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ON SEQUENCE SPACES EQUATIONS OF THE FORM ET + Fx = Fb

FOR SOME TRIANGLE T

BRUNO DE MALAFOSSE

Abstract. Given any sequence a = (an)n≥1 of positive real numbers and any set

E of complex sequences, we write Ea for the set of all sequences y = (yn)n≥1 such

that y/a = (yn/an)n≥1 ∈ E; in particular, s
(c)
a denotes the set of all sequences

y such that y/a converges. We denote by w∞ and w0 the sets of all sequences y

such that supn

(
n−1

∑n
k=1 |yk|

)
< ∞ and limn→∞

(
n−1

∑n
k=1 |yk|

)
= 0. We also

use the sets of analytic and entire sequences denoted by Λ and Γ and defined by

supn |yn|1/n
< ∞ and limn→∞ |yn|1/n

= 0, respectively. In this paper we explicitly

calculate the solutions of (SSE) of the form ET +Fx = Fb in each of the cases E = c0,

c, `∞, `p, (p ≥ 1), w0, Γ, or Λ, F = c, or `∞, and T is either of the triangles ∆, or

Σ, where ∆ is the operator of the first difference, and Σ is the operator defined by

Σny =
∑n

k=1 yk. For instance the solvability of the (SSE) ΓΣ +Λx = Λb consists in

determining the set of all positive sequences x = (xn)n that satisfy the statement:

supn

{
(|yn| /bn)1/n

}
< ∞ if and only if there are u, v ∈ ω with y = u+ v such that

lim
n→∞

∣∣∣∣∣

n∑

k=1

uk

∣∣∣∣∣

1/n

= 0 and sup
n

{( |vn|
xn

)1/n
}

< ∞ for all y.
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1. Introduction

We write ω for the set of all complex sequences y = (yn)n≥1, `∞, c and c0

for the sets of all bounded, convergent and null sequences, respectively, also `p =

{y ∈ ω :
∑∞

k=1 |yk|p < ∞} for 1 ≤ p < ∞. We then consider the sets of analytic

and entire sequences denoted by Λ and Γ and defined by supn |yn|1/n < ∞ and

limn→∞ |yn|1/n = 0, respectively. If y, z ∈ ω, then we write yz = (ynzn)n≥1. Let

U = {y ∈ ω : yn 6= 0} and U+ = {y ∈ ω : yn > 0}. We write z/u = (zn/un)n≥1 for

all z ∈ ω and all u ∈ U , in particular 1/u = e/u, where e = 1 is the sequence

with en = 1 for all n. Finally, if a ∈ U+ and E is any subset of ω, then we put

Ea = (1/a)−1 ∗ E = {y ∈ ω : y/a ∈ E}. Let E and F be subsets of ω. Then the set

M (E, F ) = {y ∈ ω : yz ∈ F for all z ∈ E} is called the multiplier space of E and F .

In [2], the sets sa, s0
a and s

(c)
a were defined for positive sequences a by (1/a)−1 ∗ E

and E = `∞, c0, c, respectively. In [3] the sum Ea + Fb and the product Ea ∗ Fb

were defined where E, F are any of the symbols s, s0, or s(c). Then in [7] were

given solvability of sequences spaces equations inclusion Gb ⊂ Ea + Fb where E, F ,

G ∈
{
s0, s(c), s

}
and some applications to sequence spaces inclusions with operators.

As above we define the sets of a−analytic and a−entire sequences, by (1/a)−1∗E and

E = Λ, or Γ, (see [4]). Recall that the spaces w∞ and w0 of strongly bounded and

summable sequences are the sets of all y such that (n−1
∑n

k=1 |yk|)n is bounded and

tend to zero respectively. These spaces were studied by Maddox [19] and Malkowsky

[20]. In [10] were given some properties of well known operators defined by the sets

Wa = (1/a)−1 ∗ w∞ and W 0
a = (1/a)−1 ∗ w0.

In this paper we extend some results given in [15, 7, 5, 6, 14, 8]. In [14] for

given sequences a and b was determined the set of all positive sequences x for which

yn/bn → l if and only if there are sequences u and v for which y = u + v and

un/an → 0, vn/xn → l′ (n → ∞) for all y and for some scalars l and l′. This
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statement is equivalent to the sequence spaces equation s0
a + s

(c)
x = s

(c)
b . In [8] was

determined the set of all x ∈ U+ such that for every sequence y, we have yn/bn → l

if and only if there are sequences u and v with y = u + v and |un/an|1/n → 0 and

vn/xn → l′ (n → ∞) for some scalars l and l′. This statement means Γa + s
(c)
x = s

(c)
b .

So we are led to deal with special sequence spaces equations (SSE) with operator,

which are determined by an identity, for which each term is a sum or a sum of

products of sets of the form (Ea)T and
(
Ef(x)

)
T

where f maps U+ to itself, E is a

linear space of sequences, x is the unknown and T is a triangle. It can be found in

[6] a solvability of the (SSE) Ea + (cx)B(r,s) = cx where E = s, s0, or s(c) and x is the

unknown. In [14] were determined the sets of all positive sequences x that satisfy each

of the systems s0
a + (sx)∆ = sb, sx ⊃ sb and sa + (cx)∆ = cb, cx ⊃ cb. Then it can be

found a resolution of the (SSE) with operators defined by (Ea)C(λ)Dτ
+(cx)C(µ)Dτ

= cb

with E = c0, or `∞. Recently in [9] can be found a study on the (SSE) with operator

(Ea)C(λ)C(µ) +(Ex)C(λσ)C(µ) = Eb, where b ∈ Ĉ1 and E is any of the sets `∞, or c0. For

E = c0 the resolution of this equation consists in determining the set of all x ∈ U+

such that for every sequence y the condition yn/bn → 0 (n → ∞) holds if and only if

there are u, v ∈ ω such that y = u + v and

(1.1)
1

λnan

n∑

k=1

(
1

µk

k∑

i=1

ui

)
→ 0 and

1

λnσnxn

n∑

k=1

(
1

µk

k∑

i=1

vi

)
→ 0 (n → ∞) .

