Jordan Journal of Mathematics and Statistics (JJMS) 7(3), 2014, pp.171 - 184

SUBSETS IN TERMS OF $\Psi_{\mathcal{H}}$

V. RENUKADEVI (1) AND P. VIMALADEVI (2)

ABSTRACT. In this paper, we study the properties of $\Psi_{\mathcal{H}}A$ -sets and $\Psi_{\mathcal{H}}C$ -sets introduced by Kim and Min. Also, we characterize these sets in terms of strongly μ -codense hereditary classes.

1. Introduction

A family μ of subsets of a nonempty set X is called a generalized topology (GT) [1] if $\emptyset \in \mu$ and the arbitrary union of members of μ is again in μ . The pair (X, μ) is called a generalized topological space (GTS) or simply a space. The elements of μ are called μ – open sets and the complements of μ -open sets are called μ – closed sets. The largest μ -open set contained in a subset A of X is denoted by $i_{\mu}(A)$ [1] and is called the μ – interior of A. The smallest μ -closed set containing A is called the μ – closure of A and is denoted by $c_{\mu}(A)$ [1]. A GT μ is said to be a quasitopology [4] on X if M, $N \in \mu$ implies $M \cap N \in \mu$. A subset A of a space is said to be μ -preopen [2](resp. μ -rare [3], μ - α -open [2], μ -semiopen [2], μ - β -open [2]) if $A \subset i_{\mu}c_{\mu}(A)$ (resp. $i_{\mu}c_{\mu}(A) = \emptyset$, $A \subset i_{\mu}c_{\mu}i_{\mu}(A)$, $A \subset c_{\mu}i_{\mu}(A)$, $A \subset c_{\mu}i_{\mu}c_{\mu}(A)$). The

²⁰⁰⁰ Mathematics Subject Classification. 54A05, 54A10.

Key words and phrases. generalized topology, μ -closed and μ -open sets, hereditary class, μ -rare sets, μ -codense and strongly μ -codense.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

family of all μ -preopen (resp. $\mu - \alpha$ -open, μ -semiopen) sets in (X, μ) is denoted by $\pi(\mu)$ (resp. $\alpha(\mu)$, $\sigma(\mu)$).

A hereditary class \mathcal{H} of X is a nonempty collection of subsets of X such that $A \subset B, B \in \mathcal{H}$ implies $A \in \mathcal{H}$ [3]. A hereditary class \mathcal{H} of X is an ideal [6] if $A \cup B \in \mathcal{H}$ whenever $A \in \mathcal{H}$ and $B \in \mathcal{H}$. With respect to the generalized topology μ of all μ -open sets and a hereditary class \mathcal{H} , for each subset A of X, a subset $A^*(\mathcal{H})$ or simply A^* of X is defined by $A^* = \{x \in X \mid M \cap A \notin \mathcal{H} \text{ for every } M \in \mu\}$ containing x [3]. \mathcal{H} is said to be μ – codense if $\mu \cap \mathcal{H} = {\emptyset}$ [3] and is said to be strongly μ - codense [3] if $M \in \mu$, $N \in \mu$ and $M \cap N \in \mathcal{H}$, then $M \cap N = \emptyset$. Every strongly μ -codense hereditary class is μ -codense but the converse is not true [3]. If \mathcal{H}_r is the collection of all μ -rare sets, then \mathcal{H}_r is a hereditary class and for this hereditary class, $A^* \subset c_\mu i_\mu c_\mu(A)$ for every subset A of X [3, Proposition 2.11]. If $c_{\mu}^{\star}(A) = A \cup A^{\star}$ for every subset A of X, with respect to μ and a hereditary class \mathcal{H} of subsets of X, then $\mu^* = \{A \subset X \mid c_\mu^*(X - A) = X - A\}$ is a generalized topology [3]. $\beta = \{U - H \mid U \in \mu \text{ and } H \in \mathcal{H}\}$ is a basis for μ^* . $i_{\mu}^*(A)$ is the interior of A in (X, μ^*) . A subset of a GTS (X, μ) with a hereditary class \mathcal{H} is said to be $\mathcal{H}-open$ [9] if $A \subset i_{\mu}(A^*)$. The family of all \mathcal{H} -open sets in (X,μ) is denoted by $\mathcal{H}O(\mu)$ and the family of all μ^* -preopen (resp. μ^* -semiopen) sets in (X, μ^*) is denoted by $\pi(\mu^*)$ (resp. $\sigma(\mu^*)$). The following lemmas will be useful in the sequel and we use some of the results without mentioning it, when the context is clear.

