# ON SEQUENCE SPACES EQUATIONS OF THE FORM $E_T + F_x = F_b$ FOR SOME TRIANGLE T

#### BRUNO DE MALAFOSSE

ABSTRACT. Given any sequence  $a=(a_n)_{n\geq 1}$  of positive real numbers and any set E of complex sequences, we write  $E_a$  for the set of all sequences  $y=(y_n)_{n\geq 1}$  such that  $y/a=(y_n/a_n)_{n\geq 1}\in E$ ; in particular,  $s_a^{(c)}$  denotes the set of all sequences y such that y/a converges. We denote by  $w_\infty$  and  $w_0$  the sets of all sequences y such that  $\sup_{n}\left(n^{-1}\sum_{k=1}^n|y_k|\right)<\infty$  and  $\lim_{n\to\infty}\left(n^{-1}\sum_{k=1}^n|y_k|\right)=0$ . We also use the sets of analytic and entire sequences denoted by  $\mathbf{\Lambda}$  and  $\mathbf{\Gamma}$  and defined by  $\sup_{n}|y_n|^{1/n}<\infty$  and  $\lim_{n\to\infty}|y_n|^{1/n}=0$ , respectively. In this paper we explicitly calculate the solutions of (SSE) of the form  $E_T+F_x=F_b$  in each of the cases  $E=c_0$ , c,  $\ell_\infty$ ,  $\ell_p$ ,  $(p\geq 1)$ ,  $w_0$ ,  $\mathbf{\Gamma}$ , or  $\mathbf{\Lambda}$ , F=c, or  $\ell_\infty$ , and T is either of the triangles  $\Delta$ , or  $\Sigma$ , where  $\Delta$  is the operator of the first difference, and  $\Sigma$  is the operator defined by  $\Sigma_n y=\sum_{k=1}^n y_k$ . For instance the solvability of the (SSE)  $\Gamma_\Sigma+\mathbf{\Lambda}_x=\mathbf{\Lambda}_b$  consists in determining the set of all positive sequences  $x=(x_n)_n$  that satisfy the statement:  $\sup_n \left\{(|y_n|/b_n)^{1/n}\right\}<\infty$  if and only if there are  $u,v\in\omega$  with y=u+v such that

$$\lim_{n\to\infty}\left|\sum_{k=1}^n u_k\right|^{1/n}=0 \text{ and } \sup_n\left\{\left(\frac{|v_n|}{x_n}\right)^{1/n}\right\}<\infty \text{ for all } y.$$

<sup>2000</sup> Mathematics Subject Classification. Primary: 40C05; Secondary: 46A45.

Key words and phrases. BK space, spaces of strongly bounded sequences, sequence spaces equations, sequence spaces equations with operator.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

### 1. Introduction

We write  $\omega$  for the set of all complex sequences  $y=(y_n)_{n\geq 1},\ \ell_\infty,\ c$  and  $c_0$ for the sets of all bounded, convergent and null sequences, respectively, also  $\ell_p$  $\{y \in \omega : \sum_{k=1}^{\infty} |y_k|^p < \infty\}$  for  $1 \leq p < \infty$ . We then consider the sets of analytic and entire sequences denoted by  $\Lambda$  and  $\Gamma$  and defined by  $\sup_n |y_n|^{1/n} < \infty$  and  $\lim_{n\to\infty} |y_n|^{1/n} = 0$ , respectively. If  $y, z \in \omega$ , then we write  $yz = (y_n z_n)_{n>1}$ . Let  $U = \{y \in \omega : y_n \neq 0\}$  and  $U^+ = \{y \in \omega : y_n > 0\}$ . We write  $z/u = (z_n/u_n)_{n>1}$  for all  $z \in \omega$  and all  $u \in U$ , in particular 1/u = e/u, where e = 1 is the sequence with  $e_n = 1$  for all n. Finally, if  $a \in U^+$  and E is any subset of  $\omega$ , then we put  $E_a = (1/a)^{-1} * E = \{y \in \omega : y/a \in E\}$ . Let E and F be subsets of  $\omega$ . Then the set  $M\left(E,F\right)=\left\{ y\in\omega:yz\in F\text{ for all }z\in E\right\}$  is called the multiplier space of E and F. In [2], the sets  $s_a$ ,  $s_a^0$  and  $s_a^{(c)}$  were defined for positive sequences a by  $(1/a)^{-1} * E$ and  $E=\ell_{\infty},c_0,c$ , respectively. In [3] the sum  $E_a+F_b$  and the product  $E_a*F_b$ were defined where E, F are any of the symbols s,  $s^0$ , or  $s^{(c)}$ . Then in [7] were given solvability of sequences spaces equations inclusion  $G_b \subset E_a + F_b$  where E, F, $G \in \{s^0, s^{(c)}, s\}$  and some applications to sequence spaces inclusions with operators. As above we define the sets of a-analytic and a-entire sequences, by  $(1/a)^{-1}*E$  and  $E = \Lambda$ , or  $\Gamma$ , (see [4]). Recall that the spaces  $w_{\infty}$  and  $w_0$  of strongly bounded and summable sequences are the sets of all y such that  $(n^{-1}\sum_{k=1}^{n}|y_k|)_n$  is bounded and tend to zero respectively. These spaces were studied by Maddox [19] and Malkowsky [20]. In [10] were given some properties of well known operators defined by the sets  $W_a = (1/a)^{-1} * w_{\infty} \text{ and } W_a^0 = (1/a)^{-1} * w_0.$ 

In this paper we extend some results given in [15, 7, 5, 6, 14, 8]. In [14] for given sequences a and b was determined the set of all positive sequences x for which  $y_n/b_n \to l$  if and only if there are sequences u and v for which y = u + v and  $u_n/a_n \to 0$ ,  $v_n/x_n \to l'$   $(n \to \infty)$  for all y and for some scalars l and l'. This

statement is equivalent to the sequence spaces equation  $s_a^0 + s_x^{(c)} = s_b^{(c)}$ . In [8] was determined the set of all  $x \in U^+$  such that for every sequence y, we have  $y_n/b_n \to l$ if and only if there are sequences u and v with y = u + v and  $|u_n/a_n|^{1/n} \to 0$  and  $v_n/x_n \to l'$   $(n \to \infty)$  for some scalars l and l'. This statement means  $\Gamma_a + s_x^{(c)} = s_b^{(c)}$ . So we are led to deal with special sequence spaces equations (SSE) with operator, which are determined by an identity, for which each term is a sum or a sum of products of sets of the form  $(E_a)_T$  and  $(E_{f(x)})_T$  where f maps  $U^+$  to itself, E is a linear space of sequences, x is the unknown and T is a triangle. It can be found in [6] a solvability of the (SSE)  $E_a + (c_x)_{B(r,s)} = c_x$  where E = s,  $s^0$ , or  $s^{(c)}$  and x is the unknown. In [14] were determined the sets of all positive sequences x that satisfy each of the systems  $s_a^0 + (s_x)_{\Delta} = s_b$ ,  $s_x \supset s_b$  and  $s_a + (c_x)_{\Delta} = c_b$ ,  $c_x \supset c_b$ . Then it can be found a resolution of the (SSE) with operators defined by  $(E_a)_{C(\lambda)D_{\tau}} + (c_x)_{C(\mu)D_{\tau}} = c_b$ with  $E = c_0$ , or  $\ell_{\infty}$ . Recently in [9] can be found a study on the (SSE) with operator  $(E_a)_{C(\lambda)C(\mu)} + (E_x)_{C(\lambda\sigma)C(\mu)} = E_b$ , where  $b \in \widehat{C}_1$  and E is any of the sets  $\ell_\infty$ , or  $c_0$ . For  $E=c_0$  the resolution of this equation consists in determining the set of all  $x\in U^+$ such that for every sequence y the condition  $y_n/b_n \to 0 \ (n \to \infty)$  holds if and only if there are  $u, v \in \omega$  such that y = u + v and

$$(1.1) \quad \frac{1}{\lambda_n a_n} \sum_{k=1}^n \left( \frac{1}{\mu_k} \sum_{i=1}^k u_i \right) \to 0 \text{ and } \frac{1}{\lambda_n \sigma_n x_n} \sum_{k=1}^n \left( \frac{1}{\mu_k} \sum_{i=1}^k v_i \right) \to 0 \ (n \to \infty).$$

In this paper we deal with a class of (SSE) with operators of the form  $E_T + F_x = F_b$ , where T is either  $\Delta$  or  $\Sigma$  and E is any of the sets  $c_0$ , c,  $\ell_\infty$ ,  $\ell_p$ ,  $(p \ge 1)$ ,  $w_0$ ,  $\Gamma$ , or  $\Lambda$  and F = c,  $\ell_\infty$  or  $\Lambda$ . For instance the solvability of the (SSE) defined by the equation  $\Gamma_\Sigma + \Lambda_x = \Lambda_b$  consists in determining the set of all positive sequences  $x = (x_n)_n$  that satisfy the statement:  $\sup_n \left\{ (|y_n|/b_n)^{1/n} \right\} < \infty$  if and only if there are  $u, v \in \omega$  with

y = u + v such that

$$\lim_{n \to \infty} \left| \sum_{k=1}^n u_k \right|^{1/n} = 0 \text{ and } \sup_n \left\{ \left( \frac{|v_n|}{x_n} \right)^{1/n} \right\} < \infty \text{ for all } y.$$