In this paper we deal with a class of (SSE) with operators of the form ET +Fx = Fb,

where T is either ∆ or Σ and E is any of the sets c0, c, `∞, `p, (p ≥ 1), w0, Γ, or Λ

and F = c, `∞ or Λ. For instance the solvability of the (SSE) defined by the equation

ΓΣ +Λx = Λb consists in determining the set of all positive sequences x = (xn)n that

satisfy the statement: supn

{
(|yn| /bn)1/n

}
< ∞ if and only if there are u, v ∈ ω with
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y = u + v such that

lim
n→∞

∣∣∣∣∣

n∑

k=1

uk

∣∣∣∣∣

1/n

= 0 and sup
n

{( |vn|
xn

)1/n
}

< ∞ for all y.

This paper is organized as follows. In Section 2 we recall some definitions and

results on sequence spaces and matrix transformations. In Section 3 are recalled

general results on the multiplier M (E, F ) and on the classes (`∞, c) and (`p, F )

where F is any of the sets c0, c, or `∞. In Section 4 we deal with the sets of analytic

and entire sequences. In Section 5 we deal with the sets of strongly and summable

sequences by the Cesàro method and recall some results of the multiplier M (E, F )

where E and F are any of the sets w0, w∞, c0, c, `∞, or `1. In Section 6 we recall

some results on the solvability of (SSE) of the form Ea + Fx = Fb with 1 ∈ F and we

deal we deal with the solvability (SSE) with operator ET + Fx = Fb in the general

case. In Section 7 we apply the previous results to solve (SSE) using the operator of

the first difference and that are of the form E∆ + Fx = Fb, where E = c0, c, `∞, `p,

(p ≥ 1), w0, Γ, or Λ and F = c, or `∞. Then using the operator Σ we solve (SSE) of

the form EΣ + Fx = Fb, where E = c0, c, `∞, `p, (p ≥ 1), w0, Γ, or Λ and F = c, `∞,

and the (SSE) ΓΣ + Λx = Λb.

2. Premilinaries and notations

An FK space is a complete metric space, for which convergence implies coordi-

natewise convergence. A BK space is a Banach space of sequences that is, an FK

space. A BK space E is said to have AK if for every sequence y = (yk)k≥1 ∈ E, then

y = limp→∞

∑p
k=1 yke

(k), where e(k) = (0, ..., 1, ...), 1 being in the k − th position.

For a given infinite matrix A = (ank)n,k≥1 we define the operators An = (ank)k≥1

for any integer n ≥ 1, by Any =
∑∞

k=1 ankyk, where y = (yk)k≥1, and the series are

assumed convergent for all n. So we are led to the study of the operator A defined by

Ay = (Any)n≥1 mapping between sequence spaces. When A maps E into F , where



ON SEQUENCE SPACES EQUATIONS OF.... 83

E and F are subsets of ω, we write that A ∈ (E, F ), (cf. [19, 25]). It is well known

that if E has AK, then the set B (E) of all bounded linear operators L mapping in

E, with norm ‖L‖ = supy 6=0 (‖L (y)‖E / ‖y‖E) satisfies the identity B (E) = (E, E).

We denote by ω, c0, c, `∞ the sets of all sequences, the sets of null, convergent and

bounded sequences. For any subset F of ω, we write FA = {y ∈ ω : Ay ∈ F}. By

Σ we denote the operator defined by Σny =
∑n

k=1 yk for all sequences y. Then we

write cs = cΣ, bs = (`∞)Σ and cs0 = (c0)Σ for the sets of all convergent, bounded and

convergent to zero series. More precisely we have cs = {y :
∑∞

k=1 yk is convergent},
bs =

{
y : (

∑n
k=1 yk)n ∈ `∞

}
and cs0 =

{
y : (

∑n
k=1 yk)n ∈ c0

}
. Let U+ ⊂ ω be the

set of all sequences u = (un)n≥1 with un > 0 for all n. Then for given sequence

u = (un)n≥1 ∈ ω we define the diagonal matrix Du by [Du]nn = un for all n. It is

interesting to rewrite the set Eu using a diagonal matrix. Let E be any subset of ω

and u ∈ U+ we have

Eu = DuE = {y = (yn)n ∈ ω : y/u ∈ E} .

We will use the sets s0
a, s

(c)
a , sa and `p

a defined as follows (cf. [2]). For given a ∈ U+ and

p ≥ 1 we put Dac0 = s0
a, Dac = s

(c)
a , Da`∞ = sa, and Da`

p = `p
a. We will frequently

write ca instead of s
(c)
a to simplify. Each of the spaces DaE, where E ∈ {c0, c, `∞} is

a BK space normed by ‖y‖sa
= supn≥1 (|yn| /an) and s0

a has AK. If a = (rn)n≥1 with

r > 0, we write sr, s0
r and s

(c)
r for the sets sa, s0

a and s
(c)
a respectively. When r = 1,

we obtain s1 = `∞, s0
1 = c0 and s

(c)
1 = c. Recall that S1 = (s1, s1) is a Banach algebra

and (c0, s1) = (c, `∞) = (s1, s1) = S1. We have A ∈ S1 if and only if

(2.1) sup
n

(
∞∑

k=1

|ank|
)

< ∞.

We will also use the characterization of (c0, c0). We have A ∈ (c0, c0) if and only

if (2.1) holds and limn→∞ ank = 0 for all k. We will use the well known property,
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stated as follows. For any given triangle T , the operator T ′ represented by a triangle

belongs to (ET , F ) if and only if T ′T−1 ∈ (E, F ) for any subsets E, F ⊂ ω.

3. The multipliers of some sets and matrix transformations

3.1. The multipliers of classical sets. First we need to recall some well known

results. Let y and z be sequences and let E and F be two subsets of ω, we then write

yz = (ynzn)n and

M (E, F ) = {y ∈ ω : yz ∈ F for all z ∈ E} ,

M (E, F ) is called the multiplier space of E and F . In the following we will use the

next well known results.

Lemma 3.1. Let E, Ẽ, F and F̃ be arbitrary subsets of ω. Then

(i) M (E, F ) ⊂ M
(
Ẽ, F

)
for all Ẽ ⊂ E,

(ii) M (E, F ) ⊂ M
(
E, F̃

)
for all F ⊂ F̃ .

Lemma 3.2. Let a, b ∈ U+ and let E and F be two subsets of ω. Then DaE ⊂ DbF

if and only if a/b ∈ M (E, F ).

Lemma 3.3. Let a, b ∈ U+ and E, F ⊂ ω. Then A ∈ (DaE, DbF ) if and only if

D1/bADa ∈ (E, F ).

Notice that this lemma can be extended to the case when a ∈ ω and b is a nonzero

sequence.