Lemma 1.1. [3] Let X be a nonempty set and \mathcal{H} be a hereditary class on X. If A and B are any two subsets of X, then the following hold.

- (a) If $A \in \mathcal{H}$, then $A^* = X \mathcal{M}_{\mu}$ where $\mathcal{M}_{\mu} = \bigcup \{M \mid M \in \mu\}$.
- (b) If $A \subset A^*$, then $c_{\mu}(A) = A^* = c^*(A) = c^*(A^*)$.
- (c) A^* is μ -closed for every subset A of X.

Lemma 1.2. [7, Theorem 2.4] If (X, μ) is a quasi-topological space and \mathcal{H} is a hereditary class of subsets of X, then the following statements are equivalent.

- (a) \mathcal{H} is μ -codense.
- (b) \mathcal{H} is strongly μ -codense.

Lemma 1.3. [7, Theorem 2.5] If X is a nonempty set, \mathcal{H} is a hereditary class of subsets of X, then the following statements are equivalent.

- (a) \mathcal{H} is strongly μ -codense.
- (b) $M \subset M^*$ for every $M \in \mu$.
- (c) $c_{\mu}(M) = M^{\star}$ for every $M \in \mu$.

Lemma 1.4. [7, Theorem 2.6] If (X, μ) is a quasi-topological space and \mathcal{H} is a hereditary class of subsets of X, then $M \cap A^* \subset (M \cap A)^*$ for every $M \in \mu$ and $A \subset X$.

Lemma 1.5. [9, Theorem 2.7] Let (X, μ) be a quasi-topological space with a hereditary class \mathcal{H} on X. Then the following are equivalent.

- (a) $\pi(\gamma) \cap \mathcal{H} = \{\emptyset\}.$
- (b) $A \subset A^*$ for every subset $A \in \pi(\gamma)$.
- (c) $i_{\pi}(A) = \emptyset$ for every $A \in \mathcal{H}$.

2.
$$\Psi_{\mathcal{H}}A$$
-SET

If \mathcal{H} is a hereditary class on a space (X,μ) , an operator $\Psi_{\mathcal{H}}: \wp(X) \to \wp(X)$ [8] is defined as follows: for every $A \in \wp(X), \Psi_{\mathcal{H}}(A) = \{x \in X \mid \text{there exists } M \in \mu \text{ containing } x \text{ such that } M - A \in \mathcal{H}\}.$ $\Psi_{\mathcal{H}}$ is nothing but the monotonic operator $\gamma_{\mu}^{\star}: \wp(X) \to \wp(X)$ defined by $\gamma_{\mu}^{\star}(A) = X - (X - A)^{\star}$ for every subset A of X in [5]. A subset A of X is said to be $\Psi_{\mathcal{H}}A - set$ if $A \subset i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A)$. Since $\Psi_{\mathcal{H}}(A)$ is μ -open for every subset A of X and $M \subset \Psi_{\mathcal{H}}(M)$ for every $M \in \mu$ [5, Theorem 3.3], clearly every $\mu - \alpha$ -open set is a $\Psi_{\mathcal{H}}A$ -set.

Lemma 2.1. [8, Theorem 2.4] Let (X, μ) be a quasi-topological space and \mathcal{H} be an ideal on X. If $A, B \subset X$, then $\Psi_{\mathcal{H}}(A \cap B) = \Psi_{\mathcal{H}}(A) \cap \Psi_{\mathcal{H}}(B)$.

Proof. Clearly, $\Psi_{\mathcal{H}}(A \cap B) \subseteq \Psi_{\mathcal{H}}(A) \cap \Psi_{\mathcal{H}}(B)$. Let $x \in \Psi_{\mathcal{H}}(A) \cap \Psi_{\mathcal{H}}(B)$. Since $x \notin (X - A)^*$, there exists $U_x \in \mu$ such that $U_x \cap (X - A) \in \mathcal{H}$ which implies that $U_x - A \in \mathcal{H}$. Since $x \notin (X - B)^*$, there exists $V_x \in \mu$ such that $V_x \cap (X - B) \in \mathcal{H}$ which in turn implies that $V_x - B \in \mathcal{H}$. Since $(V_x \cap U_x) - A \subset U_x - A, (V_x \cap U_x) - A \in \mathcal{H}$, by heredity. Similarly, $(U_x \cap V_x) - B \in \mathcal{H}$. Therefore, $((U_x \cap V_x) - A) \cup ((U_x \cap V_x) - B) \in \mathcal{H}$ which implies that $(U_x \cap V_x) \cap ((X - A) \cup (X - B)) \in \mathcal{H}$ and so $(U_x \cap V_x) \cap (X - (A \cap B)) \in \mathcal{H}$. Since $x \in U_x \cap V_x$, $x \notin (X - (A \cap B))^*$. Hence $x \in \Psi_{\mathcal{H}}(A \cap B)$. Hence $\Psi_{\mathcal{H}}(A \cap B) = \Psi_{\mathcal{H}}(A) \cap \Psi_{\mathcal{H}}(B)$.

