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ON SEQUENCE SPACES EQUATIONS OF THE FORM E;+ F, =F,
FOR SOME TRIANGLE T

BRUNO DE MALAFOSSE

ABSTRACT. Given any sequence a = (an)p>1 of positive real numbers and any set

E of complex sequences, we write E, for the set of all sequences y = (Y )n>1 such

that y/a = (yn/an)n>1 € E; in particular, s((f)

denotes the set of all sequences
y such that y/a converges. We denote by ws, and wg the sets of all sequences y
such that sup,, (n™* > 1_; |yk|) < oo and lim,—o (71 Y72, [yk]) = 0. We also
use the sets of analytic and entire sequences denoted by A and I' and defined by

|1/n |1/n

sup,, |Yn < oo and limy, 00 |Yn = 0, respectively. In this paper we explicitly

calculate the solutions of (SSE) of the form Ep+F, = F; in each of the cases E = ¢y,
¢, looy Up, (p> 1), wo, T, or A, F = ¢, or £, and T is either of the triangles A, or
>, where A is the operator of the first difference, and 3 is the operator defined by
Y0y =Y p_; Yk. For instance the solvability of the (SSE) I's + A, = Ay consists in
determining the set of all positive sequences x = (,),, that satisfy the statement:
sup,, {(|yn| /bn)l/"} < oo if and only if there are u, v € w with y = w4+ v such that

|Un| 1/n
=0 and sup <—) < oo for all y.
n Tn

n 1/n

S

k=1

lim

n—oo
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1. INTRODUCTION

We write w for the set of all complex sequences ¥y = (Yn)n>1, loo, ¢ and cg
for the sets of all bounded, convergent and null sequences, respectively, also £, =
{fyew: > 7y’ < oo} for 1 < p < co. We then consider the sets of analytic

|1/n

and entire sequences denoted by A and I' and defined by sup,, |y» < oo and

lim,, oo |Yn] 1/n

= 0, respectively. If y, z € w, then we write yz = (ynzn),>,. Let
U={ycw:y, #0} and UT = {y € w:y, >0}. We write z/u = (2,/uy),>, for
all z € w and all v € U, in particular 1/u = e/u, where e = 1 is the sequence
with e, = 1 for all n. Finally, if « € UT and F is any subset of w, then we put
E,= (1/a) ' *E={y c€w:y/ac E}. Let E and F be subsets of w. Then the set
M(E,F)={y €w:yz € F for all z € E} is called the multiplier space of E and F.
In [2], the sets s,, sY and s{ were defined for positive sequences a by (1/a) "« E
and F = l,co,c, respectively. In [3] the sum E, + F, and the product E, x F

0 or s¢). Then in [7] were

were defined where E, F' are any of the symbols s, s
given solvability of sequences spaces equations inclusion G, C E, + F, where E, F
G e {30, s(9), 3} and some applications to sequence spaces inclusions with operators.
As above we define the sets of a—analytic and a—entire sequences, by (1/a)” * E and
E = A, or I, (see [4]). Recall that the spaces wo, and wy of strongly bounded and
summable sequences are the sets of all y such that (n™' > 7_; |yx|), is bounded and
tend to zero respectively. These spaces were studied by Maddox [19] and Malkowsky
[20]. In [10] were given some properties of well known operators defined by the sets
W, = (1/a)"" % we and W0 = (1/a)~" * wp.

In this paper we extend some results given in [15, 7, 5, 6, 14, 8]. In [14] for
given sequences a and b was determined the set of all positive sequences x for which

Yn/bp, — 1 if and only if there are sequences w and v for which y = u + v and

Up/an, — 0, v,/x, — ' (n — 00) for all y and for some scalars [ and I’. This
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statement is equivalent to the sequence spaces equation sO + sé) = sl(f). In [8] was

determined the set of all z € U™ such that for every sequence y, we have y,,/b, — 1

Un 0 and

Un/xn — ' (n — 00) for some scalars [ and I’. This statement means T';, + s = sl()c).

if and only if there are sequences u and v with y = v + v and |u,/a,|

So we are led to deal with special sequence spaces equations (SSE) with operator,
which are determined by an identity, for which each term is a sum or a sum of
products of sets of the form (E,); and (Ef(x))T where f maps U* to itself, E is a
linear space of sequences, x is the unknown and 7T is a triangle. It can be found in
[6] a solvability of the (SSE) Eq + (¢z) p(,.5) = ¢z where E = s, % or s and z is the
unknown. In [14] were determined the sets of all positive sequences z that satisfy each
of the systems s) 4+ (sz) A = Sp, Sz D Sp and s, + (¢z)A = b, ¢z D . Then it can be
found a resolution of the (SSE) with operators defined by (E4) ) p, + (¢2)cyp, = ¢
with £ = ¢y, or . Recently in [9] can be found a study on the (SSE) with operator
(Ea)coye T (Ee) ooy = Ev, where b € Cy and E is any of the sets (s, or cy. For
E = ¢y the resolution of this equation consists in determining the set of all z € U™
such that for every sequence y the condition y,, /b, — 0 (n — o0) holds if and only if

there are u, v € w such that y = v + v and

(1.1)

k
£ et E ) e

=1

In this paper we deal with a class of (SSE) with operators of the form Er+ F, = Fy,
where T is either A or ¥ and E is any of the sets co, ¢, lx, £y, (p > 1), wo, I, or A
and F' = ¢, {,, or A. For instance the solvability of the (SSE) defined by the equation
I's + A, = A, consists in determining the set of all positive sequences x = (), that