By [3, Lemma 3.1, p. 648] and [3, Example 1.28, p. 157], we obtain the next result.

Lemma 3.4. We have

i) M (c, c0) = M (`∞, c) = M (`∞, c0) = c0 and M (c, c) = c;

ii) M (E, `∞) = M (c0, F ) = `∞ for E, F = c0, c, or `∞ .
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3.2. The classes (`∞, c) and (`p, F ) where F is any of the sets c0, c, or `∞. As

a direct consequence of the famous Kojima-Shur Theorem we obtain the next lemma.

Lemma 3.5. Let A = (ank)nk be an infinite matrix. Then

i) if limn→∞ ank = 0 for all k, then A ∈ (`∞, c) if and only if

(3.1) lim
n→∞

∞∑

k=1

|ank| = 0.

ii) A ∈ (`∞, c0) if and only if (3.1) holds.

For the convenience of the reader we recall the next well-known result, (see for

instance [22, Theorem 1.37, pp. 160-161]), which will be frequently used in the

following.

Lemma 3.6. i) Case 1 < p < ∞. Let q = p/ (p − 1). Then we have

a) A ∈ (`p, `∞) if and only if condition

(3.2) sup
n

(
∞∑

k=1

|ank|q
)

< ∞

holds.

b) A ∈ (`p, c0) if and only if condition (3.2) holds and limn→∞ ank = 0 for all k.

c) A ∈ (`p, c) if and only if condition (3.2) holds and limn→∞ ank = lk for some

lk ∈ C and for all k.

ii) Case p = 1. We have

a) A ∈ (`1, `∞) if and only if

(3.3) sup
n,k

|ank| < ∞

holds.

b) A ∈ (`1, c0) if and only if condition (3.3) holds and limn→∞ ank = 0 for all k.

c) A ∈ (`1, c) if and only if condition (3.3) holds and limn→∞ ank = lk for some

lk ∈ C and for all k.
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Remark 1. We deduce from Lemma 3.6 the identity M (`p, χ) = `∞ for χ = c0, c, or

`∞ and (p ≥ 1).

4. On the sets of analytic and entire sequences

4.1. Some definitions and properties of Λ and Γ. A sequence y = (yn)n≥1 is

said to be analytic if supn |yn|1/n < ∞. The linear space of all analytic sequences is

denoted by Λ. It is well known that Γ is the linear space of all entire sequences defined

by limn→∞ |yn|1/n = 0. The sets Λ and Γ are metric spaces with the metric defined

for any sequences y, z, by d (y, z) = supn |yn − zn|1/n. Then Λ is an FK space since

it is a complete metric space, and convergence implies coordinatewise convergence; it

is the same for Γ since it is a closed subset of Λ. For a study of the sets Λ and Γ, we

refer the reader to [23].

Concerning the multipliers M (Γ, F ), M (Λ, F ), M (E,Λ) and M (E,Γ) for E,

F ∈ {c0, c, `∞,Γ,Λ} recall the following.

Lemma 4.1. [8, Proposition 4.2] We have

(i) M (Γ, F ) = Λ for F ∈ {c0, c, `∞,Γ,Λ} ,

(ii) M (Λ, F ) = Γ for F ∈ {c0, c, `∞,Γ} ,

(iii) M (E,Λ) = Λ for E ∈ {c0, c, `∞,Γ,Λ} ,

(iv) M (E,Γ) = Γ for E ∈ {c0, c, `∞,Λ} .

4.2. Some properties of the sets Γa and Λa. For a ∈ U+ we put Λa = DaΛ. So

y ∈Λa if supn (|yn| /an)1/n < ∞ and Λa is called the set of all a−analytic sequences.

For a = 1 we write Λ1 = Λ. Similarly we put Γa = DaΓ and y = (yn)n≥1 ∈Γa if and

only if limn→∞ (|yn| /an)1/n = 0, we write Γ1 =Γ and Γa is the set of all a−entire

sequences.

In the following we use the triangle C (λ) defined for any nonzero sequence λ =

(λn)n≥1 by [C (λ)]nk = 1/λn for k ≤ n. It can be shown that the triangle ∆ (λ) whose
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the nonzero entries are defined by [∆ (λ)]nn = λn, for all n and by [∆ (λ)]n,n−1 =

−λn−1, for all n ≥ 2, is the inverse of C (λ), that is, C (λ) (∆ (λ) y) = ∆ (λ) (C (λ) y)

for all y ∈ ω. It is well known that ∆ = ∆ (1) ∈ (ω, ω), is the operator of the first

difference and we have ∆yn = yn − yn−1 for all n ≥ 1 with y0 = 0. The inverse

∆−1 = Σ is defined by Σnk = 1 for k ≤ n, (see for instance [2, 13]). For any given

a ∈ U+ we have [C (a) a]n = (a1 + ... + an) /an for all n. Then we let

ĈΛ =
{
a ∈ U+ : [C (a) a]n ≤ kn for all n and for some k > 0

}
.

We obtain the next results which is a consequence of [8, Proposition 3.1, p. 101].

Lemma 4.2. Let a, b ∈ U+. Then

a) We have Λa =Λb if and only if Γa = Γb, and the equality Λa =Λb is equivalent

to the statement kn
1 ≤ an/bn ≤ kn

2 for all n and for some k1, k2 > 0.

b) (Λa)∆ =Λb if and only if Λa =Λb and a ∈ ĈΛ.

Now we recall some results on the spaces c0 (p) and `∞ (q) that generalize the sets

Λ and Γ.

4.3. On the sets (c0 (p) , c0 (q)) and (c0 (p) , `∞ (q)). Let p = (pn)n≥1 ∈ U+
⋂

`∞ be

a sequence and put

`∞ (p) =

{
y = (yn)n≥1 : sup

n
|yn|pn < ∞

}
,

c0 (p) =
{
y = (yn)n≥1 : lim

n→∞
|yn|pn = 0

}
.