The following Theorem 2.1 shows that the collection of all $\Psi_{\mathcal{H}}\mathcal{A}$ -sets, denoted by $\mu_{\mathcal{A}}$, is a generalized topology, if \mathcal{H} is a hereditary class. Example 2.1 below shows that the conditions *quasi-topology* on μ and *ideal* on \mathcal{H} cannot be dropped in Theorem 2.1. Theorem 2.2(a) below gives a characterization of $\Psi_{\mathcal{H}}\mathcal{A}$ -sets. Example 2.2 shows that a $\Psi_{\mathcal{H}}\mathcal{A}$ -set need not be a μ -semiopen set.

Theorem 2.1. Let (X, μ) be a space with a hereditary class \mathcal{H} . Then $\mu_{\mathcal{A}}$ is a generalized topology on X. Further, if μ is a quasi-topology and \mathcal{H} is an ideal, then $\mu_{\mathcal{A}}$ is also a quasi-topology on X.

Proof. Clearly, $\emptyset \in \mu_{\mathcal{A}}$. Let $\{A_{\alpha} \mid \alpha \in \Delta\}$ be a family of $\Psi_{\mathcal{H}}\mathcal{A}$ —sets in (X, μ) . Then for each $\alpha \in \Delta$, $A_{\alpha} \subset i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A_{\alpha}) \subset i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(\cup A_{\alpha})$ and so $\cup A_{\alpha} \subset i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(\cup A_{\alpha})$. Hence $\cup A_{\alpha} \in \mu_{\mathcal{A}}$. Let A and B be $\Psi_{\mathcal{H}}\mathcal{A}$ —sets in X. Then $A \cap B \subset i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A) \cap i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(B) \subset i_{\mu}(c_{\mu}\Psi_{\mathcal{H}}(A) \cap i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(B)) \subset i_{\mu}c_{\mu}(\Psi_{\mathcal{H}}(A) \cap \Psi_{\mathcal{H}}(B)) = i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A \cap B)$, by Lemma 2.1. Therefore, $A \cap B \in \mu_{\mathcal{A}}$.

Example 2.1. (a) Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ and $\mathcal{H} = \{\emptyset, \{c\}, \{d\}, \{c, d\}\}$. Then $i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(\{a, c\}) = i_{\mu}c_{\mu}(\{a, c\}) = i_{\mu}(X) = \{a, b, c\} \supset \{a, c\}$

and so $\{a, c\} \in \mu_{\mathcal{A}}$. Also, $i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(\{b, c\}) = i_{\mu}c_{\mu}(\{b, c\}) = i_{\mu}(X) = \{a, b, c\} \supset \{b, c\}$ implies that $\{b, c\} \in \mu_{\mathcal{A}}$. But $i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(\{c\}) = i_{\mu}c_{\mu}(\{\emptyset\}) = i_{\mu}(\{d\}) = \{\emptyset\} \not\supseteq \{c\}$. Hence $\{c\} \notin \mu_{\mathcal{A}}$.

(b) Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{c\}, \{a, b, c\}, \{c, d\}, X\}$ and $\mathcal{H} = \{\emptyset, \{a\}, \{b\}\}\}$ Then $i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(\{a, b, c\}) = i_{\mu}c_{\mu}\{c, d\} = i_{\mu}(X) = X \supset \{a, b, c\}$ which implies that $\{a, b, c\} \in \mu_{\mathcal{A}}$. Also, $i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(\{a, b, d\}) = i_{\mu}c_{\mu}(\{a, b, c\}) = i_{\mu}(X) = X \supset \{a, b, d\}$ which implies that $\{a, b, d\} \in \mu_{\mathcal{A}}$. But $i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(\{a, b\}) = i_{\mu}c_{\mu}(\{\emptyset\}) = i_{\mu}(\{\emptyset\}) = \{\emptyset\} \not\supseteq \{a, b\}$. Hence $\{a, b\} \notin \mu_{\mathcal{A}}$.