satisfy the statement: sup,, {(|yn| /bn)l/"} < o0 if and only if there are u, v € w with
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y = u + v such that

n 1/n
Zuk =0 and sup{(M> } < oo for all y.
n 'Z‘TL
k=1

This paper is organized as follows. In Section 2 we recall some definitions and

1/n

lim
n—oo

results on sequence spaces and matrix transformations. In Section 3 are recalled
general results on the multiplier M (E, F) and on the classes ({,c) and (€, F)
where F'is any of the sets ¢y, ¢, or £,. In Section 4 we deal with the sets of analytic
and entire sequences. In Section 5 we deal with the sets of strongly and summable
sequences by the Cesaro method and recall some results of the multiplier M (E, F)
where F and F' are any of the sets wg, Wy, Co, ¢, {oo, Or £1. In Section 6 we recall
some results on the solvability of (SSE) of the form E, + F, = F, with 1 € F' and we
deal we deal with the solvability (SSE) with operator Er + F, = F}, in the general
case. In Section 7 we apply the previous results to solve (SSE) using the operator of
the first difference and that are of the form Fa + F, = F;,, where E = ¢y, ¢, {0, £,
(p>1),wy, I', or A and F = ¢, or {s. Then using the operator X we solve (SSE) of
the form By, + F, = Fy,, where E = ¢, ¢, l, {p, (p > 1), wo, T, or A and F = ¢, {,
and the (SSE) I'y + A, = Ay.

2. PREMILINARIES AND NOTATIONS

An FK space is a complete metric space, for which convergence implies coordi-
natewise convergence. A BK space is a Banach space of sequences that is, an FK
space. A BK space E is said to have AK if for every sequence y = (yx)r>1 € E, then
y =lim, oo Y h_ yee™, where e®) = (0,...,1,...), 1 being in the k — th position.

For a given infinite matrix A = (a,x)n.>1 we define the operators A, = (anx)r>1
for any integer n > 1, by A,y = > 7~ @any, where y = (yg)r>1, and the series are
assumed convergent for all n. So we are led to the study of the operator A defined by

Ay = (Any)n21 mapping between sequence spaces. When A maps E into F', where
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E and F are subsets of w, we write that A € (E, F), (cf. [19, 25]). It is well known
that if £ has AK, then the set B(E) of all bounded linear operators L mapping in
B, with norm ||L|| = sup,., ([[L (y)|l 5/ llyllz) satisfies the identity B (E) = (£, E).
We denote by w, ¢, ¢, £+ the sets of all sequences, the sets of null, convergent and
bounded sequences. For any subset F' of w, we write Fy = {y € w : Ay € F}. By
¥ we denote the operator defined by X,y = >~/ _, yx for all sequences y. Then we
write ¢s = ¢y, bs = ({s)y, and csp = (¢g)y, for the sets of all convergent, bounded and
convergent to zero series. More precisely we have c¢s = {y : Y, y) is convergent},
bs = {y: (Cp_i k), € b} and cso = {y: (>4 yk), € co}. Let UT C w be the
set of all sequences u = (uy),>; with u, > 0 for all n. Then for given sequence

u = (up),>; €w we define the diagonal matrix Dy by [Du],, = u, for all n. It is

nn
interesting to rewrite the set E, using a diagonal matrix. Let E be any subset of w

and u € UT we have
Eo=DyE={y=(yn)n €Ew :y/ue E}.

We will use the sets s2, s((f), s, and P defined as follows (cf. [2]). For given a € U™ and
p>1we put Dycg = 52, Dyc = s((f), Dl = 54, and D P = (7. We will frequently

)

write ¢, instead of sgf to simplify. Each of the spaces D,E, where E € {cg, ¢, s} is

a BK space normed by ||y|l,, = sup, s, (|yn| /an) and s has AK. If a = (r"),>, with
(c)

r > 0, we write s,, s° and s, for the sets s,, s¥ and s respectively. When r = 1,
we obtain s; = £, s = ¢o and s(lc) = ¢. Recall that S; = (s1, $1) is a Banach algebra

and (co, 1) = (¢, ) = (51,51) = S1. We have A € S; if and only if

(2.1) sup (Z |ank|> < 00.

We will also use the characterization of (cg,cg). We have A € (cg, co) if and only

if (2.1) holds and lim,, . a,, = 0 for all k. We will use the well known property,
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stated as follows. For any given triangle T, the operator T" represented by a triangle

belongs to (Er, F) if and only if 7T~ € (E, F) for any subsets E, F C w.

3. THE MULTIPLIERS OF SOME SETS AND MATRIX TRANSFORMATIONS

3.1. The multipliers of classical sets. First we need to recall some well known

results. Let y and 2z be sequences and let £ and F' be two subsets of w, we then write

yz = (Ynzn), and
M(E,F)={ycw: yz€ Fforall z € E},

M (E, F) is called the multiplier space of E and F. In the following we will use the

next well known results.

Lemma 3.1. Let E, E, F and F be arbitrary subsets of w. Then
(i) M(E,F)c M (E F) for all E C E,
(ii) M(E,F) C M <E ﬁ) forall F C F.

Lemma 3.2. Leta, b€ U" and let E and F be two subsets of w. Then D,E C DyF
if and only if a/b € M (E, F).