The set c0 (p) is a complete paranormed space with g (y) = supn

(
|yn|pn/L

)
, where

L = max {1, supn pn}, ([18, Theorem 1]) and `∞ (p) is a paranormed space with g

only if infn pn > 0 in which case `∞ (p) = `∞, ([24, Theorem 9]). So we can state the

next lemma, where for any given integer k, we denote by Nk the set of all integers

n ≥ k.
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Lemma 4.3. [16, Theorem 5.1.13] Let p, q ∈ U+
⋂

`∞.

i) A ∈ (c0 (p) , c0 (q)) if and only if for all N ∈ N1 there is M ∈ N2 such that

sup
n

(
N1/qn

∞∑

k=1

|ank|M−1/pk

)
< ∞ and lim

n→∞
|ank|pn = 0 for all k.

ii) A ∈ (c0 (p) , `∞ (q)) if and only if there is M ∈ N2 such that

sup
n

(
∞∑

k=1

|ank|M−1/pk

)qn

< ∞.

Example 4.1. In this way we have A ∈ (Γ,Λ) if and only if there is M ≥ 2

integer such that supn

(∑∞
k=1 |ank|M−k

)1/n
< ∞, since Γ =c0 (p) and Λ =`∞ (p) with

pn = 1/n.

5. The spaces of strongly bounded and summable sequences by the

Cesàro method

5.1. The sets w∞ and w0. Recall that when λn = n for all n, the triangle C (λ) is

the well known Cesàro operator C1. In the following we will use the spaces of strongly

bounded and summable sequences by the Cesàro method of order 1 defined by

w∞ = {y ∈ ω : C1 |y| ∈ `∞ } and w0 = {y ∈ ω : C1 |y| ∈ c0 } ,

where |y| = (|yn|)n. These spaces were studied by Maddox [17] and Malkowsky, see

for instance [20]. It is well known that the sets w∞ and w0 are BK spaces normed

by ‖y‖w∞

= supn (n−1
∑n

k=1 |yk|). In [21] it was shown that the class (w∞, w∞) is a

Banach algebra normed by ‖A‖∗(w∞,w∞) = sup
y 6=0

(
‖Ay‖w∞

/ ‖y‖w∞

)
.

5.2. Matrix transformations in the sets w0 and w∞. Here we recall some

results that are direct consequence of [1, Theorem 2.4]. For this we let χn =
∑∞

ν=1 2ν max2ν≤k≤2ν+1−1 |ank|. Then we can state the following.
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Lemma 5.1. [1] (i) We have (w0, `∞) = (w∞, `∞) and A ∈ (w∞, `∞) if and only if

(5.1) sup
n

χn < ∞,

(ii) A ∈ (w∞, c0) if and only if limn→∞ χn = 0.

(iii) A ∈ (w0, c0) if and only if (5.1) holds and limn→∞ ank = 0 for all k.

5.3. The multiplier M (E, F ) where E and F are any of the sets w0, w∞, c0,

c, `∞, or `1. In the following we will use the next results.

Lemma 5.2. [11, Lemma 4.2] We have

i) M (w0, F ) = M (w∞, `∞) = s(1/n)n
for F = c0, c, or `∞.

ii) M (w∞, c0) = s0
(1/n)n

.

iii) M (`1, w∞) = s(n)n
and M (`1, w0) = s0

(n)n
.

iv) M (E, w0) = w0 for E = c, or `∞.

6. On the (SSE) Ea + Fx = Fb

In this section we apply the previous results to the solvability of the (SSE) Ea+Fx =

Fb with 1 ∈ F.

6.1. Regular sequence spaces equations. For b ∈ U+ and for any subset F of ω,

we denote by clF (b) the equivalent class for the equivalence relation RF defined by

xRF y if DxF = DyF for x, y ∈ U+.

It can easily be seen that clF (b) is the set of all x ∈ U+ such that x/b ∈ M (F, F )

and b/x ∈ M (F, F ), (cf. [14]). We then have clF (b) = clM(F,F ) (b). For instance

clc (b) is the set of all x ∈ U+ such that Dxc = Dbc, that is, s
(c)
x = s

(c)
b . This is the

set of all sequences x ∈ U+ such that xn ∼ Cbn (n → ∞) for some C > 0. In [14] we

denote by cl∞ (b) the class cl`∞ (b). Recall that cl∞ (b) is the set of all x ∈ U+, such
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that K1 ≤ xn/bn ≤ K2 for all n and for some K1, K2 > 0. In [8, Proposition 3.1]

the class clΛ (b) is the set of all x ∈ U+, such that kn
1 ≤ xn/bn ≤ kn

2 for all n and for

some k1, k2 > 0. Note that the relations RΛ and RΓ are equivalent, since we have

M (Λ,Λ) = M (Γ,Γ) = Λ.

For any given linear spaces of sequences X and Y , we have X+Y = {u + v : u, v ∈ ω}.
It can easily be seen that for any given linear subspaces X, Y and Z of ω, the inclu-

sion X + Y ⊂ Z holds if and only if X ⊂ Z and Y ⊂ Z. In this way, for a, b ∈ U+,

we define the set

S (E, F ) =
{
x ∈ U+ : Ea + Fx = Fb

}
,

where E, F are linear subspaces of ω. For instance, S (w∞, `∞) is the set of all

sequences x ∈ U+ that satisfy the statement: supn (|yn| /bn) < ∞ if and only if there

are two sequences u and v for which y = u + v and

sup
n

(
1

n

n∑

k=1

|uk|
ak

)
< ∞ and sup

n

( |vn|
xn

)
< ∞ for all y.

Definition 6.1. We say that S (E, F ), (or the equation Ea + Fx = Fb), is regular if

S (E, F ) =





clM(F,F ) (b) if a/b ∈ M (E, F ) ,

∅ if a/b /∈ M (E, F ) .

Note that Ea + Fx = Fb is not regular in general. Indeed for E = F = `∞ we have

M (`∞, `∞) = `∞ and if a/b ∈ `∞�c0 and sa = sb we have S (`∞, `∞) = sb ∩ U+ 6=
clM(F,F ) (b), (cf. [15, Theorem 11, pp. 916-917]). In particular the solutions of the

(SSE) `∞ + sx = `∞ are determined by x ∈ `∞ ∩ U+, that is, 0 < xn ≤ M for all n

and for some M > 0.

6.2. Solvability of (SSE) of the form Ea + Fx = Fb. For instance the solvability

of the equation sa + s
(c)
x = s

(c)
b for a, b ∈ U+ consists in determining the set of all

x ∈ U+ that satisfy the next statement: yn/bn → l (n → ∞) if and only if there are
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two sequences u, v such that y = u + v and

|un|
an

≤ K and
vn

xn

→ l′ (n → ∞) for all y.