This paper is organized as follows. In Section 2 we recall some definitions and results on sequence spaces and matrix transformations. In Section 3 are recalled general results on the multiplier M(E,F) and on the classes  $(\ell_{\infty},c)$  and  $(\ell_p,F)$  where F is any of the sets  $c_0$ , c, or  $\ell_{\infty}$ . In Section 4 we deal with the sets of analytic and entire sequences. In Section 5 we deal with the sets of strongly and summable sequences by the Cesàro method and recall some results of the multiplier M(E,F) where E and F are any of the sets  $w_0$ ,  $w_{\infty}$ ,  $c_0$ , c,  $\ell_{\infty}$ , or  $\ell_1$ . In Section 6 we recall some results on the solvability of (SSE) of the form  $E_a + F_x = F_b$  with  $\mathbf{1} \in F$  and we deal we deal with the solvability (SSE) with operator  $E_T + F_x = F_b$  in the general case. In Section 7 we apply the previous results to solve (SSE) using the operator of the first difference and that are of the form  $E_{\Delta} + F_x = F_b$ , where  $E = c_0$ , c,  $\ell_{\infty}$ ,  $\ell_p$ ,  $(p \ge 1)$ ,  $w_0$ ,  $\Gamma$ , or  $\Lambda$  and F = c, or  $\ell_{\infty}$ . Then using the operator  $\Sigma$  we solve (SSE) of the form  $E_{\Sigma} + F_x = F_b$ , where  $E = c_0$ , c,  $\ell_{\infty}$ ,  $\ell_p$ ,  $(p \ge 1)$ ,  $w_0$ ,  $\Gamma$ , or  $\Lambda$  and F = c,  $\ell_{\infty}$ , and the (SSE)  $\Gamma_{\Sigma} + \Lambda_x = \Lambda_b$ .

## 2. Premilinaries and notations

An FK space is a complete metric space, for which convergence implies coordinatewise convergence. A BK space is a Banach space of sequences that is, an FK space. A BK space E is said to have AK if for every sequence  $y = (y_k)_{k\geq 1} \in E$ , then  $y = \lim_{p\to\infty} \sum_{k=1}^p y_k e^{(k)}$ , where  $e^{(k)} = (0, ..., 1, ...)$ , 1 being in the k-th position.

For a given infinite matrix  $A = (\mathbf{a}_{nk})_{n,k\geq 1}$  we define the operators  $A_n = (\mathbf{a}_{nk})_{k\geq 1}$  for any integer  $n \geq 1$ , by  $A_n y = \sum_{k=1}^{\infty} \mathbf{a}_{nk} y_k$ , where  $y = (y_k)_{k\geq 1}$ , and the series are assumed convergent for all n. So we are led to the study of the operator A defined by  $Ay = (A_n y)_{n\geq 1}$  mapping between sequence spaces. When A maps E into F, where

E and F are subsets of  $\omega$ , we write that  $A \in (E, F)$ , (cf. [19, 25]). It is well known that if E has AK, then the set  $\mathcal{B}(E)$  of all bounded linear operators L mapping in E, with norm  $\|L\| = \sup_{y \neq 0} (\|L(y)\|_E / \|y\|_E)$  satisfies the identity  $\mathcal{B}(E) = (E, E)$ . We denote by  $\omega$ ,  $c_0$ , c,  $\ell_\infty$  the sets of all sequences, the sets of null, convergent and bounded sequences. For any subset F of  $\omega$ , we write  $F_A = \{y \in \omega : Ay \in F\}$ . By  $\Sigma$  we denote the operator defined by  $\Sigma_n y = \sum_{k=1}^n y_k$  for all sequences y. Then we write  $cs = c_{\Sigma}$ ,  $bs = (\ell_{\infty})_{\Sigma}$  and  $cs_0 = (c_0)_{\Sigma}$  for the sets of all convergent, bounded and convergent to zero series. More precisely we have  $cs = \{y : \sum_{k=1}^{\infty} y_k \text{ is convergent}\}$ ,  $bs = \{y : (\sum_{k=1}^n y_k)_n \in \ell_\infty\}$  and  $cs_0 = \{y : (\sum_{k=1}^n y_k)_n \in c_0\}$ . Let  $U^+ \subset \omega$  be the set of all sequences  $\mathbf{u} = (u_n)_{n\geq 1}$  with  $u_n > 0$  for all n. Then for given sequence  $\mathbf{u} = (u_n)_{n\geq 1} \in \omega$  we define the diagonal matrix  $D_{\mathbf{u}}$  by  $[D_{\mathbf{u}}]_{nn} = u_n$  for all n. It is interesting to rewrite the set  $E_{\mathbf{u}}$  using a diagonal matrix. Let E be any subset of  $\omega$  and  $\mathbf{u} \in U^+$  we have

$$E_{\mathbf{u}} = D_{\mathbf{u}}E = \{ y = (y_n)_n \in \omega : y/\mathbf{u} \in E \}.$$

We will use the sets  $s_a^0$ ,  $s_a^{(c)}$ ,  $s_a$  and  $\ell_a^p$  defined as follows (cf. [2]). For given  $a \in U^+$  and  $p \geq 1$  we put  $D_a c_0 = s_a^0$ ,  $D_a c = s_a^{(c)}$ ,  $D_a \ell_\infty = s_a$ , and  $D_a \ell^p = \ell_a^p$ . We will frequently write  $c_a$  instead of  $s_a^{(c)}$  to simplify. Each of the spaces  $D_a E$ , where  $E \in \{c_0, c, \ell_\infty\}$  is a BK space normed by  $||y||_{s_a} = \sup_{n \geq 1} (|y_n|/a_n)$  and  $s_a^0$  has AK. If  $a = (r^n)_{n \geq 1}$  with r > 0, we write  $s_r$ ,  $s_r^0$  and  $s_r^{(c)}$  for the sets  $s_a$ ,  $s_a^0$  and  $s_a^{(c)}$  respectively. When r = 1, we obtain  $s_1 = \ell_\infty$ ,  $s_1^0 = c_0$  and  $s_1^{(c)} = c$ . Recall that  $S_1 = (s_1, s_1)$  is a Banach algebra and  $(c_0, s_1) = (c, \ell_\infty) = (s_1, s_1) = S_1$ . We have  $A \in S_1$  if and only if

(2.1) 
$$\sup_{n} \left( \sum_{k=1}^{\infty} |\mathbf{a}_{nk}| \right) < \infty.$$

We will also use the characterization of  $(c_0, c_0)$ . We have  $A \in (c_0, c_0)$  if and only if (2.1) holds and  $\lim_{n\to\infty} \mathbf{a}_{nk} = 0$  for all k. We will use the well known property,

stated as follows. For any given triangle T, the operator T' represented by a triangle belongs to  $(E_T, F)$  if and only if  $T'T^{-1} \in (E, F)$  for any subsets  $E, F \subset \omega$ .

- 3. The multipliers of some sets and matrix transformations
- 3.1. The multipliers of classical sets. First we need to recall some well known results. Let y and z be sequences and let E and F be two subsets of  $\omega$ , we then write  $yz = (y_n z_n)_n$  and

$$M(E, F) = \{ y \in \omega : yz \in F \text{ for all } z \in E \},$$

M(E, F) is called the *multiplier space of* E *and* F. In the following we will use the next well known results.

**Lemma 3.1.** Let E,  $\widetilde{E}$ , F and  $\widetilde{F}$  be arbitrary subsets of  $\omega$ . Then

(i) 
$$M(E, F) \subset M(\widetilde{E}, F)$$
 for all  $\widetilde{E} \subset E$ ,

(ii) 
$$M(E, F) \subset M\left(E, \widetilde{F}\right)$$
 for all  $F \subset \widetilde{F}$ .

**Lemma 3.2.** Let  $a, b \in U^+$  and let E and F be two subsets of  $\omega$ . Then  $D_aE \subset D_bF$  if and only if  $a/b \in M(E, F)$ .

**Lemma 3.3.** Let  $a, b \in U^+$  and  $E, F \subset \omega$ . Then  $A \in (D_aE, D_bF)$  if and only if  $D_{1/b}AD_a \in (E, F)$ .

Notice that this lemma can be extended to the case when  $a \in \omega$  and b is a nonzero sequence.

By [3, Lemma 3.1, p. 648] and [3, Example 1.28, p. 157], we obtain the next result.

Lemma 3.4. We have

i) 
$$M(c, c_0) = M(\ell_{\infty}, c) = M(\ell_{\infty}, c_0) = c_0 \text{ and } M(c, c) = c;$$

ii) 
$$M(E, \ell_{\infty}) = M(c_0, F) = \ell_{\infty}$$
 for  $E, F = c_0, c, or \ell_{\infty}$ .

3.2. The classes  $(\ell_{\infty}, c)$  and  $(\ell_p, F)$  where F is any of the sets  $c_0$ , c, or  $\ell_{\infty}$ . As a direct consequence of the famous Kojima-Shur Theorem we obtain the next lemma.

**Lemma 3.5.** Let  $A = (\mathbf{a}_{nk})_{nk}$  be an infinite matrix. Then

i) if  $\lim_{n\to\infty} \mathbf{a}_{nk} = 0$  for all k, then  $A \in (\ell_{\infty}, c)$  if and only if

(3.1) 
$$\lim_{n \to \infty} \sum_{k=1}^{\infty} |\mathbf{a}_{nk}| = 0.$$

ii)  $A \in (\ell_{\infty}, c_0)$  if and only if (3.1) holds.