Lemma 3.3. Leta, b € UT and E, F C w. Then A € (D,E, DyF) if and only if
DiyAD, € (E,F).

Notice that this lemma can be extended to the case when a € w and b is a nonzero
sequence.

By [3, Lemma 3.1, p. 648] and [3, Example 1.28, p. 157], we obtain the next result.

Lemma 3.4. We have
i) M (c,co) = M (Uoo,¢) = M (U, o) = co and M (c,c) = ¢;
ii) M (E,ly) = M (co, F) = by for E, F = cg, ¢, or ls .
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3.2. The classes ({«,c) and (¢,, F') where F is any of the sets cg, ¢, or (. As

a direct consequence of the famous Kojima-Shur Theorem we obtain the next lemma.

Lemma 3.5. Let A = (a,y),, be an infinite matriz. Then

i) if im, o ape = 0 for all k, then A € (U, ¢) if and only if
(3.1) lim > " fan| = 0.
ii) A € (boo, o) if and only if (3.1) holds.

For the convenience of the reader we recall the next well-known result, (see for
instance [22, Theorem 1.37, pp. 160-161]), which will be frequently used in the

following.

Lemma 3.6. i) Case 1 <p < oo. Let ¢ =p/(p—1). Then we have
a) A e (L, ) if and only if condition

(3.2) sup <Z |ank|q> < 00
" \k=1

holds.
b) A€ (¢, co) if and only if condition (3.2) holds and lim,,_.o a,, = 0 for all k.
c) A e (b, c) if and only if condition (3.2) holds and lim,_.. a,, = li, for some
Iy, € C and for all k.
ii) Case p=1. We have
a) A € (l1,0) if and only if

(3.3) Sup |an| < oo
n,k

holds.
b) A€ (01, c) if and only if condition (3.3) holds and lim,,_,~ a,, = 0 for all k.
c) A € ({1,c) if and only if condition (3.3) holds and lim,,_,o a,, = I for some
Iy, € C and for all k.
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Remark 1. We deduce from Lemma 3.6 the identity M (¢, x) = l for x = ¢y, ¢, or
(s and (p > 1).

4. ON THE SETS OF ANALYTIC AND ENTIRE SEQUENCES

4.1. Some definitions and properties of A and I'. A sequence y = (yn),>; is

|1/n

said to be analytic if sup,, |y, < o0. The linear space of all analytic sequences is

denoted by A. It is well known that I' is the linear space of all entire sequences defined
by lim,, |yn|1/” = 0. The sets A and I" are metric spaces with the metric defined
for any sequences vy, z, by d (y, z) = sup,, |yn — zn|1/n. Then A is an FK space since
it 1s a complete metric space, and convergence implies coordinatewise convergence; it
is the same for I since it is a closed subset of A. For a study of the sets A and I', we
refer the reader to [23].

Concerning the multipliers M (I, F), M (A, F), M (E,A) and M (E,T) for E,

F € {co,c,ls, T, A} recall the following.

Lemma 4.1. /8, Proposition 4.2] We have
(1)) M (T, F) = A for F € {cy,¢, b, T, A},
(1) M (A, F) =T for F € {cy,c,ls, T},
(11i)) M (E,A) = A for E € {co,¢,lo0, T, A},
(iv) M (E,T) =T for E € {cp, ¢, lo, A} .

4.2. Some properties of the sets I', and A,. For a € U™ we put A, = D,A. So
y €Ng if sup,, (|yn] /an)"/™ < 0o and A, is called the set of all a—analytic sequences.
For a = 1 we write A; = A. Similarly we put I', = D,I" and y = (yn)n21 el', if and
only if limy, s (|yn] /@)™ = 0, we write Iy, =T and T, is the set of all a—entire
sequences.

In the following we use the triangle C'(\) defined for any nonzero sequence A =

(An)ps1 by [C (V)] = 1/ Ay for k& < n. It can be shown that the triangle A (A) whose
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the nonzero entries are defined by [A(A)],,, = A, for all n and by [A ()],

—An_1, for all n > 2, is the inverse of C'()), that is, C' (A) (A (N y) = AN (C (N)y)
for all y € w. It is well known that A = A(1) € (w,w), is the operator of the first
difference and we have Ay, = vy, — y,_1 for all n > 1 with yy = 0. The inverse
A™! =¥ is defined by ¥, = 1 for k < n, (see for instance [2, 13]). For any given

a € U we have [C (a)a], = (a1 + ... + a,) /a, for all n. Then we let
Ca = {a € U*:[C(a)a], < k" for all n and for some k > 0} .

We obtain the next results which is a consequence of [8, Proposition 3.1, p. 101].

Lemma 4.2. Let a, be U". Then
a) We have A, =Ny if and only if T'y = Ty, and the equality A, =N, is equivalent
to the statement k7 < a, /b, < kI for all n and for some kq, ko > 0.

b) (Au)x =Ny if and only if A, =Ny and a € 6A.

Now we recall some results on the spaces ¢o (p) and £, (¢) that generalize the sets

A and T.