In the following we will use the condition

(6.1) χ ⊂ χ (Dα) for all α ∈ c (1) ,

where χ ⊂ ω is any linear space, and c (1) is the set of all sequences that tend to 1.

It can easily seen that this condition is true for any of the spaces F = c, s1, or Λ. To

state the next results we also need the next conditions:

(6.2) 1 ∈ F,

(6.3) F ⊂ M (F, F ) .

We then recall the next result which is a direct consequence of [8, Theorem 5.1,

pp. 106-107].

Lemma 6.1. Let a, b ∈ U+ and let E, F be two linear subspaces of ω. We assume

F satisfies the conditions in (6.1), (6.2), (6.3), and that

(6.4) M (E, F ) ⊂ M (E, c0) .

Then S (E, F ) is regular.

In all what follows we are interested in the study of the (SSE)

E + Fx = Fb.

In this way replacing a by 1 in the previous lemma and noticing that the conditions

in (6.2) and (6.3) imply M (F, F ) = F we obtain the following lemma.
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Lemma 6.2. Let b ∈ U+ and let E, F be two linear subspaces of ω. We assume F

satisfies the conditions in (6.1), (6.2), (6.3), and (6.4). Then S (E, F ) is regular and

we have

S (E, F ) =





clF (b) if 1/b ∈ M (E, F ) ,

∅ if 1/b /∈ M (E, F ) .

As a direct consequence of Lemma 6.2 we obtain the next results.

Lemma 6.3. Let b ∈ U+ and let p ≥ 1. Then each of the next (SSE) is regular,

where

i) Γ + Λx = Λb.

ii) E + cx = cb, for E = Γ, Λ, c0, `∞, w0 and `p.

iii) E + sx = sb, for E = Γ, Λ, c0, w0, w∞ and `p.

Proof. Statement i) and statements ii) and iii) with E = Γ, Λ, were shown in [8,

Proposition 5.1]. Statements ii) with E = c0, or `∞ and iii) with E = c0, were shown

in [14, Theorem 4.4, p. 7]. Statements ii) with E = w0 and iii) with E = w0, or w∞

were shown in [11, Theorem 6.5]. Statements ii) and iii) with E = `p (p ≥ 1) were

shown in [11, Remark 6.4]. �

More precisely we obtain the following lemma which is a direct consequence of

Lemma 6.3.

Lemma 6.4. Let b ∈ U+. We have

i) a)

S (`∞, c) =





clc (b) if 1/b ∈ c0,

∅ otherwise.

b) Let F be any of the sets c, s1, or Λ. Then we have

S (Γ, F ) =





clF (b) if 1/b ∈ Λ,

∅ otherwise.
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ii) For F = c, or s1 we have

a) Let p ≥ 1. We have S (`p, F ) = S (c0, F ) and

S (c0, F ) =





clF (b) if 1/b ∈ s1,

∅ otherwise.

b)

S (w0, F ) =





clF (b) if 1/b ∈ s(1/n)n
,

∅ otherwise.

c)

S (Λ, F ) =





clF (b) if 1/b ∈ Γ,

∅ otherwise.

Remark 2. The results for S (`p, c) and S (`p, `∞) come from Lemma 3.6 where

M (`p, c) = M (`p, `∞) = `∞.

Remark 3. Notice that the set S (c, c) is not regular since by [8, Theorem 5.2, p. 12]

we have S (c, c) = clc (b) for 1/b ∈ c0; S (c, c) = cb for 1/b ∈ c�c0, and S (c, c) = ∅

for 1/b /∈ c.

Example 6.1. Consider the set of all x ∈ U+ that satisfy the statement: for every

sequence y we have yn → l1 (n → ∞) if and only if there are u and v ∈ ω for which

y = u + v and

|un|
1

n → 0 and xnvn → l2 (n → ∞) for some l1 and l2.

Since this set corresponds to the equation Γ+s
(c)
1/x = c, by Lemma 6.3 it is equal to

the set of all sequences that tend to a positive limit.
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6.3. Application to the solvability of the (SSE) ET + Fx = Fb with 1 ∈ F .

Let b ∈ U+, and E, F be two subsets of ω. We deal with the (SSE) with operator

(6.5) ET + Fx = Fb,

where T is a triangle and x ∈ U+ is the unknown. The equation in (6.5) means for

every y ∈ ω, we have y/b ∈ F if and only if there are u, v ∈ ω such that y = u + v

such that

Tu ∈ E and v/x ∈ F.

We assume e = 1 ∈ F . By S (ET , F ) we denote the set of all x ∈ U+ that satisfy the

(SSE) in (6.5). We obtain the next result which is a direct consequence of Lemma

6.2, where we replace E by ET .

Proposition 6.1. Let b ∈ U+ and let E, F be linear vector spaces of sequences. We

assume F satisfies the conditions in (6.1), (6.2), (6.3), and that

(6.6) M (ET , F ) ⊂ M (ET , c0) .

Then the set S (ET , F ) is regular, that is,

S (ET , F ) =





clF (b) if 1/b ∈ M (ET , F ) ,

∅ if 1/b /∈ M (ET , F ) .

We may adapt the previous result using the notations of matrix transformations

instead of the multiplier of sequence spaces. So we obtain the following.

Corollary 6.1. Let b ∈ U+ and let E, F be linear vector spaces of sequences. We

assume F satisfies the conditions in (6.1), (6.2), (6.3), and that

(6.7) DαT−1 ∈ (E, F ) implies DαT−1 ∈ (E, c0) for all α ∈ ω.
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Then we have

S (ET , F ) =





clF (b) if D1/bT
−1 ∈ (E, F ) ,

∅ if D1/bT
−1 /∈ (E, F ) .

Proof. This result is a direct consequence of Proposition 6.1 and of the fact that

the condition 1/b ∈ M (ET , F ) is equivalent to D1/b ∈ (ET , F ) and to D1/bT
−1 ∈

(E, F ). �

7. The main results. Application to the solvability of (SSE) of the

form E∆ + Fx = Fb and EΣ + Fx = Fb

In this section we apply Proposition 6.1 and Lemma 6.4 to solve (SSE) of the form

ET + Fx = Fb in each of the cases T = ∆ and T = Σ. We obtain a class of (SSE)

that are regular, that is, for which S (E, F ) is regular.