For the convenience of the reader we recall the next well-known result, (see for instance [22, Theorem 1.37, pp. 160-161]), which will be frequently used in the following.

**Lemma 3.6.** i) Case 1 . Let <math>q = p/(p-1). Then we have

a)  $A \in (\ell_p, \ell_\infty)$  if and only if condition

$$\sup_{n} \left( \sum_{k=1}^{\infty} |\mathbf{a}_{nk}|^{q} \right) < \infty$$

holds.

- b)  $A \in (\ell_p, c_0)$  if and only if condition (3.2) holds and  $\lim_{n\to\infty} \mathbf{a}_{nk} = 0$  for all k.
- c)  $A \in (\ell_p, c)$  if and only if condition (3.2) holds and  $\lim_{n\to\infty} \mathbf{a}_{nk} = l_k$  for some  $l_k \in \mathbb{C}$  and for all k.
  - ii) Case p = 1. We have
  - a)  $A \in (\ell_1, \ell_\infty)$  if and only if

$$\sup_{n,k} |\mathbf{a}_{nk}| < \infty$$

holds.

- b)  $A \in (\ell_1, c_0)$  if and only if condition (3.3) holds and  $\lim_{n\to\infty} \mathbf{a}_{nk} = 0$  for all k.
- c)  $A \in (\ell_1, c)$  if and only if condition (3.3) holds and  $\lim_{n\to\infty} \mathbf{a}_{nk} = l_k$  for some  $l_k \in \mathbb{C}$  and for all k.

Remark 1. We deduce from Lemma 3.6 the identity  $M(\ell_p, \chi) = \ell_{\infty}$  for  $\chi = c_0$ , c, or  $\ell_{\infty}$  and  $(p \ge 1)$ .

## 4. On the sets of analytic and entire sequences

4.1. Some definitions and properties of  $\Lambda$  and  $\Gamma$ . A sequence  $y = (y_n)_{n\geq 1}$  is said to be analytic if  $\sup_n |y_n|^{1/n} < \infty$ . The linear space of all analytic sequences is denoted by  $\Lambda$ . It is well known that  $\Gamma$  is the linear space of all entire sequences defined by  $\lim_{n\to\infty} |y_n|^{1/n} = 0$ . The sets  $\Lambda$  and  $\Gamma$  are metric spaces with the metric defined for any sequences y, z, by  $d(y,z) = \sup_n |y_n - z_n|^{1/n}$ . Then  $\Lambda$  is an FK space since it is a complete metric space, and convergence implies coordinatewise convergence; it is the same for  $\Gamma$  since it is a closed subset of  $\Lambda$ . For a study of the sets  $\Lambda$  and  $\Gamma$ , we refer the reader to [23].

Concerning the multipliers  $M(\Gamma, F)$ ,  $M(\Lambda, F)$ ,  $M(E, \Lambda)$  and  $M(E, \Gamma)$  for E,  $F \in \{c_0, c, \ell_\infty, \Gamma, \Lambda\}$  recall the following.

Lemma 4.1. [8, Proposition 4.2] We have

- (i)  $M(\Gamma, F) = \Lambda$  for  $F \in \{c_0, c, \ell_\infty, \Gamma, \Lambda\}$ ,
- (ii)  $M(\mathbf{\Lambda}, F) = \mathbf{\Gamma}$  for  $F \in \{c_0, c, \ell_\infty, \mathbf{\Gamma}\}$ ,
- (iii)  $M(E, \Lambda) = \Lambda$  for  $E \in \{c_0, c, \ell_\infty, \Gamma, \Lambda\}$ ,
- (iv)  $M(E, \Gamma) = \Gamma$  for  $E \in \{c_0, c, \ell_\infty, \Lambda\}$ .
- 4.2. Some properties of the sets  $\Gamma_a$  and  $\Lambda_a$ . For  $a \in U^+$  we put  $\Lambda_a = D_a \Lambda$ . So  $y \in \Lambda_a$  if  $\sup_n (|y_n|/a_n)^{1/n} < \infty$  and  $\Lambda_a$  is called the set of all a-analytic sequences. For a = 1 we write  $\Lambda_1 = \Lambda$ . Similarly we put  $\Gamma_a = D_a \Gamma$  and  $y = (y_n)_{n \geq 1} \in \Gamma_a$  if and only if  $\lim_{n \to \infty} (|y_n|/a_n)^{1/n} = 0$ , we write  $\Gamma_1 = \Gamma$  and  $\Gamma_a$  is the set of all a-entire sequences.

In the following we use the triangle  $C(\lambda)$  defined for any nonzero sequence  $\lambda = (\lambda_n)_{n\geq 1}$  by  $[C(\lambda)]_{nk} = 1/\lambda_n$  for  $k\leq n$ . It can be shown that the triangle  $\Delta(\lambda)$  whose

the nonzero entries are defined by  $[\Delta(\lambda)]_{nn} = \lambda_n$ , for all n and by  $[\Delta(\lambda)]_{n,n-1} = -\lambda_{n-1}$ , for all  $n \geq 2$ , is the inverse of  $C(\lambda)$ , that is,  $C(\lambda)(\Delta(\lambda)y) = \Delta(\lambda)(C(\lambda)y)$  for all  $y \in \omega$ . It is well known that  $\Delta = \Delta(1) \in (\omega, \omega)$ , is the operator of the first difference and we have  $\Delta y_n = y_n - y_{n-1}$  for all  $n \geq 1$  with  $y_0 = 0$ . The inverse  $\Delta^{-1} = \Sigma$  is defined by  $\Sigma_{nk} = 1$  for  $k \leq n$ , (see for instance [2, 13]). For any given  $a \in U^+$  we have  $[C(a)a]_n = (a_1 + \ldots + a_n)/a_n$  for all n. Then we let

$$\widehat{C}_{\mathbf{\Lambda}} = \left\{ a \in U^{+} : \left[ C\left( a \right) a \right]_{n} \leq k^{n} \text{ for all } n \text{ and for some } k > 0 \right\}.$$

We obtain the next results which is a consequence of [8, Proposition 3.1, p. 101].

## **Lemma 4.2.** Let $a, b \in U^+$ . Then

a) We have  $\Lambda_a = \Lambda_b$  if and only if  $\Gamma_a = \Gamma_b$ , and the equality  $\Lambda_a = \Lambda_b$  is equivalent to the statement  $k_1^n \leq a_n/b_n \leq k_2^n$  for all n and for some  $k_1$ ,  $k_2 > 0$ .

b) 
$$(\mathbf{\Lambda}_a)_{\Delta} = \Lambda_b$$
 if and only if  $\Lambda_a = \Lambda_b$  and  $a \in \widehat{C}_{\mathbf{\Lambda}}$ .

Now we recall some results on the spaces  $c_0(p)$  and  $\ell_{\infty}(q)$  that generalize the sets  $\Lambda$  and  $\Gamma$ .

4.3. On the sets  $(c_0(p), c_0(q))$  and  $(c_0(p), \ell_\infty(q))$ . Let  $p = (p_n)_{n \ge 1} \in U^+ \cap \ell_\infty$  be a sequence and put

$$\ell_{\infty}(p) = \left\{ y = (y_n)_{n \ge 1} : \sup_{n} |y_n|^{p_n} < \infty \right\},$$

$$c_0(p) = \left\{ y = (y_n)_{n \ge 1} : \lim_{n \to \infty} |y_n|^{p_n} = 0 \right\}.$$

The set  $c_0(p)$  is a complete paranormed space with  $g(y) = \sup_n (|y_n|^{p_n/L})$ , where  $L = \max\{1, \sup_n p_n\}$ , ([18, Theorem 1]) and  $\ell_{\infty}(p)$  is a paranormed space with g only if  $\inf_n p_n > 0$  in which case  $\ell_{\infty}(p) = \ell_{\infty}$ , ([24, Theorem 9]). So we can state the next lemma, where for any given integer k, we denote by  $\mathbb{N}_k$  the set of all integers  $n \geq k$ .

**Lemma 4.3.** [16, Theorem 5.1.13] Let  $p, q \in U^+ \cap \ell_{\infty}$ .

i)  $A \in (c_0(p), c_0(q))$  if and only if for all  $N \in \mathbb{N}_1$  there is  $M \in \mathbb{N}_2$  such that

$$\sup_{n} \left( N^{1/q_n} \sum_{k=1}^{\infty} |\mathbf{a}_{nk}| M^{-1/p_k} \right) < \infty \text{ and } \lim_{n \to \infty} |\mathbf{a}_{nk}|^{p_n} = 0 \text{ for all } k.$$

ii)  $A \in (c_0(p), \ell_\infty(q))$  if and only if there is  $M \in \mathbb{N}_2$  such that

$$\sup_{n} \left( \sum_{k=1}^{\infty} |\mathbf{a}_{nk}| \, M^{-1/p_k} \right)^{q_n} < \infty.$$

**Example 4.1.** In this way we have  $A \in (\Gamma, \Lambda)$  if and only if there is  $M \geq 2$  integer such that  $\sup_n \left( \sum_{k=1}^{\infty} |\mathbf{a}_{nk}| \ M^{-k} \right)^{1/n} < \infty$ , since  $\Gamma = c_0(p)$  and  $\Lambda = \ell_{\infty}(p)$  with  $p_n = 1/n$ .