Theorem 2.2. Let (X, μ) be a space with a hereditary class \mathcal{H} . Then the following hold.

- (a) $A \in \mu_A$ if and only if $c_\mu i_\mu (X A)^* \subset X A$.
- (b) $\alpha(\mu) \subset \mu_{\mathcal{A}}$.
- (c) $\mu^* \subset \mu_{\mathcal{A}}$.

Proof. (a) $A \in \mu_A$ if and only if $A \subset i_\mu c_\mu \Psi_H(A)$ if and only if $A \subset i_\mu c_\mu (X - (X - A)^*)$ if and only if $A \subset X - c_\mu i_\mu (X - A)^*$ if and only if $c_\mu i_\mu (X - A)^* \subset X - A$.

- (b) $A \in \alpha(\mu)$ implies that $A \subset i_{\mu}c_{\mu}i_{\mu}(A)$ which implies that $c_{\mu}i_{\mu}c_{\mu}(X-A) \subset X-A$. Now $c_{\mu}i_{\mu}(X-A)^{\star} \subset c_{\mu}i_{\mu}c_{\mu}(X-A) \subset X-A$ and so $A \in \mu_{\mathcal{A}}$, by (a).
- (c) Suppose $A \in \mu^*$. Then by Theorem 3.18 of [5], $A \subset \Psi_{\mathcal{H}}(A)$. Now $A \subset \Psi_{\mathcal{H}}(A) = X (X A)^* = X c_{\mu}(X A)^* \subset X c_{\mu}i_{\mu}(X A)^* = i_{\mu}c_{\mu}(X (X A)^*) = i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A)$ which implies that $A \subset i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A)$ and so $A \in \mu_{\mathcal{A}}$. Thus, $\mu^* \subset \mu_{\mathcal{A}}$.

Example 2.2. Consider the GTS (X, μ) with a hereditary class \mathcal{H} where $X = \{a, b, c\}$, $\mu = \{\emptyset, \{a, b\}, \{a, c\}, X\}$ and $\mathcal{H} = \{\emptyset, \{a\}\}$. If $A = \{b, c\}$, then $i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A) = i_{\mu}c_{\mu}(X) = X$ and so A is a $\Psi_{\mathcal{H}}A$ -set. But $c_{\mu}i_{\mu}(A) = c_{\mu}(\emptyset) = \emptyset$ implies that A is not μ -semiopen.

The following Theorem 2.3 gives a characterization of strongly μ -codense hereditary class in terms of $\Psi_{\mathcal{H}}\mathcal{A}$ -sets. Example 2.3 below shows that the strongly μ -codenseness on the hereditary class cannot be dropped in Theorem 2.4.

Lemma 2.2. [8, Theorem 2.14] Let (X, μ) be a space with a strongly μ -codense ideal \mathcal{H} . Then $\Psi_{\mathcal{H}}(A) \subset A^*$ for every subset A of X. Moreover, if $A \in \mathcal{H}$, then $\Psi_{\mathcal{H}}(A) = \emptyset$.

Proof. Suppose that $x \in \Psi_{\mathcal{H}}(A)$ and $x \notin A^*$. Since $x \in \Psi_{\mathcal{H}}(A)$, there exists a μ -open set U containing x such that $U - A \in \mathcal{H}$. Since $x \notin A^*$, there is a μ -open set V containing x such that $V \cap A \in \mathcal{H}$. Therefore, $(U \cap V) \cap A \in \mathcal{H}$ and $(U \cap V) - A \in \mathcal{H}$. By hypothesis, \mathcal{H} is strongly μ -codense and so $U \cap V = (U \cap V - A) \cup (U \cap V \cap A) \in \mathcal{H}$ implies that $U \cap V = \emptyset$, a contradiction to the fact that $x \in U \cap V$. Hence $x \in A^*$ so that $\Psi_{\mathcal{H}}(A) \subset A^*$. Since $A \in \mathcal{H}$, by Lemma 1.1(a), $\Psi_{\mathcal{H}}(A) \subset X - \mathcal{M}_{\mu}$ and so $\Psi_{\mathcal{H}}(A) = \emptyset$.

Theorem 2.3. Let (X, μ) be a space with an ideal \mathcal{H} . Then the following are equivalent.

- (a) \mathcal{H} is strongly μ -codense.
- (b) $\mu_{\mathcal{A}} \subset \mathcal{H}O(\mu)$.
- (c) $\mu^* \subset \mathcal{H}O(\mu)$.