7.1. Solvability of (SSE) of the form E∆ + Fx = Fb.

7.1.1. On the (SSE) (c0)∆ + Fx = Fb. Here we solve each of the (SSE) defined by

(c0)∆ + cx = cb, and by (c0)∆ + sx = sb. The solvability of the first (SSE) means that

for every y ∈ ω we have yn/bn → l1 (n → ∞) if and only if there are u, v ∈ ω such

that y = u + v and

un − un−1 → 0 and
vn

xn

→ l2 (n → ∞) for some scalars l1 and l2.

Proposition 7.1. Let b ∈ U+ and let F = c, or `∞. We have

S ((c0)∆ , F ) =





clF (b) if 1/b ∈ s(1/n)n
,

∅ if 1/b /∈ s(1/n)n
.

Proof. The condition α ∈ M ((c0)∆ , s1) means DαΣ ∈ (c0, s1) = S1 and is equivalent

to nαn = O (1) (n → ∞). So M ((c0)∆ , s1) = s(1/n)n
. On the same way by the

characterization of (c0, c0) we obtain M ((c0)∆ , c0) = s(1/n)n
. We then have

s(1/n)n
= M ((c0)∆ , c0) ⊂ M ((c0)∆ , c) ⊂ M ((c0)∆ , s1) = s(1/n)n

,
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and M ((c0)∆ , F ) = s(1/n)n
for F = s1, c, or c0. We conclude by Proposition 6.1. �

Example 7.1. Let α ≥ 0. The (SSE) defined by (c0)∆ + cx = c(nα)n
has solutions if

and only if α ≥ 1. These solutions are determined by limn→∞ xn/nα > 0 (n → ∞).

If 0 ≤ α < 1 the (SSE) has no solution, Notice that the (SSE) (c0)∆ + cx = c has no

solution.

Example 7.2. Let u > 0. The set of all positive sequences x that satisfy the (SSE)

(c0)∆ + sx = su is empty if u ≤ 1, and if u > 1 it is equal to the set of all sequences

that satisfy K1u
n ≤ xn ≤ K2u

n for all n and for some K1, K2 > 0.

7.1.2. The (SSE) with operator bvp + Fx = Fb. In this part we solve each of the

(SSE) defined by bvp + cx = cb, and by bvp + sx = sb, where bvp = (`p)∆, (p > 1).

Recall that bvp = {y ∈ ω :
∑∞

k=1 |yk − yk−1|p < ∞} is the set of p-bounded variation

sequences. The solvability of the second (SSE) consists in determining the set of all

positive sequences x, such that the next statement holds. For every y ∈ ω we have

supn (|yn| /bn) < ∞ if and only if there are u, v ∈ ω with y = u + v such that

∞∑

k=1

|un − un−1|p < ∞ and sup
n

( |vn|
xn

)
< ∞.

We obtain the next proposition.

Proposition 7.2. Let b ∈ U+, and let p > 1, and q = p/ (p − 1). For F = c, or `∞

we have

S (bvp, F ) =





clF (b) if

(
n1/q

bn

)

n

∈ s1,

∅ if

(
n1/q

bn

)

n

/∈ s1.

Proof. We have α ∈ M (bvp, `∞) if and only if DαΣ ∈ (`p, `∞), and from the charac-

terization of (`p, `∞) given in Lemma 3.6 we have

(7.1) n |αn|q = O (1) (n → ∞) .
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So we have M (bvp, `∞) = s(n−1/q)
n

. Now we have α ∈ M (bvp, c0) if and only if (7.1)

holds and

(7.2) αn → 0 (n → ∞) .

But trivially the condition in (7.1) implies the condition in (7.2). So we have

s(n−1/q)
n

= M (bvp, c0) ⊂ M (bvp, c) ⊂ M (bvp, `∞) = s(n−1/q)
n

,

and M (bvp, F ) = s(n−1/q)
n

for F = c0, c, or `∞. We may apply Proposition 6.1 where

the condition 1/b ∈ M (bvp, `∞) = s(n−1/q)
n

means
(
n1/q/bn

)
n
∈ s1. This concludes

the proof. �

Example 7.3. The (SSE) defined by bv2 + cx = c has no solution since q = 2 and

(
√

n/bn)n /∈ s1.

Example 7.4. Let p > 1 and r > 0. The set S = S (bvp, c) of all the solutions of

the (SSE) bvp + cx = c(nr)n
is empty if r < (p − 1) /p and if r ≥ (p − 1) /p, it is

determined by limn→∞ (xn/nr) > 0. For any given r 6= 1, we have S 6= ∅ if and only

if p ≤ 1/ (1 − r).

7.1.3. Solvability of the (SSE) defined by (w0)∆ + Fx = Fb. Here a positive sequence

x is a solution of the (SSE) (w0)∆ + cx = cb if the next statement holds. For every

y ∈ ω we have yn/bn → l1 (n → ∞) if and only if there are u, v ∈ ω with y = u + v

such that

1

n

n∑

k=1

|uk − uk−1| → 0 and
vn

xn

→ l2 (n → ∞) for some scalars l1 and l2.

We obtain a similar statement for the (SSE) (w0)∆ + sx = sb. We have the next

proposition.
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Proposition 7.3. Let b ∈ U+. Then for F = c, or `∞ we have

S ((w0)∆ , F ) = S ((c0)∆ , F ) = S (w0, F ) =





clF (b) if 1/b ∈ s(1/n)n
,

∅ otherwise.

Proof. We have α ∈ M ((w0)∆ , `∞) if and only if

(7.3) DαΣ ∈ (w0, `∞) .

Now we define the integer νn by

(7.4) 2νn ≤ n ≤ 2νn+1 − 1.

Then from the characterization of (w0, `∞) in Lemma 5.1 the condition in (7.3) means

there is K > 0 such that

(7.5)

σn =
∞∑

ν=0

2ν max
2ν≤k≤2ν+1−1

|(DαΣ)nk| = |αn|
νn∑

ν=0

2ν = |αn|
(
2νn+1 − 1

)
≤ K for all n.

Then from (7.4) we have DαΣ ∈ (w0, `∞) if and only if

n |αn| ≤
(
2νn+1 − 1

)
|αn| ≤ K for all n, and for some K > 0.

Then we have M ((w0)∆ , `∞) ⊂ s(1/n)n
. Now we show s(1/n)n

⊂ M ((w0)∆ , `∞). Let

α ∈ s(1/n)n
. Then we have n |αn| ≤ K for all n, and by (7.5) and (7.4) we have

σn =
(
2νn+1 − 1

)
|αn| ≤ (2n − 1) |αn| ≤ 2K for all n.