4.3. On the sets (cy (p),co(q)) and (co (p) ; loo (). Let p = (pn),>y € UMl be

a sequence and put

(o(p) = {y = (Y)or © sUD |l < oo} ,
co(p) = {y = (yn)nzl : nlgrolo yn | = 0}-

The set cq (p) is a complete paranormed space with g (y) = sup,, <|yn|p"/L), where
L = max{l,sup, p,}, ([18, Theorem 1]) and ¢ (p) is a paranormed space with g
only if inf,, p, > 0 in which case l«, (p) = lo, ([24, Theorem 9]). So we can state the
next lemma, where for any given integer k, we denote by Nj the set of all integers

n > k.
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Lemma 4.3. [16, Theorem 5.1.13] Let p, ¢ € Ut [ loo-
i) A€ (co(p),colq)) if and only if for all N € Ny there is M € Ny such that

sup (Nl/q" Z |2 Ml/p’“) < oo and lim |a,["" =0 for all k.
n Pt n—00

ii) A € (co(p),loo (q)) if and only if there is M € Ny such that

- an
sup <Z |ay,| M_l/p’“> < 00.

k=1
Example 4.1. In this way we have A € (I',A) if and only if there is M > 2
integer such that sup,, (3 pe; |anl M*k)l/n < 00, since T' =cq (p) and A =l (p) with

pn = 1/n.

5. THE SPACES OF STRONGLY BOUNDED AND SUMMABLE SEQUENCES BY THE

CESARO METHOD

5.1. The sets w,, and wy. Recall that when A\, = n for all n, the triangle C'()\) is
the well known Cesaro operator C;. In the following we will use the spaces of strongly

bounded and summable sequences by the Cesaro method of order 1 defined by
Woo ={yEw :C1 |yl €l } and wg={y €w:Cily|l € },

where |y| = (|yn|),,- These spaces were studied by Maddox [17] and Malkowsky, see
for instance [20]. It is well known that the sets ws and wy are BK spaces normed
by |yl = sup, (0" >"p_; |yl). In [21] it was shown that the class (Weo, Weo) 15 a

Banach algebra normed by ||A||>(kwoo wo) = SUD ([ AYllo /Yl ) -
y Voo y¢0 oo oo

5.2. Matrix transformations in the sets wy; and w,. Here we recall some
results that are direct consequence of [1, Theorem 2.4]. For this we let yx, =

> 2V maxXgy<p<ovti_q |Ank|. Then we can state the following.
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Lemma 5.1. [1] (i) We have (wp, o) = (Woos boo) and A € (Weo, Uoo) if and only if
(5.1) sup X, < 09,

(11) A € (Weo, o) if and only if lim,,_,o xn = 0.
(111) A € (wo, co) if and only if (5.1) holds and lim,,_,o a,, = 0 for all k.

5.3. The multiplier M (E, F') where E and F' are any of the sets w, wy, o,

¢y U, or £1. In the following we will use the next results.

Lemma 5.2. [11, Lemma 4.2] We have
i) M (wo, F) = M (Woo, loo) = S(1/m), for F'=co, ¢, o1 Lo,
i) M (Wao, Co) = S(Ol/n)n'
ii1) M ({1, ws) = S(n), and M (01, wp) = s(()n)n.
iv) M (E,wg) = wy for E=c, or {w.

6. ON THE (SSE) E, + F, = F,

In this section we apply the previous results to the solvability of the (SSE) E,+F, =
Fy with 1 € F.

6.1. Regular sequence spaces equations. For b € U' and for any subset F' of w,

we denote by clf (b) the equivalent class for the equivalence relation Ry defined by
tRpy if D,F = D,F for z,y € U™,

It can easily be seen that cl/f (b) is the set of all z € U* such that /b € M (F, F)
and b/x € M (F,F), (cf. [14]). We then have cl” (b) = /M) (). For instance
cl®(b) is the set of all x € UT such that D,c = Dyc, that is, s = sl(,c). This is the
set of all sequences « € U™ such that z,, ~ Cb,, (n — o00) for some C > 0. In [14] we

denote by cl* (b) the class cl’> (b). Recall that cI* (b) is the set of all x € U™, such
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that Ky < x,/b, < K, for all n and for some K;, K3 > 0. In [8, Proposition 3.1]
the class cl® (b) is the set of all z € U™, such that k7 < z,,/b, < k% for all n and for
some ki, ko > 0. Note that the relations Rp and Rr are equivalent, since we have
M(A,A) =M (I',)T) = A.

For any given linear spaces of sequences X and Y, we have X+Y = {u+v : u, v € w}.
It can easily be seen that for any given linear subspaces X, Y and Z of w, the inclu-
sion X +Y C Z holds if and only if X C Z and Y C Z. In this way, for a, b € U,

we define the set

S(E,F)={zeU": E,+F,=F},

where FE, F are linear subspaces of w. For instance, S (we, %) is the set of all
sequences 2 € U™ that satisfy the statement: sup,, (|y,| /b,) < oo if and only if there

are two sequences v and v for which y = v + v and
L Jul [0n]
sup —Z— < oo and sup [ — | < oo for all y.
n n k=1 ay, n Ty
Definition 6.1. We say that S (E, F'), (or the equation E, + F, = Fy), is regular if

AMEF) () if a/be M (B, F),
%) if a/b¢ M (E,F).

S(E,F) =

Note that E, + F, = F, is not regular in general. Indeed for £ = F' = {,, we have
M (loo, loo) = Lo and if a/b € €\ co and s, = s, we have S ((oo, loo) = sy NUT #
cMEE) () (cf. [15, Theorem 11, pp. 916-917]). In particular the solutions of the
(SSE) oo + S» = ls are determined by x € £, N U™, that is, 0 < x, < M for all n

and for some M > 0.

