 1.8555845631464825

18. 1.8604353634996449 1.8554571734843375 1.8555845280391914

19. 1.8578862078054681 1.8555245416711312 1.8555845559913944

20. 1.8566724728711732 1.855556276052482 1.8555845208841064

21. 1.8560977939823635 1.8555712354546152 1.8555845488363096

22. 1.8558264633531192 1.85557824910633 1.8555845137290254

23. 1.8556985087061941 1.8555815421920465 1.8555845416812284

24. 1.8556382471551454 1.8555831326589154 1.8555845696334299

25. 1.855609823381694 1.8555838402902076 1.8555845345261386
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Table 2. Errors for x4 − x − 10 = 0.

n Newton’s method Method (4.1) Present Method (4.3 )

1. 338.27166748046875 -9.9563055038452148 -9.7242279052734375

2. 266.64724731445312 -9.8983221054077148 -8.4461469650268555

3. 207.1466064453125 -9.8173122406005859 -2.7036721706390381

4. 158.30778503417969 -9.6958913803100586 -0.56122750043869019

5. 118.76252746582031 -9.4950160980224609 -0.12272926419973373

6. 87.236320495605469 -9.112736701965332 -0.027144279330968857

7. 62.548763275146484 -8.2412042617797852 -0.0060180779546499252

8. 43.613964080810547 -6.0771760940551758 -0.0013325407635420561

9. 29.441347122192383 -2.9915552139282227 -0.00029631005600094795

10. 19.136743545532227 -1.3478143215179443 -6.5050771809183061e-005

11. 11.903443336486816 -0.62037193775177002 -1.528563916508574e-005

12. 7.0416145324707031 -0.28906825184822083 -3.5761715935223037e-006

13. 3.9447953701019287 -0.13546945154666901 -6.4880327954597306e-007

14. 2.0946757793426514 -0.063657492399215698 -6.4880327954597306e-007

15. 1.0627633333206177 -0.029951976612210274 2.278565716551384e-006

16. 0.5218961238861084 -0.014100822620093822 -6.4880327954597306e-007

17. 0.25121361017227173 -0.0066384109668433666 2.278565716551384e-006

18. 0.11960681527853012 -0.0031267437152564526 -6.4880327954597306e-007

19. 0.05663052573800087 -0.0014730410184711218 -6.4880327954597306e-007

20. 0.026741910725831985 -0.00069441867526620626 -6.4880327954597306e-007

21. 0.01261004526168108 -0.00032558312523178756 -6.4880327954597306e-007

22. 0.0059431195259094238 -0.00015287118731066585 -6.4880327954597306e-007

23. 0.0027981840539723635 -7.3832838097587228e-005 -6.4880327954597306e-007

24. 0.0013196541694924235 -3.2849824492586777e-005 2.278565716551384e-006

25. 0.0006199665367603302 -1.8213004295830615e-005 -6.4880327954597306e-007
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Let us consider another example. We take the equation 3x + sin x − ex = 0. On

this equation, again, we implement Newton’s method, method (4.1) and the present

method (4.3) by taking the initial approximation x0 = 1 and compare. The iterations

and the corresponding errors are tabulated, respectively, in Table 3 and Table 4.

Table 3. Approximation of root for 3x + sin x − ex = 0

n Newton’s method Method (4.1) Present Method (4.3 )

1. -0.36637620398202769 0.44703306891956329 0.36130186641152723

2. 0.29731095663884266 0.36046612038062703 0.36042171599098644

3. 0.35913370270596362 0.36042170071144214 0.36042171738015666

4. 0.36042112392098186 0.36042171630718917 0.36042168896700311

5. 0.36042170576072896 0.36042170210061236 0.36042169035617333

6. 0.36042169155415216 0.36042171769635939 0.36042169174534355

7. 0.36042170714989918 0.36042170348978259 0.36042169313451378

8. 0.36042169294332238 0.36042168928320584 0.360421694523684

9. 0.36042170853906941 0.36042170487895286 0.36042169591285422

10. 0.3604216943324926 0.36042169067237606 0.3604216973020245

11. 0.36042170992823963 0.36042170626812309 0.36042169869119473

12. 0.36042169572166283 0.36042169206154628 0.36042170008036495

13. 0.36042171131740985 0.36042170765729331 0.36042170146953517

14. 0.36042169711083305 0.36042169345071651 0.3604217028587054

15. 0.36042171270658008 0.36042170904646353 0.36042170424787562

16. 0.36042169850000333 0.36042169483988673 0.36042170563704584

17. 0.3604217140957503 0.36042171043563376 0.36042170702621612

18. 0.36042169988917355 0.36042169622905695 0.36042170841538634

19. 0.36042171548492058 0.36042171182480398 0.36042170980455657

20. 0.36042170127834378 0.36042169761822723 0.36042171119372679
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Table 4. Errors for 3x + sin x − ex = 0

n Newton’s method Method (4.1) Present Method (4.3 )

1. -2.1506049633026123 0.2097252756357193 0.0022013199049979448

2. -0.1613508015871048 0.00011112799256807193 3.5542214504857839e-008

3. -0.0032238487619906664 -3.9017660213858107e-008 3.5542214504857839e-008

4. -1.4556555925082648e-006 3.5542214504857839e-008 -3.9017660213858107e-008

5. 3.5542214504857839e-008 -3.9017660213858107e-008 -3.9017660213858107e-008

6. -3.9017660213858107e-008 3.5542214504857839e-008 -3.9017660213858107e-008

7. 3.5542214504857839e-008 3.5542214504857839e-008 -3.9017660213858107e-008

8. -3.9017660213858107e-008 -3.9017660213858107e-008 -3.9017660213858107e-008

9. 3.5542214504857839e-008 3.5542214504857839e-008 -3.9017660213858107e-008

10. -3.9017660213858107e-008 -3.9017660213858107e-008 -3.9017660213858107e-008

11. 3.5542214504857839e-008 3.5542214504857839e-008 -3.9017660213858107e-008

12. -3.9017660213858107e-008 -3.9017660213858107e-008 -3.9017660213858107e-008

13. 3.5542214504857839e-008 3.5542214504857839e-008 -3.9017660213858107e-008

14. -3.9017660213858107e-008 -3.9017660213858107e-008 3.5542214504857839e-008

15. 3.5542214504857839e-008 3.5542214504857839e-008 3.5542214504857839e-008

16. -3.9017660213858107e-008 -3.9017660213858107e-008 3.5542214504857839e-008

17. 3.5542214504857839e-008 3.5542214504857839e-008 3.5542214504857839e-008

18. -3.9017660213858107e-008 -3.9017660213858107e-008 3.5542214504857839e-008

19. 3.5542214504857839e-008 3.5542214504857839e-008 3.5542214504857839e-008

20. -3.9017660213858107e-008 -3.9017660213858107e-008 3.5542214504857839e-008
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