This shows s(1/n)n
⊂ M ((w0)∆ , `∞) and M ((w0)∆ , `∞) = s(1/n)n

. By similar argu-

ments we obtain M ((w0)∆ , c0) = s(1/n)n
. Then we have

s(1/n)n
= M ((w0)∆ , c0) ⊂ M ((w0)∆ , c) ⊂ M ((w0)∆ , `∞) = s(1/n)n

.

Finally, we have M ((w0)∆ , F ) = s(1/n)n
for F = c0, c, or `∞. We conclude by

Proposition 6.1 and Lemma 6.4. This completes the proof. �
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Example 7.5. The (SSE) (w0)∆ + cx = c has no solution.

Example 7.6. The solutions of the (SSE) (w0)∆ + sx = s(n)n
are determined by

K1n ≤ xn ≤ K2n for all n and for some K1, K2 > 0.

7.1.4. Solvability of the (SSE) with operator Λ∆ + Fx = Fb.

Proposition 7.4. Let b ∈ U+. For F = c, or s1 we have

S (Λ∆, F ) = S (Λ, F ) =





clF (b) if 1/b ∈ Γ,

∅ otherwise.

Proof. By Lemma 4.2 we have ∆ ∈ (Λ, Λ) bijective since e ∈ ĈΛ. Indeed, we have

n ≤ Kn for all n and for some K > 1. So we have Λ∆ = Λ, and by Lemma 4.1 we

have M (Λ∆, F ) = M (Λ, F ) = Γ for F = c0, c, or s1 and we may apply Lemma 6.4.

This concludes the proof. �

7.2. Solvability of (SSE) of the form EΣ + Fx = Fb. In this subsection we solve

the (SSE) defined by EΣ + Fx = Fb, where E = c, c0, w0, Λ, Γ, or `p, (p > 1), and

F = c, or `∞, and the (SSE) ΓΣ + Λx = Λb and (`∞)Σ + cx = cb.

7.2.1. The (SSE) using the sets cs, bs, cs0, or (`p)Σ. In this subsection we deal with

the (SSE) defined by χ + Fx = Fb where χ = cs, bs, or cs0, and by (`p)Σ + Fx = Fb,

and F = c, or `∞. For instance, x is a solution of the (SSE) cs + cx = cb if the next

statement holds. For every y ∈ ω we have yn/bn → l1 (n → ∞) if and only if there

are u, v ∈ ω with y = u + v and the series
∑∞

k=1 uk is convergent and vn/xn → l2

(n → ∞) for some scalars l1 and l2.

Proposition 7.5. Let b ∈ U+. Then

i) we have

S (bs, c) = S (`∞, c) =





clc (b) if 1/b ∈ c0,

∅ otherwise.
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ii) For F = c, or `∞ we have

S (cs, F ) = S (cs0, F ) = S
(
(`p)Σ , F

)
= S (c0, F ) ,

with (p ≥ 1), and

S (c0, F ) =





clF (b) if 1/b ∈ s1,

∅ otherwise.

Proof. i) We have α ∈ M (bs, c) if and only if Dα ∈ (`∞ (Σ) , c) and Dα∆ ∈ (`∞, c).

The matrix Dα∆ is the triangle defined by (Dα∆)nn = − (Dα∆)n,n−1 = αn for all n,

with the convention (Dα∆)1,0 = 0, the other entries being equal to zero. Trivially we

have limn→∞ (Dα∆)nk = 0 for all k and by Lemma 3.5 we have limn→∞

∑∞
k=1 |(Dα∆)nk| =

0 which implies M (bs, c) = c0. Since bs = `∞ (Σ) ⊂ `∞, we conclude

c0 = M (`∞, c0) ⊂ M (bs, c0) ⊂ M (bs, c) = c0,

and Proposition 6.1 and Lemma 6.4 can be applied.

ii) Case of S (cs0, F ). Since c0 ⊂ c ⊂ `∞ and cs0 = (c0)Σ ⊂ c0 we obtain

(7.6) s1 = M (c0, c0) ⊂ M (cs0, c0) ⊂ M (cs0, c) ⊂ M (cs0, `∞) .

Now α ∈ M (cs0, `∞) if and only if Dα ∈ (cs0, `∞) and Dα∆ ∈ (c0, `∞). Since

(c0, `∞) = S1, we have |αn| + |αn−1| ≤ K for all n and for some K > 0, and α ∈ s1.

So M (cs0, `∞) = s1. Using (7.6) we conclude M (cs0, F ) = s1, for F = c0, c, or `∞,

and Proposition 6.1 and Lemma 6.4 can be applied. This completes the proof of i).

Case of S (cs, F ). By similar arguments that above and noticing that cs = cΣ, we

obtain

(7.7) s1 = M (cs, c0) ⊂ M (cs, c) ⊂ M (cs, `∞) = s1.

Case of S
(
(`p)Σ , F

)
. Let p > 1. We have α ∈ M

(
(`p)Σ , `∞

)
implies Dα∆ ∈

(`p, `∞) and by Lemma 3.6 we have |αn|q = O (1) (n → ∞) and α ∈ s1. This means
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M
(
(`p)Σ , `∞

)
⊂ s1. We have (`p)Σ ⊂ `p since ∆ ∈ (`p, `p) and

s1 = M (`p, c0) ⊂ M
(
(`p)Σ , c0

)
⊂ M

(
(`p)Σ , c

)
⊂ M

(
(`p)Σ , `∞

)
⊂ s1.

So Proposition 6.1 and Lemma 6.4 can be applied. In the case p = 1, reasoning as

above and using the characterizations of (`1, `∞) and (`1, c0) given in Lemma 3.6 we

obtain M ((`1)Σ , F ) = s1 where F = c0, c, or `∞. This concludes the proof of ii). �

7.2.2. Solvability of the (SSE) (w0)Σ+Fx = Fb. Here we solve the (SSE) with operator

defined by (w0)Σ + sx = sb and (w0)Σ + cx = cb. Note that x is a solution of the

second (SSE) if for every y ∈ ω we have yn/bn → l1 (n → ∞) if and only if there are

u, v ∈ ω such that y = u + v and

1

n

∞∑

k=1

∣∣∣∣∣

k∑

i=1

ui

∣∣∣∣∣→ 0 and
vn

xn

→ l2 (n → ∞) for some scalars l1 and l2.