6.2. Solvability of (SSE) of the form E, + F, = F,. For instance the solvability

of the equation s, + s = sl()c) for a, b € U™ consists in determining the set of all

x € U™ that satisfy the next statement: y,/b, — [ (n — o) if and only if there are
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two sequences u, v such that y = v+ v and

Mg[(andv—n—ﬁ’ (n — o0) for all y.
an, T
In the following we will use the condition

(6.1) X C X (D,) forall a €c(l),

where y C w is any linear space, and ¢ (1) is the set of all sequences that tend to 1.
It can easily seen that this condition is true for any of the spaces F' = ¢, sq, or A. To

state the next results we also need the next conditions:

(6.2) 1€F,

(6.3) FCM(FF).

We then recall the next result which is a direct consequence of [8, Theorem 5.1,

pp. 106-107].

Lemma 6.1. Let a, b € UT and let E, F be two linear subspaces of w. We assume

F satisfies the conditions in (6.1), (6.2), (6.3), and that
(6.4) M (E,F)C M (E,c).
Then S (E, F) is regular.
In all what follows we are interested in the study of the (SSE)
E+F,= I,

In this way replacing a by 1 in the previous lemma and noticing that the conditions

in (6.2) and (6.3) imply M (F, F') = F we obtain the following lemma.
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Lemma 6.2. Let b € U' and let E, F be two linear subspaces of w. We assume F
satisfies the conditions in (6.1), (6.2), (6.3), and (6.4). Then S (E, F) is reqular and

we have
clf (b) if1/be M (E,F),

@ ifl/b¢ M(E,F).

S(E,F) =

As a direct consequence of Lemma 6.2 we obtain the next results.

Lemma 6.3. Let b € U" and let p > 1. Then each of the next (SSE) is reqular,
where

i) D+ A, = Ay

ii) E4c, =c, for E=T, A, co, b, wo and C,,.

iii) E+4 s, = s, for E=T, A, ¢y, wo, Weo and £,,.

Proof. Statement i) and statements ii) and iii) with £ = I", A, were shown in [8,
Proposition 5.1]. Statements ii) with £ = ¢g, or o, and iii) with £ = ¢, were shown
in [14, Theorem 4.4, p. 7]. Statements ii) with £ = wq and iii) with £ = wy, or wu,
were shown in [11, Theorem 6.5]. Statements ii) and iii) with £ = ¢, (p > 1) were

shown in [11, Remark 6.4]. O

More precisely we obtain the following lemma which is a direct consequence of

Lemma 6.3.

Lemma 6.4. Let b € UT. We have

i) a)

S (0me) ce (b) if 1/b € co,

%) otherwise.
b) Let F' be any of the sets ¢, s1, or A. Then we have
cf (b) if 1/b e A,

S(T,F) =
%] otherwise.
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ii) For F = ¢, or s; we have

a) Let p > 1. We have S ({,, F) = S (co, F') and

cl¥ (b) if 1/b € sy,

S (Co, F) =

1%} otherwise.
b)

ct (b) if1/b € sqm ,

S (wp, F) = (b) if1/b€ sam),
o otherwise.

c)
¥ (b) if1/beT,
siam =] @O vy

%} otherwise.

Remark 2. The results for S (¢,,¢) and S ({p,¢~) come from Lemma 3.6 where

M (L, ¢) = M (£, o) = Cs.

Remark 3. Notice that the set S (¢, ¢) is not regular since by [8, Theorem 5.2, p. 12]
we have S (¢,c¢) = cl€(b) for 1/b € ¢o; S (c,¢) = ¢ for 1/b € e\ ¢y, and S (c,c) = @
for 1/b ¢ c.

Example 6.1. Consider the set of all x € U™ that satisfy the statement: for every
sequence y we have y, — l; (n — o0) if and only if there are u and v € w for which

y=u-+v and

|Un|% — 0 and TpUp — l2 (TL — OO) f07" some ll and l2.

Since this set corresponds to the equation I‘+s§c/)x = ¢, by Lemma 6.3 il is equal to

the set of all sequences that tend to a positive limat.
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6.3. Application to the solvability of the (SSE) E; + F, = F, with 1 € F.
Let b€ U, and E, F be two subsets of w. We deal with the (SSE) with operator

(6.5) Er+F, = F,

where T is a triangle and 2 € U" is the unknown. The equation in (6.5) means for
every y € w, we have y/b € F if and only if there are u, v € w such that y = u + v
such that

Tu € F and v/x € F.

We assume e = 1 € F. By S (E7, F)) we denote the set of all x € U™ that satisfy the
(SSE) in (6.5). We obtain the next result which is a direct consequence of Lemma

6.2, where we replace F by Erp.

Proposition 6.1. Let b € Ut and let E, F be linear vector spaces of sequences. We

assume F' satisfies the conditions in (6.1), (6.2), (6.3), and that
(66) M (ET, F) cCM (ET, CQ) .
Then the set S (Er, F') is regular, that is,

¥ (b) if 1/be M (Ep, F),
@ ifl/b¢ M(Ep, F).

S(ETaF):

We may adapt the previous result using the notations of matrix transformations

instead of the multiplier of sequence spaces. So we obtain the following.