- 5. The spaces of strongly bounded and summable sequences by the Cesàro method
- 5.1. The sets  $w_{\infty}$  and  $w_0$ . Recall that when  $\lambda_n = n$  for all n, the triangle  $C(\lambda)$  is the well known Cesàro operator  $C_1$ . In the following we will use the spaces of strongly bounded and summable sequences by the Cesàro method of order 1 defined by

$$w_{\infty} = \{ y \in \omega : C_1 | y | \in \ell_{\infty} \} \text{ and } w_0 = \{ y \in \omega : C_1 | y | \in c_0 \},$$

where  $|y| = (|y_n|)_n$ . These spaces were studied by Maddox [17] and Malkowsky, see for instance [20]. It is well known that the sets  $w_{\infty}$  and  $w_0$  are BK spaces normed by  $||y||_{w_{\infty}} = \sup_{n} (n^{-1} \sum_{k=1}^{n} |y_k|)$ . In [21] it was shown that the class  $(w_{\infty}, w_{\infty})$  is a Banach algebra normed by  $||A||_{(w_{\infty}, w_{\infty})}^* = \sup_{y \neq 0} (||Ay||_{w_{\infty}} / ||y||_{w_{\infty}})$ .

5.2. Matrix transformations in the sets  $w_0$  and  $w_\infty$ . Here we recall some results that are direct consequence of [1, Theorem 2.4]. For this we let  $\chi_n = \sum_{\nu=1}^{\infty} 2^{\nu} \max_{2^{\nu} \leq k \leq 2^{\nu+1}-1} |\mathbf{a}_{nk}|$ . Then we can state the following.

**Lemma 5.1.** [1] (i) We have  $(w_0, \ell_\infty) = (w_\infty, \ell_\infty)$  and  $A \in (w_\infty, \ell_\infty)$  if and only if

$$\sup_{n} \chi_n < \infty,$$

- (ii)  $A \in (w_{\infty}, c_0)$  if and only if  $\lim_{n \to \infty} \chi_n = 0$ .
- (iii)  $A \in (w_0, c_0)$  if and only if (5.1) holds and  $\lim_{n\to\infty} \mathbf{a}_{nk} = 0$  for all k.
- 5.3. The multiplier M(E, F) where E and F are any of the sets  $w_0, w_\infty, c_0, c, \ell_\infty$ , or  $\ell_1$ . In the following we will use the next results.

**Lemma 5.2.** [11, Lemma 4.2] We have

i) 
$$M(w_0, F) = M(w_{\infty}, \ell_{\infty}) = s_{(1/n)_n} \text{ for } F = c_0, c, \text{ or } \ell_{\infty}.$$

ii) 
$$M(w_{\infty}, c_0) = s_{(1/n)_n}^0$$
.

iii) 
$$M(\ell_1, w_\infty) = s_{(n)_n}$$
 and  $M(\ell_1, w_0) = s_{(n)_n}^0$ .

iv) 
$$M(E, w_0) = w_0$$
 for  $E = c$ , or  $\ell_{\infty}$ .

6. On the (SSE) 
$$E_a + F_x = F_b$$

In this section we apply the previous results to the solvability of the (SSE)  $E_a + F_x = F_b$  with  $\mathbf{1} \in F$ .

6.1. Regular sequence spaces equations. For  $b \in U^+$  and for any subset F of  $\omega$ , we denote by  $cl^F(b)$  the equivalent class for the equivalence relation  $R_F$  defined by

$$xR_Fy$$
 if  $D_xF = D_yF$  for  $x, y \in U^+$ .

It can easily be seen that  $cl^F(b)$  is the set of all  $x \in U^+$  such that  $x/b \in M(F, F)$  and  $b/x \in M(F, F)$ , (cf. [14]). We then have  $cl^F(b) = cl^{M(F,F)}(b)$ . For instance  $cl^c(b)$  is the set of all  $x \in U^+$  such that  $D_x c = D_b c$ , that is,  $s_x^{(c)} = s_b^{(c)}$ . This is the set of all sequences  $x \in U^+$  such that  $x_n \sim Cb_n(n \to \infty)$  for some C > 0. In [14] we denote by  $cl^\infty(b)$  the class  $cl^{\ell_\infty}(b)$ . Recall that  $cl^\infty(b)$  is the set of all  $x \in U^+$ , such

that  $K_1 \leq x_n/b_n \leq K_2$  for all n and for some  $K_1$ ,  $K_2 > 0$ . In [8, Proposition 3.1] the class  $cl^{\Lambda}(b)$  is the set of all  $x \in U^+$ , such that  $k_1^n \leq x_n/b_n \leq k_2^n$  for all n and for some  $k_1, k_2 > 0$ . Note that the relations  $R_{\Lambda}$  and  $R_{\Gamma}$  are equivalent, since we have  $M(\Lambda, \Lambda) = M(\Gamma, \Gamma) = \Lambda$ .

For any given linear spaces of sequences X and Y, we have  $X+Y=\{u+v:u,v\in\omega\}$ . It can easily be seen that for any given linear subspaces X, Y and Z of  $\omega$ , the inclusion  $X+Y\subset Z$  holds if and only if  $X\subset Z$  and  $Y\subset Z$ . In this way, for  $a,b\in U^+$ , we define the set

$$S(E, F) = \{x \in U^+ : E_a + F_x = F_b\},\$$

where E, F are linear subspaces of  $\omega$ . For instance,  $S(w_{\infty}, \ell_{\infty})$  is the set of all sequences  $x \in U^+$  that satisfy the statement:  $\sup_n (|y_n|/b_n) < \infty$  if and only if there are two sequences u and v for which y = u + v and

$$\sup_{n} \left( \frac{1}{n} \sum_{k=1}^{n} \frac{|u_k|}{a_k} \right) < \infty \text{ and } \sup_{n} \left( \frac{|v_n|}{x_n} \right) < \infty \text{ for all } y.$$

**Definition 6.1.** We say that S(E, F), (or the equation  $E_a + F_x = F_b$ ), is regular if

$$\mathcal{S}(E,F) = \begin{cases} cl^{M(F,F)}(b) & \text{if } a/b \in M(E,F), \\ \emptyset & \text{if } a/b \notin M(E,F). \end{cases}$$

Note that  $E_a + F_x = F_b$  is not regular in general. Indeed for  $E = F = \ell_{\infty}$  we have  $M(\ell_{\infty}, \ell_{\infty}) = \ell_{\infty}$  and if  $a/b \in \ell_{\infty} \setminus c_0$  and  $s_a = s_b$  we have  $S(\ell_{\infty}, \ell_{\infty}) = s_b \cap U^+ \neq cl^{M(F,F)}(b)$ , (cf. [15, Theorem 11, pp. 916-917]). In particular the solutions of the (SSE)  $\ell_{\infty} + s_x = \ell_{\infty}$  are determined by  $x \in \ell_{\infty} \cap U^+$ , that is,  $0 < x_n \leq M$  for all n and for some M > 0.

6.2. Solvability of (SSE) of the form  $E_a + F_x = F_b$ . For instance the solvability of the equation  $s_a + s_x^{(c)} = s_b^{(c)}$  for  $a, b \in U^+$  consists in determining the set of all  $x \in U^+$  that satisfy the next statement:  $y_n/b_n \to l$   $(n \to \infty)$  if and only if there are

two sequences u, v such that y = u + v and

$$\frac{|u_n|}{a_n} \le K$$
 and  $\frac{v_n}{x_n} \to l'$   $(n \to \infty)$  for all  $y$ .

In the following we will use the condition

(6.1) 
$$\chi \subset \chi(D_{\alpha}) \text{ for all } \alpha \in c(1),$$

where  $\chi \subset \omega$  is any linear space, and c(1) is the set of all sequences that tend to 1. It can easily seen that this condition is true for any of the spaces F = c,  $s_1$ , or  $\Lambda$ . To state the next results we also need the next conditions:

$$(6.2) 1 \in F,$$

$$(6.3) F \subset M(F,F).$$

We then recall the next result which is a direct consequence of [8, Theorem 5.1, pp. 106-107].

**Lemma 6.1.** Let  $a, b \in U^+$  and let E, F be two linear subspaces of  $\omega$ . We assume F satisfies the conditions in (6.1), (6.2), (6.3), and that

$$(6.4) M(E,F) \subset M(E,c_0).$$

Then S(E, F) is regular.

In all what follows we are interested in the study of the (SSE)

$$E + F_x = F_b$$
.

In this way replacing a by  $\mathbf{1}$  in the previous lemma and noticing that the conditions in (6.2) and (6.3) imply M(F, F) = F we obtain the following lemma.

**Lemma 6.2.** Let  $b \in U^+$  and let E, F be two linear subspaces of  $\omega$ . We assume F satisfies the conditions in (6.1), (6.2), (6.3), and (6.4). Then S(E, F) is regular and we have

$$S(E,F) = \begin{cases} cl^{F}(b) & \text{if } 1/b \in M(E,F), \\ \varnothing & \text{if } 1/b \notin M(E,F). \end{cases}$$

As a direct consequence of Lemma 6.2 we obtain the next results.

**Lemma 6.3.** Let  $b \in U^+$  and let  $p \ge 1$ . Then each of the next (SSE) is regular, where

- i)  $\Gamma + \Lambda_x = \Lambda_b$ .
- ii)  $E + c_x = c_b$ , for  $E = \Gamma$ ,  $\Lambda$ ,  $c_0$ ,  $\ell_{\infty}$ ,  $w_0$  and  $\ell_p$ .
- iii)  $E + s_x = s_b$ , for  $E = \Gamma$ ,  $\Lambda$ ,  $c_0$ ,  $w_0$ ,  $w_\infty$  and  $\ell_p$ .