Proof. (a) \Rightarrow (b). Suppose that $A \in \mu_A$. Then by Lemma 2.2 and Lemma 1.1(c), $A \subset i_\mu c_\mu \Psi_{\mathcal{H}}(A) \subset i_\mu c_\mu (A^*) = i_\mu (A^*)$ and so A is \mathcal{H} -open.

- (b) \Rightarrow (c). Follows from Theorem 2.2(c).
- (c) \Rightarrow (a). Suppose A is μ -open. Then $A \in \mu^*$ and so $A \subset i_{\mu}(A^*)$, by hypothesis. Hence $A \subset A^*$ and so \mathcal{H} is strongly μ -codense.

Lemma 2.3. Let (X, μ) be a space with a hereditary class \mathcal{H} . Then the following hold.

- (a) If \mathcal{H} is strongly μ -codence and $A \subset X$ is μ -closed, then $i_{\mu}(A) = \Psi_{\mathcal{H}}(A) = i_{\mu}^{\star}(A)$.
- (b) For any subset A of X, $i_{\mu}^{\star}(A) = A \cap \Psi_{\mathcal{H}}(A)$.

Proof. (a) Suppose that A is μ -closed. Then by Lemma 1.3, $c^*(X-A) = (X-A)^* = c_{\mu}(X-A)$ which implies that $X - i_{\mu}^*(A) = (X-A)^* = X - i_{\mu}(A)$ which in turn implies that $i_{\mu}^*(A) = \Psi_{\mathcal{H}}(A) = i_{\mu}(A)$.

(b) Let $x \in A \cap \Psi_{\mathcal{H}}(A)$. Then $x \in A$ and $x \in \Psi_{\mathcal{H}}(A)$. Since $x \in \Psi_{\mathcal{H}}(A)$, there exists $M_x \in \mu$ containing x such that $M_x - A \in \mathcal{H}$. Therefore, $x \in M_x - (M_x - A) \subset A$. Since β is a basis for μ^* and $M_x - (M_x - A) \in \beta$, $x \in i_{\mu}^*(A)$ where i_{μ}^* is the interior operator in (X, μ^*) . Conversely, assume that $x \in i_{\mu}^*(A)$. Then there exists a μ^* -open set M_x containing x and $H \in \mathcal{H}$ such that $x \in M_x - H \subset A$. Now $M_x - H \subset A$ implies that $M_x - A \subset H$ which in turn implies that $M_x - A \in H$ and so $x \in \mathcal{H}(A)$. Therefore, $x \in A \cap \Psi_{\mathcal{H}}(A)$. Hence $A \cap \Psi_{\mathcal{H}}(A) = i_{\mu}^*(A)$.

Theorem 2.4. Let (X, μ) be a quasi-topological space with a μ -codense ideal \mathcal{H} . Then $\mu_{\mathcal{A}} = \alpha(\mu^*)$.

Proof. If $A \in \mu_{\mathcal{A}}$, then $A \subset i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A)$. By Lemma 2.2, $A \subset i_{\mu}c_{\mu}(\Psi_{\mathcal{H}}(A) \cap A^{\star})$ which implies that $A \subset i_{\mu}c_{\mu}(\Psi_{\mathcal{H}}(A) \cap A)^{\star} \subset i_{\mu}c_{\mu}^{\star}(i_{\mu}^{\star}(A)) \subset i_{\mu}^{\star}c_{\mu}^{\star}i_{\mu}^{\star}(A)$, by Lemma 2.3(b). Thus, $A \in \alpha(\mu^{\star})$ and so $\mu_{\mathcal{A}} \subset \alpha(\mu^{\star})$. Conversely, let $A \in \alpha(\mu^{\star})$. Then $A \subset i_{\mu}^{\star}c_{\mu}^{\star}i_{\mu}^{\star}(A) = i_{\mu}^{\star}c_{\mu}^{\star}(A \cap \Psi_{\mathcal{H}}(A)) \subset i_{\mu}^{\star}c_{\mu}^{\star}\Psi_{\mathcal{H}}(A) = i_{\mu}^{\star}c_{\mu}\Psi_{\mathcal{H}}(A) = i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A)$. Therefore, $A \in \mu_{\mathcal{A}}$. Hence $\mu_{\mathcal{A}} = \alpha(\mu^{\star})$.