Corollary 6.1. Let b € UT and let E, F be linear vector spaces of sequences. We
assume F' satisfies the conditions in (6.1), (6.2), (6.3), and that

(6.7) D, T7' € (E,F) implies D, T™' € (E,cq) for all a € w.
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Then we have
cdf (b) ifDipT'e(E,F),
sip g~ | O DT e (B.F)
1%} if DipT~' ¢ (E,F).
Proof. This result is a direct consequence of Proposition 6.1 and of the fact that

the condition 1/b € M (Er, F) is equivalent to Dy, € (Er,F) and to DypT 7! €
(E, F). 0

7. THE MAIN RESULTS. APPLICATION TO THE SOLVABILITY OF (SSE) OF THE

FORM FA + F, = F, AND Fx + F, = F,

In this section we apply Proposition 6.1 and Lemma 6.4 to solve (SSE) of the form
Er + F, = F, in each of the cases T'= A and T'= ¥X. We obtain a class of (SSE)

that are regular, that is, for which S (£, F) is regular.
7.1. Solvability of (SSE) of the form FA + F, = F,.

7.1.1. On the (SSE) (co)x + Fr = F. Here we solve each of the (SSE) defined by
(co) o + €z = cp, and by (co) o + Sz = Sp. The solvability of the first (SSE) means that
for every y € w we have y,,/b, — l; (n — 00) if and only if there are u, v € w such

that y = v+ v and

Un
Up — Up—1 — 0 and — — Iy (n — oo) for some scalars [; and ls.
Tn

Proposition 7.1. Let b € U" and let F = ¢, or ls. We have
cl (b) if1/be 5(1/n), s
) ifl/b%S(l/n)n.

Proof. The condition v € M ((co) 5 , 51) means D, € (co, s1) = 51 and is equivalent

S((co)a: F) =

to na, = O (1) (n—00). So M ((co)pr,81) = Sa/n),- On the same way by the

characterization of (co, co) we obtain M ((co), ;o) = Sa/n),- We then have

S(1/n),, = M((CO)AacO) - M((CO)A,C) cM ((CO)A,SQ = S(1/n),,>
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and M ((co)p ; F) = s/m), for F' = s1, ¢, or ¢g. We conclude by Proposition 6.1. [

Example 7.1. Let a > 0. The (SSE) defined by (co)s + €o = C(n), has solutions if
and only if « > 1. These solutions are determined by lim, . x,/n* > 0 (n — 00).
If 0 < a <1 the (SSE) has no solution, Notice that the (SSE) (co) 5 + ¢z = ¢ has no

solution.

Example 7.2. Let uw > 0. The set of all positive sequences x that satisfy the (SSE)
(co)p + 8z = sy is empty if u < 1, and if u > 1 it is equal to the set of all sequences

that satisfy Kiu™ < x,, < Kqu™ for all n and for some Ky, Ky > 0.

7.1.2. The (SSE) with operator bv, + F, = F,. In this part we solve each of the
(SSE) defined by bv, + ¢, = ¢, and by bv, + s, = 53, where bu, = (£,),, (p > 1).
Recall that bv, = {y € w: >, |yk — yk—1/" < oo} is the set of p-bounded variation
sequences. The solvability of the second (SSE) consists in determining the set of all
positive sequences x, such that the next statement holds. For every y € w we have

sup,, (|yn| /bn) < oo if and only if there are u, v € w with y = u + v such that

o
Z |t — up—1|” < 00 and sup (M) < 0.
n

T
k=1 n

We obtain the next proposition.

Proposition 7.2. Let b e U", and let p > 1, and g =p/(p—1). For F = ¢, or

nl/q
c¥ (b) if ( 2 ) € s1,

1/q\

Proof. We have a € M (bv,, l) if and only if D% € (¢,, (), and from the charac-

we have

S (b, F) =

terization of (€,, (s ) given in Lemma 3.6 we have

(7.1) nla,|*=0 (1) (n— 00).
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So we have M (bvy, l+) = S(n-1/a) - Now we have a € M (buy, ¢p) if and only if (7.1)
holds and

(7.2) a, — 0 (n— 00).
But trivially the condition in (7.1) implies the condition in (7.2). So we have

S(n-1/a) = M (buy, co) C M (bvy, ¢) C M (bvy, ls) = S(n-1/a) »

and M (bv,, F) = S(n-1/a) for F' = ¢g, ¢, or . We may apply Proposition 6.1 where

the condition 1/b € M (bvy, (o) = S(n-1/a) CADS (nl/q/bn)n € s1. This concludes

the proof. O

Example 7.3. The (SSE) defined by bvy + ¢, = ¢ has no solution since ¢ = 2 and

(Vi /bn),, & s1-

Example 7.4. Let p > 1 and r > 0. The set S = S (bv,,c) of all the solutions of
the (SSE) bu, + ¢ = cry, is empty if 1 < (p—1)/p and if r > (p—1) /p, it is
determined by lim,,_,, (x,/n") > 0. For any given r # 1, we have S # @ if and only

ifp <1/(1—r).

7.1.3. Solvability of the (SSE) defined by (wo), + F, = Fy. Here a positive sequence
x is a solution of the (SSE) (wp), + ¢z = ¢, if the next statement holds. For every

y € w we have y,, /b, — 1 (n — o0) if and only if there are v, v € w with y = u + v

such that
1 — v
— E lup — up_1] — 0 and — — Il (n — o00) for some scalars [; and ls.
n T
k=1

We obtain a similar statement for the (SSE) (wg), + sy = s5. We have the next

proposition.
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Proposition 7.3. Let b € UT. Then for F = ¢, or {s we have

" () if 1/b € saymy,,

%] otherwise.