Proof. Statement i) and statements ii) and iii) with  $E = \Gamma$ ,  $\Lambda$ , were shown in [8, Proposition 5.1]. Statements ii) with  $E = c_0$ , or  $\ell_{\infty}$  and iii) with  $E = c_0$ , were shown in [14, Theorem 4.4, p. 7]. Statements ii) with  $E = w_0$  and iii) with  $E = w_0$ , or  $w_{\infty}$  were shown in [11, Theorem 6.5]. Statements ii) and iii) with  $E = \ell_p$  ( $p \ge 1$ ) were shown in [11, Remark 6.4].

More precisely we obtain the following lemma which is a direct consequence of Lemma 6.3.

**Lemma 6.4.** Let  $b \in U^+$ . We have

i) a)  $S\left(\ell_{\infty},c\right) = \begin{cases} cl^{c}\left(b\right) & \text{if } 1/b \in c_{0},\\ \varnothing & \text{otherwise.} \end{cases}$ 

b) Let F be any of the sets c,  $s_1$ , or  $\Lambda$ . Then we have

$$S\left(\mathbf{\Gamma},F\right) = \begin{cases} cl^{F}\left(b\right) & \text{if } 1/b \in \mathbf{\Lambda}, \\ \varnothing & \text{otherwise.} \end{cases}$$

- ii) For F = c, or  $s_1$  we have
- a) Let  $p \ge 1$ . We have  $S(\ell_p, F) = S(c_0, F)$  and

$$S\left(c_{0},F\right)=\left\{\begin{array}{ll}cl^{F}\left(b\right) & if\ 1/b\in s_{1},\\ \varnothing & otherwise.\end{array}\right.$$

b) 
$$S\left(w_{0},F\right)=\left\{ \begin{array}{ll} cl^{F}\left(b\right) & if \ 1/b\in s_{\left(1/n\right)_{n}},\\ \varnothing & otherwise. \end{array} \right.$$

c) 
$$S\left(\mathbf{\Lambda},F\right) = \begin{cases} cl^{F}\left(b\right) & \text{if } 1/b \in \mathbf{\Gamma},\\ \varnothing & \text{otherwise.} \end{cases}$$

Remark 2. The results for  $S(\ell_p, c)$  and  $S(\ell_p, \ell_\infty)$  come from Lemma 3.6 where  $M(\ell_p, c) = M(\ell_p, \ell_\infty) = \ell_\infty$ .

Remark 3. Notice that the set S(c,c) is not regular since by [8, Theorem 5.2, p. 12] we have  $S(c,c) = cl^c(b)$  for  $1/b \in c_0$ ;  $S(c,c) = c_b$  for  $1/b \in c \setminus c_0$ , and  $S(c,c) = \emptyset$  for  $1/b \notin c$ .

**Example 6.1.** Consider the set of all  $x \in U^+$  that satisfy the statement: for every sequence y we have  $y_n \to l_1$   $(n \to \infty)$  if and only if there are u and  $v \in \omega$  for which y = u + v and

$$|u_n|^{\frac{1}{n}} \to 0$$
 and  $x_n v_n \to l_2$   $(n \to \infty)$  for some  $l_1$  and  $l_2$ .

Since this set corresponds to the equation  $\Gamma + s_{1/x}^{(c)} = c$ , by Lemma 6.3 it is equal to the set of all sequences that tend to a positive limit.

6.3. Application to the solvability of the (SSE)  $E_T + F_x = F_b$  with  $1 \in F$ . Let  $b \in U^+$ , and E, F be two subsets of  $\omega$ . We deal with the (SSE) with operator

$$(6.5) E_T + F_x = F_b,$$

where T is a triangle and  $x \in U^+$  is the unknown. The equation in (6.5) means for every  $y \in \omega$ , we have  $y/b \in F$  if and only if there are  $u, v \in \omega$  such that y = u + v such that

$$Tu \in E$$
 and  $v/x \in F$ .

We assume  $e = \mathbf{1} \in F$ . By  $S(E_T, F)$  we denote the set of all  $x \in U^+$  that satisfy the (SSE) in (6.5). We obtain the next result which is a direct consequence of Lemma 6.2, where we replace E by  $E_T$ .

**Proposition 6.1.** Let  $b \in U^+$  and let E, F be linear vector spaces of sequences. We assume F satisfies the conditions in (6.1), (6.2), (6.3), and that

$$(6.6) M(E_T, F) \subset M(E_T, c_0).$$

Then the set  $S(E_T, F)$  is regular, that is,

$$S(E_T, F) = \begin{cases} cl^F(b) & \text{if } 1/b \in M(E_T, F), \\ \varnothing & \text{if } 1/b \notin M(E_T, F). \end{cases}$$

We may adapt the previous result using the notations of matrix transformations instead of the multiplier of sequence spaces. So we obtain the following.

Corollary 6.1. Let  $b \in U^+$  and let E, F be linear vector spaces of sequences. We assume F satisfies the conditions in (6.1), (6.2), (6.3), and that

(6.7) 
$$D_{\alpha}T^{-1} \in (E, F) \text{ implies } D_{\alpha}T^{-1} \in (E, c_0) \text{ for all } \alpha \in \omega.$$

Then we have

$$S(E_T, F) = \begin{cases} cl^F(b) & \text{if } D_{1/b}T^{-1} \in (E, F), \\ \varnothing & \text{if } D_{1/b}T^{-1} \notin (E, F). \end{cases}$$

*Proof.* This result is a direct consequence of Proposition 6.1 and of the fact that the condition  $1/b \in M(E_T, F)$  is equivalent to  $D_{1/b} \in (E_T, F)$  and to  $D_{1/b}T^{-1} \in (E, F)$ .

7. The main results. Application to the solvability of (SSE) of the form  $E_{\Delta}+F_{x}=F_{b}$  and  $E_{\Sigma}+F_{x}=F_{b}$ 

In this section we apply Proposition 6.1 and Lemma 6.4 to solve (SSE) of the form  $E_T + F_x = F_b$  in each of the cases  $T = \Delta$  and  $T = \Sigma$ . We obtain a class of (SSE) that are regular, that is, for which S(E, F) is regular.

# 7.1. Solvability of (SSE) of the form $E_{\Delta} + F_x = F_b$ .

7.1.1. On the (SSE)  $(c_0)_{\Delta} + F_x = F_b$ . Here we solve each of the (SSE) defined by  $(c_0)_{\Delta} + c_x = c_b$ , and by  $(c_0)_{\Delta} + s_x = s_b$ . The solvability of the first (SSE) means that for every  $y \in \omega$  we have  $y_n/b_n \to l_1$   $(n \to \infty)$  if and only if there are  $u, v \in \omega$  such that y = u + v and

$$u_n - u_{n-1} \to 0$$
 and  $\frac{v_n}{x_n} \to l_2 \ (n \to \infty)$  for some scalars  $l_1$  and  $l_2$ .

**Proposition 7.1.** Let  $b \in U^+$  and let F = c, or  $\ell_{\infty}$ . We have

$$S\left(\left(c_{0}\right)_{\Delta},F\right) = \begin{cases} cl^{F}\left(b\right) & \text{if } 1/b \in s_{\left(1/n\right)_{n}},\\ \varnothing & \text{if } 1/b \notin s_{\left(1/n\right)_{n}}. \end{cases}$$

Proof. The condition  $\alpha \in M((c_0)_{\Delta}, s_1)$  means  $D_{\alpha}\Sigma \in (c_0, s_1) = S_1$  and is equivalent to  $n\alpha_n = O(1)$   $(n \to \infty)$ . So  $M((c_0)_{\Delta}, s_1) = s_{(1/n)_n}$ . On the same way by the characterization of  $(c_0, c_0)$  we obtain  $M((c_0)_{\Delta}, c_0) = s_{(1/n)_n}$ . We then have

$$s_{(1/n)_n} = M((c_0)_{\Delta}, c_0) \subset M((c_0)_{\Delta}, c) \subset M((c_0)_{\Delta}, s_1) = s_{(1/n)_n},$$

and  $M\left((c_0)_{\Delta}, F\right) = s_{(1/n)_n}$  for  $F = s_1, c$ , or  $c_0$ . We conclude by Proposition 6.1.  $\square$ 

**Example 7.1.** Let  $\alpha \geq 0$ . The (SSE) defined by  $(c_0)_{\Delta} + c_x = c_{(n^{\alpha})_n}$  has solutions if and only if  $\alpha \geq 1$ . These solutions are determined by  $\lim_{n\to\infty} x_n/n^{\alpha} > 0$   $(n\to\infty)$ . If  $0 \leq \alpha < 1$  the (SSE) has no solution, Notice that the (SSE)  $(c_0)_{\Delta} + c_x = c$  has no solution.

**Example 7.2.** Let u > 0. The set of all positive sequences x that satisfy the (SSE)  $(c_0)_{\Delta} + s_x = s_u$  is empty if  $u \le 1$ , and if u > 1 it is equal to the set of all sequences that satisfy  $K_1 u^n \le x_n \le K_2 u^n$  for all n and for some  $K_1$ ,  $K_2 > 0$ .