Example 2.3. Consider the space (X, μ) where $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{d\}, \{a, b, c\}, \{c, d\}, X\}$ and $\mathcal{H} = \{\emptyset, \{c\}, \{d\}\}\}$. Clearly, \mathcal{H} is not strongly μ - codense. Here $\mu_{\mathcal{A}} = \{\emptyset, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$ which is not a quasi-topology. If $A = \{a, d\}$, then $A \in \mu_{\mathcal{A}}$. Since $i_{\mu}^{\star} c_{\mu}^{\star} i_{\mu}^{\star} (A) = i_{\mu}^{\star} c_{\mu}^{\star} (\{d\}) = \{d\} \not\supseteq \{a, d\}, A \text{ is not } \alpha - \text{open in } (X, \mu^{\star}).$

The following Theorem 2.5 gives characterizations of μ -codense ideals in a quasitopological space.

Theorem 2.5. Let (X, μ) be a quasi-topological space and \mathcal{H} be an ideal. Then the following are equivalent.

- (a) \mathcal{H} is μ -codense.
- (b) $\mu_{\mathcal{A}} \cap \mathcal{H} = \{\emptyset\}.$
- (c) $A \subset A^*$ for $A \in \mu_A$.

Proof. (a) \Rightarrow (b). Suppose $A \in \mu_A \cap \mathcal{H}$. Then $A \in \mu_A$ and $A \in \mathcal{H}$. By Lemma 2.2, $A \in \mathcal{H}$ implies that $\Psi_{\mathcal{H}}(A) = \emptyset$. Since $A \in \mu_A$, $A \subset i_\mu c_\mu \Psi_{\mathcal{H}}(A) = i_\mu c_\mu(\emptyset) = i_\mu (X - \mathcal{M}_\mu) = \emptyset$ and so $A = \emptyset$.

(b) \Rightarrow (c). Let $A \in \mu_{\mathcal{A}}$. Suppose $x \notin A^*$. Then there exists $M \in \mu$ containing x such that $M \cap A \in \mathcal{H}$. Since $M \in \mu$, $M \in \mu_{\mathcal{A}}$ and so $M \cap A \in \mu_{\mathcal{A}}$, by Theorem 2.1. Hence $M \cap A = \emptyset$, which implies that $x \notin A$. Therefore, $A \subset A^*$ for $A \in \mu_{\mathcal{A}}$.

(c) \Rightarrow (a). Let $A \in \mu \cap \mathcal{H}$. Then $A \in \mu$ implies that $A \subset A^*$, by (c). Also, by Lemma 1.1(a), $A \in \mathcal{H}$ implies that $A^* = X - \mathcal{M}_{\mu}$. Therefore, $A \subset X - \mathcal{M}_{\mu}$ so that $A \cap \mathcal{M}_{\mu} = \emptyset$ which implies $A = \emptyset$. Hence \mathcal{H} is μ -codense.

Theorem 2.6. Let (X, μ) be a space with a strongly μ -codense hereditary class \mathcal{H} and $A \subset X$. Then $\Psi_{\mathcal{H}}(A) \neq \emptyset$ if and only if $i_{\mu}^{\star}(A) \neq \emptyset$.

Proof. Suppose $\Psi_{\mathcal{H}}(A) \neq \emptyset$. Then there exists $\emptyset \neq M \in \mu$ such that $M - A \in \mathcal{H}$. If M - A = P for some $P \in \mathcal{H}$, then $M - P \subset A$. Since $M \in \mu$ and $P \in \mathcal{H}$, $M - P \in \beta$. Therefore, $M - P \in \mu^*$ and so A has nonempty μ^* -interior. Conversely, suppose that A has nonempty μ^* -interior. If $x \in A$, then there exists $M \in \mu$ containing x and $P \in \mathcal{H}$ such that $M - P \subseteq A$. Since $M - A \subset P$, $M - A \in \mathcal{H}$ and so $\Psi_{\mathcal{H}}(A) \neq \emptyset$. \square

3. $\Psi_{\mathcal{H}}C$ -SET

A subset A of a space (X, μ) is said to be $\Psi_{\mathcal{H}}C - set$ if $A \subset c_{\mu}\Psi_{\mathcal{H}}(A)$. We denote the family of all $\Psi_{\mathcal{H}}C$ -sets in (X, μ) by $\Psi_{\mathcal{H}}C(X)$. Clearly, every $\Psi_{\mathcal{H}}A - set$ is a $\Psi_{\mathcal{H}}C$ -set. Every μ -semiopen set is a $\Psi_{\mathcal{H}}C$ -set and so every μ -open set is a $\Psi_{\mathcal{H}}C$ -set. But the converse need not be true as shown by the following Example 3.1.