S ((wo)p  F) = S ((co)n, F) = 5 (wo, F) =

Proof. We have a € M ((wy)  , {) if and only if
(7.3) D, ¥ € (wy, l) -
Now we define the integer v, by

(7.4) 2vn <p < 2t 1,

Then from the characterization of (wp, () in Lemma 5.1 the condition in (7.3) means
there is K' > 0 such that
(7.5)
— v _ v __ vnt+l _
On = ZOQ B |(DaX), ] = || ZOQ = |an| (2 1) < K for all n.
Then from (7.4) we have DX € (wp, £) if and only if

nla,| < (2 — 1) |a,| < K for all n, and for some K > 0.

Then we have M ((wo)a s oo) C S(1/m),- Now we show sq/m)  C M ((wo), ,loo). Let
@ € 5(1/n),- Then we have n |a,| < K for all n, and by (7.5) and (7.4) we have

on = (27 = 1) o] < (2n — 1) || < 2K for all n.

This shows s/my, C M ((wo) ;fec) and M ((wo)a s loo) = S(1/n),- By similar argu-

ments we obtain M ((wo), , o) = S(1/n),- Then we have

S(1/n),, = M((wO)A ,Co) C M((wo)A ,¢) C M((’wo)A Aoo) = S(1/n),,

Finally, we have M ((wo),, F) = s/, for F' = ¢y, ¢, or lo. We conclude by
Proposition 6.1 and Lemma 6.4. This completes the proof. O
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Example 7.5. The (SSE) (wo) A + ¢z = ¢ has no solution.

Example 7.6. The solutions of the (SSE) (wo)s + 82 = S@m), are determined by

Kin <z, < Kon for all n and for some Ky, Ky > 0.
7.1.4. Solvability of the (SSE) with operator Ax + F, = Fy,.

Proposition 7.4. Let be U". For F = ¢, or s; we have

cf (b) if1/beT,

1%} otherwise.
Proof. By Lemma 4.2 we have A € (A, A) bijective since e € Ch. Indeed, we have
n < K" for all n and for some K > 1. So we have A = A, and by Lemma 4.1 we
have M (Aa, F) =M (A, F) =T for F = ¢g, ¢, or s; and we may apply Lemma 6.4.

This concludes the proof. ([l

7.2. Solvability of (SSE) of the form FEy + F, = F},. In this subsection we solve
the (SSE) defined by Ex. + F, = F},, where E = ¢, ¢o, wy, A, I', or £, (p > 1), and
F =c¢, or ly, and the (SSE) I's + A, = Ay and (Yo + ¢ = 6.

7.2.1. The (SSE) using the sets cs, bs, csq, or ({)y,. In this subsection we deal with
the (SSE) defined by x + F, = Fj where x = cs, bs, or csg, and by (¢,)s, + F, = Fy,
and F' = ¢, or {. For instance, x is a solution of the (SSE) ¢s + ¢, = ¢, if the next
statement holds. For every y € w we have y, /b, — [; (n — o0) if and only if there
are u, v € w with y = u + v and the series 220:1 uy is convergent and v, /z, — lo

(n — o0) for some scalars [ and ls.

Proposition 7.5. Let b€ U". Then

i) we have

clc(b) if 1/b € ¢,
S(bs.0) = S(tw = O THPEw
o otherwise.
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ii) For F = ¢, or s we have
S(cs,F) =5 (cso, F) =S ((lp)g, F) =5 (co, F),

with (p > 1), and
cd¥ (b) if1/b € s,
snmy | O wpes
1%} otherwise.

Proof. 1) We have a € M (bs, c) if and only if D, € (¢ (2),c) and DA € ({y, ).

The matrix D,A is the triangle defined by (D,A),,, = — (D.A) = a, for all n,

n,n—1

with the convention (DOéA)l,O = 0, the other entries being equal to zero. Trivially we
have lim,, .o (DaA),, = 0 for all k£ and by Lemma 3.5 we have lim,, .o Y 7, [(Dad), ;| =

0 which implies M (bs, ¢) = ¢o. Since bs =l (X) C lo, we conclude
Co = M <€w760> cM (bsch) cM (bS,C) = Co,

and Proposition 6.1 and Lemma 6.4 can be applied.

ii) Case of S (esg, F). Since ¢y C ¢ C £ and ¢sp = (¢g)y, C ¢ We obtain
(7.6) s1 =M (cg,co) C M (cso,co) C M (esg,¢) C M (50, lo) -

Now a € M (¢sp,ls) if and only if D, € (csp,ls) and DA € (cp, ). Since
(co, o) = S1, we have |a,| + |a,—1] < K for all n and for some K > 0, and « € s;.
So M (csg, ls) = s1. Using (7.6) we conclude M (csg, F) = s1, for F' = ¢, ¢, or {y,
and Proposition 6.1 and Lemma 6.4 can be applied. This completes the proof of i).
Case of S (cs, F'). By similar arguments that above and noticing that c¢s = cy, we

obtain
(7.7) s1= M (cs,co) C M (cs,c) C M (cs,ls) = 51.