7.1.2. The (SSE) with operator  $bv_p + F_x = F_b$ . In this part we solve each of the (SSE) defined by  $bv_p + c_x = c_b$ , and by  $bv_p + s_x = s_b$ , where  $bv_p = (\ell_p)_{\Delta}$ , (p > 1). Recall that  $bv_p = \{y \in \omega : \sum_{k=1}^{\infty} |y_k - y_{k-1}|^p < \infty\}$  is the set of p-bounded variation sequences. The solvability of the second (SSE) consists in determining the set of all positive sequences x, such that the next statement holds. For every  $y \in \omega$  we have  $\sup_{n} (|y_n|/b_n) < \infty$  if and only if there are  $u, v \in \omega$  with y = u + v such that

$$\sum_{k=1}^{\infty} |u_n - u_{n-1}|^p < \infty \text{ and } \sup_n \left(\frac{|v_n|}{x_n}\right) < \infty.$$

We obtain the next proposition.

**Proposition 7.2.** Let  $b \in U^+$ , and let p > 1, and q = p/(p-1). For F = c, or  $\ell_{\infty}$  we have

$$S\left(bv_{p},F\right) = \begin{cases} cl^{F}\left(b\right) & \text{if } \left(\frac{n^{1/q}}{b_{n}}\right)_{n} \in s_{1}, \\ \varnothing & \text{if } \left(\frac{n^{1/q}}{b_{n}}\right)_{n} \notin s_{1}. \end{cases}$$

*Proof.* We have  $\alpha \in M$   $(bv_p, \ell_\infty)$  if and only if  $D_\alpha \Sigma \in (\ell_p, \ell_\infty)$ , and from the characterization of  $(\ell_p, \ell_\infty)$  given in Lemma 3.6 we have

(7.1) 
$$n \left| \alpha_n \right|^q = O(1) \quad (n \to \infty).$$

So we have  $M(bv_p, \ell_{\infty}) = s_{(n^{-1/q})_n}$ . Now we have  $\alpha \in M(bv_p, c_0)$  if and only if (7.1) holds and

$$(7.2) \alpha_n \to 0 \ (n \to \infty).$$

But trivially the condition in (7.1) implies the condition in (7.2). So we have

$$s_{\left(n^{-1/q}\right)_{p}}=M\left(bv_{p},c_{0}\right)\subset M\left(bv_{p},c\right)\subset M\left(bv_{p},\ell_{\infty}\right)=s_{\left(n^{-1/q}\right)_{p}},$$

and  $M(bv_p, F) = s_{\binom{n^{-1/q}}{n}}$  for  $F = c_0$ , c, or  $\ell_{\infty}$ . We may apply Proposition 6.1 where the condition  $1/b \in M(bv_p, \ell_{\infty}) = s_{\binom{n^{-1/q}}{n}}$  means  $\binom{n^{1/q}}{b_n}_n \in s_1$ . This concludes the proof.

**Example 7.3.** The (SSE) defined by  $bv_2 + c_x = c$  has no solution since q = 2 and  $(\sqrt{n}/b_n)_n \notin s_1$ .

**Example 7.4.** Let p > 1 and r > 0. The set  $S = S(bv_p, c)$  of all the solutions of the (SSE)  $bv_p + c_x = c_{(n^r)_n}$  is empty if r < (p-1)/p and if  $r \ge (p-1)/p$ , it is determined by  $\lim_{n\to\infty} (x_n/n^r) > 0$ . For any given  $r \ne 1$ , we have  $S \ne \emptyset$  if and only if  $p \le 1/(1-r)$ .

7.1.3. Solvability of the (SSE) defined by  $(w_0)_{\Delta} + F_x = F_b$ . Here a positive sequence x is a solution of the (SSE)  $(w_0)_{\Delta} + c_x = c_b$  if the next statement holds. For every  $y \in \omega$  we have  $y_n/b_n \to l_1$   $(n \to \infty)$  if and only if there are  $u, v \in \omega$  with y = u + v such that

$$\frac{1}{n}\sum_{k=1}^{n}|u_k-u_{k-1}|\to 0 \text{ and } \frac{v_n}{x_n}\to l_2 \ (n\to\infty) \text{ for some scalars } l_1 \text{ and } l_2.$$

We obtain a similar statement for the (SSE)  $(w_0)_{\Delta} + s_x = s_b$ . We have the next proposition.

**Proposition 7.3.** Let  $b \in U^+$ . Then for F = c, or  $\ell_{\infty}$  we have

$$S\left(\left(w_{0}\right)_{\Delta},F\right)=S\left(\left(c_{0}\right)_{\Delta},F\right)=S\left(w_{0},F\right)=\left\{\begin{array}{ll}cl^{F}\left(b\right) & if\ 1/b\in s_{\left(1/n\right)_{n}},\\ \varnothing & otherwise.\end{array}\right.$$

*Proof.* We have  $\alpha \in M((w_0)_{\Delta}, \ell_{\infty})$  if and only if

$$(7.3) D_{\alpha}\Sigma \in (w_0, \ell_{\infty}).$$

Now we define the integer  $\nu_n$  by

$$(7.4) 2^{\nu_n} \le n \le 2^{\nu_n + 1} - 1.$$

Then from the characterization of  $(w_0, \ell_\infty)$  in Lemma 5.1 the condition in (7.3) means there is K > 0 such that

(7.5) 
$$\sigma_n = \sum_{\nu=0}^{\infty} 2^{\nu} \max_{2^{\nu} \le k \le 2^{\nu+1} - 1} |(D_{\alpha} \Sigma)_{nk}| = |\alpha_n| \sum_{\nu=0}^{\nu_n} 2^{\nu} = |\alpha_n| \left(2^{\nu_n + 1} - 1\right) \le K \text{ for all } n.$$

Then from (7.4) we have  $D_{\alpha}\Sigma \in (w_0, \ell_{\infty})$  if and only if

$$n |\alpha_n| \le (2^{\nu_n+1}-1) |\alpha_n| \le K$$
 for all  $n$ , and for some  $K > 0$ .

Then we have  $M((w_0)_{\Delta}, \ell_{\infty}) \subset s_{(1/n)_n}$ . Now we show  $s_{(1/n)_n} \subset M((w_0)_{\Delta}, \ell_{\infty})$ . Let  $\alpha \in s_{(1/n)_n}$ . Then we have  $n |\alpha_n| \leq K$  for all n, and by (7.5) and (7.4) we have

$$\sigma_n = (2^{\nu_n+1} - 1) |\alpha_n| \le (2n-1) |\alpha_n| \le 2K \text{ for all } n.$$

This shows  $s_{(1/n)_n} \subset M\left((w_0)_{\Delta}, \ell_{\infty}\right)$  and  $M\left((w_0)_{\Delta}, \ell_{\infty}\right) = s_{(1/n)_n}$ . By similar arguments we obtain  $M\left((w_0)_{\Delta}, c_0\right) = s_{(1/n)_n}$ . Then we have

$$s_{(1/n)_n} = M((w_0)_{\Delta}, c_0) \subset M((w_0)_{\Delta}, c) \subset M((w_0)_{\Delta}, \ell_{\infty}) = s_{(1/n)_n}.$$

Finally, we have  $M((w_0)_{\Delta}, F) = s_{(1/n)_n}$  for  $F = c_0, c$ , or  $\ell_{\infty}$ . We conclude by Proposition 6.1 and Lemma 6.4. This completes the proof.

**Example 7.5.** The (SSE)  $(w_0)_{\Delta} + c_x = c$  has no solution.

**Example 7.6.** The solutions of the (SSE)  $(w_0)_{\Delta} + s_x = s_{(n)_n}$  are determined by  $K_1 n \leq x_n \leq K_2 n$  for all n and for some  $K_1$ ,  $K_2 > 0$ .

7.1.4. Solvability of the (SSE) with operator  $\Lambda_{\Delta} + F_x = F_b$ .

**Proposition 7.4.** Let  $b \in U^+$ . For F = c, or  $s_1$  we have

$$S\left(\Lambda_{\Delta},F\right)=S\left(\Lambda,F\right)=\left\{ \begin{array}{ll} cl^{F}\left(b\right) & if \ 1/b\in\Gamma,\\ \varnothing & otherwise. \end{array} \right.$$

Proof. By Lemma 4.2 we have  $\Delta \in (\Lambda, \Lambda)$  bijective since  $e \in \widehat{C}_{\Lambda}$ . Indeed, we have  $n \leq K^n$  for all n and for some K > 1. So we have  $\Lambda_{\Delta} = \Lambda$ , and by Lemma 4.1 we have  $M(\Lambda_{\Delta}, F) = M(\Lambda, F) = \Gamma$  for  $F = c_0$ , c, or  $s_1$  and we may apply Lemma 6.4. This concludes the proof.

7.2. Solvability of (SSE) of the form  $E_{\Sigma} + F_x = F_b$ . In this subsection we solve the (SSE) defined by  $E_{\Sigma} + F_x = F_b$ , where E = c,  $c_0$ ,  $w_0$ ,  $\Lambda$ ,  $\Gamma$ , or  $\ell_p$ , (p > 1), and F = c, or  $\ell_{\infty}$ , and the (SSE)  $\Gamma_{\Sigma} + \Lambda_x = \Lambda_b$  and  $(\ell_{\infty})_{\Sigma} + c_x = c_b$ .