Example 3.1. Consider the space (X, μ) with the hereditary class \mathcal{H} where $X = \{a, b, c, d\}$, $\mu = \{\phi, \{a\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\mathcal{H} = \{\phi, \{a\}, \{b\}\}$. Since $\Psi_{\mathcal{H}}(\{b\})$ = X, $\{b\}$ is a $\Psi_{\mathcal{H}}C$ -set. But it is neither μ -open nor μ -semiopen.

The following Theorem 3.1 shows that $\Psi_{\mathcal{H}}C$ -sets are $\mu - \beta$ -open sets, if \mathcal{H} is a strongly μ -codense ideal. Example 3.2 below shows that the converse of Theorem 3.1 need not be true and Example 3.3 below shows that the condition strongly μ -codense on \mathcal{H} cannot be dropped.

Theorem 3.1. Let (X, μ) be a space with a strongly μ -codense ideal \mathcal{H} . Then every $\Psi_{\mathcal{H}}C$ -set is a $\mu - \beta$ -open set.

Proof. If A is a $\Psi_{\mathcal{H}}C$ -set, then by Lemma 2.2, $A \subset c_{\mu}\Psi_{\mathcal{H}}(A) \subset c_{\mu}i_{\mu}(A^{*}) \subset c_{\mu}i_{\mu}c_{\mu}(A)$. Therefore, A is a $\mu - \beta$ -open set.

Example 3.2. Let $X = \{a, b, c, d\}$ $\mu = \{\phi, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\mathcal{H} = \{\phi, \{a\}, \{c\}, \{a, c\}\}\}$. Then \mathcal{H} is a strongly μ -codense ideal. If $A = \{a, c\}$, then $c_{\mu}i_{\mu}c_{\mu}(A) = c_{\mu}i_{\mu}(X) = c_{\mu}(\{a, b, c\}) \supset A$. Thus, $A \subset c_{\mu}i_{\mu}c_{\mu}(A)$ and so A is $\mu - \beta$ -open. Again, $c_{\mu}\Psi_{\mathcal{H}}(A) = c_{\mu}(X - X) = c_{\mu}(\emptyset) = \{d\} \not\supseteq A$. Hence A is not a $\Psi_{\mathcal{H}}C$ -set.

Example 3.3. Let $X = \{a, b, c, d\}$ $\mu = \{\phi, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\mathcal{H} = \{\phi, \{b\}, \{c\}\}\}$. Here \mathcal{H} is not a strongly μ -codense hereditary class. If $A = \{a\}$, then $\Psi_{\mathcal{H}}(A) = \{a, b\}$ which implies that $c_{\mu}\Psi_{\mathcal{H}}(A) = X \supset A$. Therefore, A is a $\Psi_{\mathcal{H}}C$ -set. But $c_{\mu}i_{\mu}c_{\mu}(A) = c_{\mu}i_{\mu}(\{a, d\}) = c_{\mu}(\phi) = \{d\} \not\supset A$ and so A is not a $\mu - \beta$ -open set. In [4], it is established that the intersection of a $\mu-\alpha$ -open set with a μ -semiopen set is a μ -semiopen set. The following Theorem 3.2 is analogous to this result.

Theorem 3.2. Let (X, μ) be a quasi-topological space with an ideal \mathcal{H} . Then the intersection of a $\mu - \alpha$ -open set with a $\Psi_{\mathcal{H}}C$ -set is a $\Psi_{\mathcal{H}}C$ -set.

Proof. Let A be a $\mu - \alpha$ -open set and B be a $\Psi_{\mathcal{H}}C$ -set. Then $A \subset i_{\mu}c_{\mu}i_{\mu}(A)$ and $B \subset c_{\mu}\Psi_{\mathcal{H}}(B)$. Now $A \cap B \subset i_{\mu}c_{\mu}i_{\mu}(A) \cap c_{\mu}\Psi_{\mathcal{H}}(B) \subset c_{\mu}(i_{\mu}c_{\mu}i_{\mu}(A) \cap \Psi_{\mathcal{H}}(B)) \subset c_{\mu}(c_{\mu}i_{\mu}(A) \cap \Psi_{\mathcal{H}}(B)) \subset c_{\mu}c_{\mu}(i_{\mu}(A) \cap \Psi_{\mathcal{H}}(B)) = c_{\mu}(i_{\mu}(A) \cap \Psi_{\mathcal{H}}(B)) \subset c_{\mu}(\Psi_{\mathcal{H}}(i_{\mu}(A)) \cap \Psi_{\mathcal{H}}(B)) \subset c_{\mu}(\Psi_{\mathcal{H}}(A) \cap \Psi_{\mathcal{H}}(B)) = c_{\mu}\Psi_{\mathcal{H}}(A \cap B)$, by Lemma 2.1. Therefore, $A \cap B$ is a $\Psi_{\mathcal{H}}C$ -set.