First we state a lemma.

Lemma 7.1. We have M ((w0)Σ , `∞) = M ((w0)Σ , c0) = M ((w∞)Σ , `∞) = s(1/n)n
.

Proof. We have M ((w0)Σ , c0) = M ((w0)Σ , `∞). Indeed, we have α ∈ M ((w0)Σ , c0)

if and only if Dα∆ ∈ (w0, c0), but by Lemma 5.1 we have (w0, c0) = (w0, `∞), so

we have α ∈ M ((w0)Σ , c0) if and only if α ∈ M ((w0)Σ , `∞) and M ((w0)Σ , c0) =

M ((w0)Σ , `∞). Now we show M ((w∞)Σ , `∞) = s(1/n)n
. For this let α ∈ M ((w∞)Σ , `∞).

Then we have Dα∆ ∈ (w∞, `∞) . If we define the integer νn by 2νn ≤ n ≤ 2νn+1 − 1,

we obtain

σn =

∞∑

ν=0

2ν max
2ν≤k≤2ν+1−1

|(Dα∆)nk| ≥ |αn| 2νn ≥ n + 1

2
|αn| .

But by Lemma 5.1 we have Dα∆ ∈ (w∞, `∞) implies σ ∈ `∞ and α ∈ s(1/n)n
. So

we have shown M ((w∞)Σ , `∞) ⊂ s(1/n)n
. Conversely, show s(1/n)n

⊂ M ((w∞)Σ , `∞).

We have w∞ ⊂ s(n)n
and since ∆ ∈

(
s(n)n

, s(n)n

)
we obtain

(
s(n)n

)
Σ
⊂ s(n)n

and

M ((w∞)Σ , `∞) ⊃ M
((

s(n)n

)
Σ

, `∞
)
⊃ M

(
s(n)n

, `∞
)

= s(1/n)n
.
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We conclude M ((w∞)Σ , `∞) = s(1/n)n
. We obtain M ((w0)Σ , c0) = s(1/n)n

using a

similar arguments. This concludes the proof. �

Proposition 7.6. Let b ∈ U+ and let F = c, or `∞. Then we have

S ((w0)Σ , F ) = S (w0, F ) =





clF (b) if 1/b ∈ s(1/n)n
,

∅ otherwise.

Proof. We have (w0)Σ ⊂ w0 implies M (w0, c0) ⊂ M ((w0)Σ , c0) and by Lemma 5.2

and Lemma 7.1 we obtain

s(1/n)n
= M (w0, c0) ⊂ M ((w0)Σ , c0) ⊂ M ((w0)Σ , c) ⊂ M ((w0)Σ , `∞) = s(1/n)n

.

We then have M ((w0)Σ , F ) = s(1/n)n
for F = c0, c, or `∞, and Proposition 6.1 and

Lemma 6.4 can be applied. �

Remark 4. From Proposition 7.1, Proposition 7.3, and Proposition 7.6 we have

S (χ, F ) = S (w0, F ) for χ = (w0)Σ, (w0)∆, or (c0)∆.

7.2.3. Solvability of the (SSE) ΓΣ + Fx = Fb. We deal with the (SSE) ΓΣ + Fx = Fb

where F = c, `∞, or Λ, and the (SSE) ΛΣ + Fx = Fb for F = c, or `∞. A positive

sequence x is a solution of the (SSE) ΓΣ + cx = cb if the next statement holds:

limn→∞ yn/bn = l if and only if there are two sequences u, v with y = u+ v such that

limn→∞ |∑n
k=1 uk|1/n

= 0 and limn→∞ vn/xn = l′ for some scalars l and l′ and for all

y ∈ ω. We obtain the next result.

Theorem 7.1. Let b ∈ U+. Then

i) for F = c, `∞, or Λ we have

S (ΓΣ, F ) = S (Γ, F ) =





clF (b) if 1/b ∈ Λ,

∅ otherwise.
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ii) for F = c, or `∞ we have

S (ΛΣ, F ) = S (Λ, F ) =





clF (b) if 1/b ∈ Γ,

∅ otherwise.

Proof. i) First let α ∈ M (ΓΣ,Λ). Then we have Dα∆ ∈ (Γ,Λ), and by Lemma 4.3

we obtain

[
|αn|

(
M−n + M−n+1

)] 1

n ≤ K for all n and for some K > 0 and M ≥ 2.

This implies

|αn|
1

n ≤ KM

(1 + M)
1

n

≤ K ′ for all n and for some K ′ > 0.

We conclude M (ΓΣ,Λ) ⊂ Λ. Then it can easily be seen that ΓΣ ⊂ Γ since ∆ ∈
(Γ,Γ). Then by Lemma 4.1 we have

Λ = M (Γ, c0) ⊂ M (ΓΣ, c0) ⊂ M (ΓΣ, c) ⊂ M (ΓΣ, `∞) ⊂ M (ΓΣ,Λ) ⊂ Λ.

So we obtain M (ΓΣ, F ) = Λ for F = c0, c, `∞, or Λ and Proposition 6.1 and Lemma

6.4 can be applied. This concludes the proof of i).

ii) As we have seen in Proposition 7.4 the operator ∆ ∈ (Λ,Λ) is bijective and it

is the same for Σ ∈ (Λ,Λ). Then we have ΛΣ = Λ and by Lemma 6.4 we conclude

ii) holds. �

Example 7.7. The solutions of the (SSE) ΓΣ + Λx = Λu with u > 0 are determined

by kn
1 ≤ xn ≤ kn

2 for all n and for some k1, k2 > 0.

Example 7.8. Each of the (SSE) ΛΣ + Fx = Fu where F = c, or s1 has no solution

for any given u > 0.
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[22] Malkowsky, E., Rakočević, V., An introduction into the theory of sequence spaces and measure

of noncompactness, Zbornik radova, Matematički institut SANU 9 (17) (2000), 143-243.

[23] Rao, K. C., Srinivasalu, T. G., Matrix operators on analytic and entire sequences, Bull.

Malaysian Math. Soc. (Second Series) 14 (1991), 41-54.

[24] Simons, S., The sequence spaces ` (pν) and m (pν), Proc. London Math. Soc. 15 (1965) 422-436.

[25] Wilansky, A., Summability through Functional Analysis, North-Holland Mathematics Studies

85, 1984.

Universite du Havre. France

E-mail address : bdemalaf@wanadoo.fr