7.2.1. The (SSE) using the sets cs, bs,  $cs_0$ , or  $(\ell_p)_{\Sigma}$ . In this subsection we deal with the (SSE) defined by  $\chi + F_x = F_b$  where  $\chi = cs$ , bs, or  $cs_0$ , and by  $(\ell_p)_{\Sigma} + F_x = F_b$ , and F = c, or  $\ell_{\infty}$ . For instance, x is a solution of the (SSE)  $cs + c_x = c_b$  if the next statement holds. For every  $y \in \omega$  we have  $y_n/b_n \to l_1$   $(n \to \infty)$  if and only if there are  $u, v \in \omega$  with y = u + v and the series  $\sum_{k=1}^{\infty} u_k$  is convergent and  $v_n/x_n \to l_2$   $(n \to \infty)$  for some scalars  $l_1$  and  $l_2$ .

### **Proposition 7.5.** Let $b \in U^+$ . Then

i) we have

$$S\left(bs,c\right)=S\left(\ell_{\infty},c\right)=\left\{ egin{array}{ll} cl^{c}\left(b
ight) & if \ 1/b\in c_{0}, \\ \varnothing & otherwise. \end{array} \right.$$

ii) For F = c, or  $\ell_{\infty}$  we have

$$S(cs, F) = S(cs_0, F) = S((\ell_p)_{\Sigma}, F) = S(c_0, F),$$

with  $(p \ge 1)$ , and

$$S(c_0, F) = \begin{cases} cl^F(b) & \text{if } 1/b \in s_1, \\ \varnothing & \text{otherwise.} \end{cases}$$

Proof. i) We have  $\alpha \in M(bs,c)$  if and only if  $D_{\alpha} \in (\ell_{\infty}(\Sigma),c)$  and  $D_{\alpha}\Delta \in (\ell_{\infty},c)$ . The matrix  $D_{\alpha}\Delta$  is the triangle defined by  $(D_{\alpha}\Delta)_{nn} = -(D_{\alpha}\Delta)_{n,n-1} = \alpha_n$  for all n, with the convention  $(D_{\alpha}\Delta)_{1,0} = 0$ , the other entries being equal to zero. Trivially we have  $\lim_{n\to\infty} (D_{\alpha}\Delta)_{nk} = 0$  for all k and by Lemma 3.5 we have  $\lim_{n\to\infty} \sum_{k=1}^{\infty} |(D_{\alpha}\Delta)_{nk}| = 0$  which implies  $M(bs,c) = c_0$ . Since  $bs = \ell_{\infty}(\Sigma) \subset \ell_{\infty}$ , we conclude

$$c_0 = M(\ell_\infty, c_0) \subset M(bs, c_0) \subset M(bs, c) = c_0,$$

and Proposition 6.1 and Lemma 6.4 can be applied.

ii) Case of  $S(cs_0, F)$ . Since  $c_0 \subset c \subset \ell_\infty$  and  $cs_0 = (c_0)_\Sigma \subset c_0$  we obtain

$$(7.6) s_1 = M(c_0, c_0) \subset M(cs_0, c_0) \subset M(cs_0, c) \subset M(cs_0, \ell_\infty).$$

Now  $\alpha \in M(cs_0, \ell_{\infty})$  if and only if  $D_{\alpha} \in (cs_0, \ell_{\infty})$  and  $D_{\alpha}\Delta \in (c_0, \ell_{\infty})$ . Since  $(c_0, \ell_{\infty}) = S_1$ , we have  $|\alpha_n| + |\alpha_{n-1}| \leq K$  for all n and for some K > 0, and  $\alpha \in s_1$ . So  $M(cs_0, \ell_{\infty}) = s_1$ . Using (7.6) we conclude  $M(cs_0, F) = s_1$ , for  $F = c_0$ , c, or  $\ell_{\infty}$ , and Proposition 6.1 and Lemma 6.4 can be applied. This completes the proof of i). Case of S(cs, F). By similar arguments that above and noticing that  $cs = c_{\Sigma}$ , we obtain

$$(7.7) s_1 = M\left(cs, c_0\right) \subset M\left(cs, c\right) \subset M\left(cs, \ell_\infty\right) = s_1.$$

Case of  $S((\ell_p)_{\Sigma}, F)$ . Let p > 1. We have  $\alpha \in M((\ell_p)_{\Sigma}, \ell_{\infty})$  implies  $D_{\alpha}\Delta \in (\ell_p, \ell_{\infty})$  and by Lemma 3.6 we have  $|\alpha_n|^q = O(1)$   $(n \to \infty)$  and  $\alpha \in s_1$ . This means

 $M\left((\ell_p)_{\Sigma}, \ell_{\infty}\right) \subset s_1$ . We have  $(\ell_p)_{\Sigma} \subset \ell_p$  since  $\Delta \in (\ell_p, \ell_p)$  and

$$s_1 = M(\ell_p, c_0) \subset M((\ell_p)_{\Sigma}, c_0) \subset M((\ell_p)_{\Sigma}, c) \subset M((\ell_p)_{\Sigma}, \ell_{\infty}) \subset s_1.$$

So Proposition 6.1 and Lemma 6.4 can be applied. In the case p=1, reasoning as above and using the characterizations of  $(\ell_1, \ell_\infty)$  and  $(\ell_1, c_0)$  given in Lemma 3.6 we obtain  $M((\ell_1)_{\Sigma}, F) = s_1$  where  $F = c_0$ , c, or  $\ell_\infty$ . This concludes the proof of ii).  $\square$  7.2.2. Solvability of the  $(SSE)(w_0)_{\Sigma} + F_x = F_b$ . Here we solve the (SSE) with operator defined by  $(w_0)_{\Sigma} + s_x = s_b$  and  $(w_0)_{\Sigma} + c_x = c_b$ . Note that x is a solution of the second (SSE) if for every  $y \in \omega$  we have  $y_n/b_n \to l_1$   $(n \to \infty)$  if and only if there are  $u, v \in \omega$  such that y = u + v and

$$\frac{1}{n}\sum_{k=1}^{\infty}\left|\sum_{i=1}^{k}u_i\right|\to 0 \text{ and } \frac{v_n}{x_n}\to l_2 \ (n\to\infty) \text{ for some scalars } l_1 \text{ and } l_2.$$

First we state a lemma.

**Lemma 7.1.** We have  $M((w_0)_{\Sigma}, \ell_{\infty}) = M((w_0)_{\Sigma}, c_0) = M((w_{\infty})_{\Sigma}, \ell_{\infty}) = s_{(1/n)_n}$ .

Proof. We have  $M((w_0)_{\Sigma}, c_0) = M((w_0)_{\Sigma}, \ell_{\infty})$ . Indeed, we have  $\alpha \in M((w_0)_{\Sigma}, c_0)$  if and only if  $D_{\alpha}\Delta \in (w_0, c_0)$ , but by Lemma 5.1 we have  $(w_0, c_0) = (w_0, \ell_{\infty})$ , so we have  $\alpha \in M((w_0)_{\Sigma}, c_0)$  if and only if  $\alpha \in M((w_0)_{\Sigma}, \ell_{\infty})$  and  $M((w_0)_{\Sigma}, c_0) = M((w_0)_{\Sigma}, \ell_{\infty})$ . Now we show  $M((w_{\infty})_{\Sigma}, \ell_{\infty}) = s_{(1/n)_n}$ . For this let  $\alpha \in M((w_{\infty})_{\Sigma}, \ell_{\infty})$ . Then we have  $D_{\alpha}\Delta \in (w_{\infty}, \ell_{\infty})$ . If we define the integer  $\nu_n$  by  $2^{\nu_n} \leq n \leq 2^{\nu_n+1}-1$ , we obtain

$$\sigma_n = \sum_{\nu=0}^{\infty} 2^{\nu} \max_{2^{\nu} \le k \le 2^{\nu+1} - 1} |(D_{\alpha} \Delta)_{nk}| \ge |\alpha_n| \, 2^{\nu_n} \ge \frac{n+1}{2} |\alpha_n| \, .$$

But by Lemma 5.1 we have  $D_{\alpha}\Delta \in (w_{\infty}, \ell_{\infty})$  implies  $\sigma \in \ell_{\infty}$  and  $\alpha \in s_{(1/n)_n}$ . So we have shown  $M((w_{\infty})_{\Sigma}, \ell_{\infty}) \subset s_{(1/n)_n}$ . Conversely, show  $s_{(1/n)_n} \subset M((w_{\infty})_{\Sigma}, \ell_{\infty})$ . We have  $w_{\infty} \subset s_{(n)_n}$  and since  $\Delta \in (s_{(n)_n}, s_{(n)_n})$  we obtain  $(s_{(n)_n})_{\Sigma} \subset s_{(n)_n}$  and

$$M\left(\left(w_{\infty}\right)_{\Sigma}, \ell_{\infty}\right) \supset M\left(\left(s_{(n)_{n}}\right)_{\Sigma}, \ell_{\infty}\right) \supset M\left(s_{(n)_{n}}, \ell_{\infty}\right) = s_{(1/n)_{n}}.$$

We conclude  $M((w_{\infty})_{\Sigma}, \ell_{\infty}) = s_{(1/n)_n}$ . We obtain  $M((w_0)_{\Sigma}, c_0) = s_{(1/n)_n}$  using a similar arguments. This concludes the proof.