Case of S (({y)y,F). Let p > 1. We have a € M (({,)y;,lx) implies DA €

(€p, ) and by Lemma 3.6 we have |a,|? = O (1) (n — o0) and « € s;. This means



ON SEQUENCE SPACES EQUATIONS OF.... 101

M ((€y)5 . lso) C s1. We have (£,)5, C £, since A € (£,,(,) and
s1=M ({y,c0) C M ((€y)y;,c0) CM ((€y)5,¢) CM(()s,loo) C 81

So Proposition 6.1 and Lemma 6.4 can be applied. In the case p = 1, reasoning as
above and using the characterizations of (¢1, /) and (¢, cy) given in Lemma 3.6 we

obtain M ((¢1)y,, F') = s1 where F' = ¢y, ¢, or {,. This concludes the proof of ii). [

7.2.2. Solvability of the (SSE) (wo)s,+F, = Fy. Here we solve the (SSE) with operator
defined by (wp)y + s, = sp and (wp)y + ¢z = ¢. Note that z is a solution of the
second (SSE) if for every y € w we have y,,/b, — l; (n — 00) if and only if there are

u, v € w such that y = u 4+ v and

o) k
1 n
— g g u;| — 0 and O ly (n — oo) for some scalars [; and [s.
n L,

k=1 | i=1

First we state a lemma.
Lemma 7.1. We have M ((wo)y, ,loo) = M ((wo)s, c0) = M (Woo)ss s loo) = S(1/n), -

Proof. We have M ((wo)y, ,co) = M ((wo)y , {so). Indeed, we have o € M ((wo)y: , ¢o)
if and only if D,A € (wo,cp), but by Lemma 5.1 we have (wq,cp) = (wo, o), SO
we have @ € M ((wo)y, , ¢o) if and only if o € M ((wo)y , oo) and M ((wo)y, , co) =
M ((wo)y; ; o). Now we show M ((woo )y, , loc) = S(1/n), - For thislet a € M ((weo)y; s foo)-
Then we have D,A € (Wao, boo) - If we define the integer v, by 2/» < n < 2vntt — 1,

we obtain

= 1
70 =32 max [(Dad)l > a2 > o, .
v=0

v <k<ovtl_1

But by Lemma 5.1 we have DA € (Woo, o) implies 0 € lo and o € s¢1/5) . S0

n

we have shown M ((Weo )y s foo) C S(1/m), - Conversely, show s1/n) C M ((Weo)y; s foo)-

We have wo, C s(,) and since A€ (s(n)n, s(n)n) we obtain (S(n)n)E C S(n), and

M ((Woo )5y €oo) D M ((5(m), )53+ boo) D M (8(n),+ boo) = S(1/m), -



102 BRUNO DE MALAFOSSE

We conclude M ((weo)y; , oc) = S(1/m),- We obtain M ((wo)y; ,co) = S(1/n), using a

n

similar arguments. This concludes the proof. 0

Proposition 7.6. Let b € UT and let F = ¢, or {s. Then we have

" (b) if 1/b€ saym),,

%] otherwise.

S ((wo)g, F') = S (wo, F) =

Proof. We have (wg)y, C wp implies M (wo, cy) C M ((wo)y, o) and by Lemma 5.2

and Lemma 7.1 we obtain
S(i/my, = M (wo, co) C M ((wo)y, ;o) C M ((wo)y;,¢) C M ((wo)y s loo) = S(1/m),-

We then have M ((wo)y;, F') = s(1/n), for F'' = ¢y, ¢, or Lo, and Proposition 6.1 and
Lemma 6.4 can be applied. 0

Remark 4. From Proposition 7.1, Proposition 7.3, and Proposition 7.6 we have

S (x, F) = S (wo, F) for x = (wo)y;, (wo) o, OF (o) -

7.2.3. Solvability of the (SSE) I's, + F, = F,. We deal with the (SSE) I's + F, = F,
where F' = ¢, l, or A, and the (SSE) Ay + F, = F}, for F' = ¢, or (. A positive
sequence x is a solution of the (SSE) I'; + ¢, = ¢ if the next statement holds:
lim,, o Y /b, = [ if and only if there are two sequences u, v with y = u + v such that

1/n

lim, oo [>p_; uk] " = 0 and lim,, .o v, /x,, = I’ for some scalars [ and I and for all

y € w. We obtain the next result.

Theorem 7.1. Let b € UT. Then
i) for F =c, ls, or A we have
¥ (b) if 1/b e A,

STy, F)=8(T,F) =
%] otherwise.
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ii) for F' = ¢, or {+ we have

clf (b) if1/beT,
S(AZ>F) :S(A7F) =
%] otherwise.

Proof. 1) First let a € M (I'y, A). Then we have D,A € (I', A), and by Lemma 4.3

we obtain
[lan| (M~ + M~ 1)]" < K for all n and for some K > 0 and M > 2.

This implies

KM

|O‘n|% <
(1+ M)

< K’ for all n and for some K’ > 0.

3=

We conclude M (I'y, A) C A. Then it can easily be seen that I'y C T since A €
(T',T). Then by Lemma 4.1 we have

A= M(F,Co) C M(I‘Z,Co) C M(FE,C) C M(Fz,goo> C M(FE,A) C A.

So we obtain M (I's, F') = A for F = ¢y, ¢, {s, or A and Proposition 6.1 and Lemma
6.4 can be applied. This concludes the proof of i).

ii) As we have seen in Proposition 7.4 the operator A € (A, A) is bijective and it
is the same for ¥ € (A, A). Then we have Ay = A and by Lemma 6.4 we conclude
ii) holds. O

Example 7.7. The solutions of the (SSE) I's + A, = A, with u > 0 are determined

by kY <z, < kY for all n and for some kq, ko > 0.

Example 7.8. Fach of the (SSE) As, + F, = F,, where F' = ¢, or s; has no solution

for any given u > 0.
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