**Proposition 7.6.** Let  $b \in U^+$  and let F = c, or  $\ell_{\infty}$ . Then we have

$$S\left(\left(w_{0}\right)_{\Sigma},F\right)=S\left(w_{0},F\right)=\left\{ \begin{array}{ll} cl^{F}\left(b\right) & if\ 1/b\in s_{\left(1/n\right)_{n}},\\ \varnothing & otherwise. \end{array} \right.$$

*Proof.* We have  $(w_0)_{\Sigma} \subset w_0$  implies  $M(w_0, c_0) \subset M((w_0)_{\Sigma}, c_0)$  and by Lemma 5.2 and Lemma 7.1 we obtain

$$s_{(1/n)_n} = M\left(w_0, c_0\right) \subset M\left((w_0)_{\Sigma}, c_0\right) \subset M\left((w_0)_{\Sigma}, c\right) \subset M\left((w_0)_{\Sigma}, \ell_{\infty}\right) = s_{(1/n)_n}.$$

We then have  $M\left((w_0)_{\Sigma}, F\right) = s_{(1/n)_n}$  for  $F = c_0, c$ , or  $\ell_{\infty}$ , and Proposition 6.1 and Lemma 6.4 can be applied.

Remark 4. From Proposition 7.1, Proposition 7.3, and Proposition 7.6 we have  $S(\chi, F) = S(w_0, F)$  for  $\chi = (w_0)_{\Sigma}$ ,  $(w_0)_{\Delta}$ , or  $(c_0)_{\Delta}$ .

7.2.3. Solvability of the (SSE)  $\Gamma_{\Sigma} + F_x = F_b$ . We deal with the (SSE)  $\Gamma_{\Sigma} + F_x = F_b$  where F = c,  $\ell_{\infty}$ , or  $\Lambda$ , and the (SSE)  $\Lambda_{\Sigma} + F_x = F_b$  for F = c, or  $\ell_{\infty}$ . A positive sequence x is a solution of the (SSE)  $\Gamma_{\Sigma} + c_x = c_b$  if the next statement holds:  $\lim_{n\to\infty} y_n/b_n = l$  if and only if there are two sequences u, v with y = u + v such that  $\lim_{n\to\infty} \left|\sum_{k=1}^n u_k\right|^{1/n} = 0$  and  $\lim_{n\to\infty} v_n/x_n = l'$  for some scalars l and l' and for all  $y \in \omega$ . We obtain the next result.

Theorem 7.1. Let  $b \in U^+$ . Then

i) for F = c,  $\ell_{\infty}$ , or  $\Lambda$  we have

$$S(\Gamma_{\Sigma}, F) = S(\Gamma, F) = \begin{cases} cl^{F}(b) & \text{if } 1/b \in \Lambda, \\ \emptyset & \text{otherwise.} \end{cases}$$

ii) for F = c, or  $\ell_{\infty}$  we have

$$S\left(\mathbf{\Lambda}_{\Sigma},F\right)=S\left(\mathbf{\Lambda},F\right)=\left\{ egin{array}{ll} cl^{F}\left(b
ight) & if \ 1/b\in\mathbf{\Gamma}, \\ \varnothing & otherwise. \end{array} 
ight.$$

*Proof.* i) First let  $\alpha \in M(\Gamma_{\Sigma}, \Lambda)$ . Then we have  $D_{\alpha}\Delta \in (\Gamma, \Lambda)$ , and by Lemma 4.3 we obtain

$$\left[\left|\alpha_{n}\right|\left(M^{-n}+M^{-n+1}\right)\right]^{\frac{1}{n}}\leq K$$
 for all  $n$  and for some  $K>0$  and  $M\geq2$ .

This implies

$$|\alpha_n|^{\frac{1}{n}} \le \frac{KM}{(1+M)^{\frac{1}{n}}} \le K'$$
 for all  $n$  and for some  $K' > 0$ .

We conclude  $M(\Gamma_{\Sigma}, \Lambda) \subset \Lambda$ . Then it can easily be seen that  $\Gamma_{\Sigma} \subset \Gamma$  since  $\Delta \in (\Gamma, \Gamma)$ . Then by Lemma 4.1 we have

$$\mathbf{\Lambda} = M\left(\mathbf{\Gamma}, c_0\right) \subset M\left(\mathbf{\Gamma}_{\Sigma}, c_0\right) \subset M\left(\mathbf{\Gamma}_{\Sigma}, c\right) \subset M\left(\mathbf{\Gamma}_{\Sigma}, \ell_{\infty}\right) \subset M\left(\mathbf{\Gamma}_{\Sigma}, \mathbf{\Lambda}\right) \subset \mathbf{\Lambda}.$$

So we obtain  $M(\Gamma_{\Sigma}, F) = \Lambda$  for  $F = c_0, c, \ell_{\infty}$ , or  $\Lambda$  and Proposition 6.1 and Lemma 6.4 can be applied. This concludes the proof of i).

ii) As we have seen in Proposition 7.4 the operator  $\Delta \in (\Lambda, \Lambda)$  is bijective and it is the same for  $\Sigma \in (\Lambda, \Lambda)$ . Then we have  $\Lambda_{\Sigma} = \Lambda$  and by Lemma 6.4 we conclude ii) holds.

**Example 7.7.** The solutions of the (SSE)  $\Gamma_{\Sigma} + \Lambda_x = \Lambda_u$  with u > 0 are determined by  $k_1^n \leq x_n \leq k_2^n$  for all n and for some  $k_1$ ,  $k_2 > 0$ .

**Example 7.8.** Each of the (SSE)  $\Lambda_{\Sigma} + F_x = F_u$  where F = c, or  $s_1$  has no solution for any given u > 0.

#### References

- Başar F., Malkowsky, E., Bilâl A., Matrix transformations on the matrix domains of triangles in the spaces of strongly C<sub>1</sub> summable and bounded sequences Publicationes Math. 78 (2008),193-213.
- [2] de Malafosse, B., On some BK space, Int. J. of Math. and Math. Sc. 28 (2003), 1783-1801.
- [3] de Malafosse, B., Sum of sequence spaces and matrix transformations, Acta Math. Hung. 113
   (3) (2006), 289-313.
- [4] de Malafosse, B., On the sets of  $\nu$ -analytic and  $\nu$ -entire sequences and matrix transformations, Int. Math. Forum, 2, n°36 (2007), 1795-1810.
- [5] de Malafosse, B., Application of the infinite matrix theory to the solvability of certain sequence spaces equations with operators. Mat. Vesnik **54**, 1 (2012), 39-52.
- [6] de Malafosse, B., Applications of the summability theory to the solvability of certain sequence spaces equations with operators of the form B(r, s). Commun. Math. Anal. 13, 1 (2012), 35-53.
- [7] de Malafosse B., Solvability of certain sequence spaces inclusion equations with operators, Demonstratio Math. 46, 2 (2013), 299-314.
- [8] de Malafosse, B., Solvability of sequence spaces equations using entire and analytic sequences and applications, J. Ind. Math. Soc. 81 N°1-2, (2014), 97-114.
- [9] de Malafosse, B., Solvability of certain sequence spaces equations with operators, Novi Sad. 44, n°1, (2014), 9-20.
- [10] de Malafosse, B., Malkowsky, E., On the Banach algebra  $(w_{\infty}(\Lambda), w_{\infty}(\Lambda))$  and applications to the solvability of matrix equations in  $w_{\infty}(\Lambda)$ . Pub. Math. Debrecen, **85/1-2** (2014), 197-217.
- [11] de Malafosse, B., Malkowsky, E., On sequence spaces equations using spaces of strongly bounded and summable sequences by the Cesàro method. Antartica J. Math. 10 (6) (2013), 589-609.
- [12] de Malafosse, B., Rakočević V., A generalization of a Hardy theorem, Linear Algebra Appl. 421 (2007), 306-314.
- [13] de Malafosse, B., Rakočević V., Matrix Transformations and Statistical convergence II, Adv. Dyn. Syst. Appl. 6 (1), (2011), 71-89.
- [14] de Malafosse, B., Rakočević V., Matrix transformations and sequence spaces equations. Banach J. Math. Anal. 7 (2) (2013), 1-14.

- [15] Farés A., de Malafosse, B., Sequence spaces equations and application to matrix transformations Int. Math. Forum 3, (2008), n°19, 911-927.
- [16] Grosse-Erdmann K. G., Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. 180 (1993), 223-238.
- [17] Maddox, I. J., On Kuttner's theorem, J. London Math. Soc. 43 (1968), 285-290.
- [18] Maddox, I.J., Paranormed sequence spaces generated by infinite matrices. Proc. Camb. Phil. Soc. 64 (1968) 335-340.
- [19] Maddox, I.J., Infinite matrices of operators, Springer-Verlag, Berlin, Heidelberg and New York, 1980.
- [20] Malkowsky, E., The continuous duals of the spaces  $c_0(\Lambda)$  and  $c(\Lambda)$  for exponentially bounded sequences  $\Lambda$ , Acta Sci. Math (Szeged), **61**, (1995), 241-250.
- [21] Malkowsky, E., Banach algebras of matrix transformations between spaces of strongly bounded and sommable sequences, Adv. Dyn. Syst. Appl. 6 n°1 (2011), 241-250.
- [22] Malkowsky, E., Rakočević, V., An introduction into the theory of sequence spaces and measure of noncompactness, Zbornik radova, Matematički institut SANU 9 (17) (2000), 143-243.
- [23] Rao, K. C., Srinivasalu, T. G., Matrix operators on analytic and entire sequences, Bull. Malaysian Math. Soc. (Second Series) 14 (1991), 41-54.
- [24] Simons, S., The sequence spaces  $\ell(p_{\nu})$  and  $m(p_{\nu})$ , Proc. London Math. Soc. 15 (1965) 422-436.
- [25] Wilansky, A., Summability through Functional Analysis, North-Holland Mathematics Studies 85, 1984.

Universite du Havre. France

E-mail address: bdemalaf@wanadoo.fr