The following Theorem 3.3 gives a characterization of $\Psi_{\mathcal{H}}C-$ sets and Theorem 3.4 below characterizes strongly $\mu-$ codense ideal in terms of $\Psi_{\mathcal{H}}C-$ sets.

Theorem 3.3. Let (X, μ) be a space with a hereditary class \mathcal{H} . Then the following are equivalent.

- (a) A is a $\Psi_{\mathcal{H}}C-$ set.
- (b) $A \subset X i_{\mu}(X A)^{\star}$.
- (c) $A \subset c_{\mu}i_{\mu}\Psi_{\mathcal{H}}(A)$.

Proof. (a) \Leftrightarrow (b). A is a $\Psi_{\mathcal{H}}C$ -set if and only if $A \subset c_{\mu}\Psi_{\mathcal{H}}(A)$ if and only if $A \subset c_{\mu}(X - (X - A)^*)$ if and only if $A \subset X - i_{\mu}(X - A)^*$.

(a)
$$\Leftrightarrow$$
(c). Follows from the fact that $\Psi_{\mathcal{H}}(A)$ is μ -open.

Theorem 3.4. Let (X, μ) be a space with an ideal \mathcal{H} . Then the following are equivalent.

- (a) \mathcal{H} is strongly μ -codense.
- (b) For every $\Psi_{\mathcal{H}}C$ -set $A, A \subset A^*$.

Proof. (a) \Rightarrow (b). Suppose that A is a $\Psi_{\mathcal{H}}C$ -set. Then $A \subset c_{\mu}\Psi_{\mathcal{H}}(A) \subset c_{\mu}(A^{\star}) = A^{\star}$, by Lemma 2.2 and Lemma 1.1(c) so $A \subset A^{\star}$.

(b) \Rightarrow (a). Let A be a μ -open subset of X. Then A is a $\Psi_{\mathcal{H}}C$ -set and so $A \subset A^*$, by (b). Hence \mathcal{H} is strongly μ -codense, by Lemma 1.3.

The following Theorem 3.5 gives a characterization of μ -codense hereditary class in terms of \mathcal{H} -open sets of a quasi-topological space and Theorem 3.6 shows that in a quasi-topological space (X, μ) with a μ -codense ideal \mathcal{H} , the family of all $\Psi_{\mathcal{H}}C$ -sets is nothing but the family of all μ^* -semiopen sets in X. Corollary 3.1 below follows from the fact that $\sigma(\mu) \subset \sigma(\mu^*)$.

Theorem 3.5. Let (X, μ) be a quasi-topological space. Then the following are equivalent.

- (a) \mathcal{H} is (strongly) μ -codense.
- (b) $\mathcal{H}O(\mu) = \pi(\mu^*).$

Proof. (a) \Rightarrow (b). Suppose \mathcal{H} is (strongly) μ -codense. Now, $A \in \mathcal{H}O(\mu)$ implies that $A \subset i_{\mu}(A^{\star}) \subset i_{\mu}c_{\mu}^{\star}(A) \subset i_{\mu}^{\star}c_{\mu}^{\star}(A)$ and so $A \in \pi(\mu^{\star})$. If $A \in \pi(\mu^{\star})$, then $A \subset i_{\mu}^{\star}c_{\mu}^{\star}(A) \subset i_{\mu}^{\star}c_{\mu}(A) = i_{\mu}c_{\mu}(A)$ which implies that $A \in \pi(\mu)$. Therefore, $A \subset A^{\star}$, by Lemma 1.5. Hence $A \subset i_{\mu}c_{\mu}(A)$ implies that $A \subset i_{\mu}(A^{\star})$ and so $A \in \mathcal{H}O(\mu)$.

(b) \Rightarrow (a). Suppose $A \in \mu$. Then $A \in \pi(\mu^*)$ and so $A \in \mathcal{H}O(\mu)$ which implies that $A \subset i_{\mu}(A^*) \subset A^*$. Hence \mathcal{H} is (strongly) μ -codense.

Theorem 3.6. Let (X, μ) be a quasi-topological space with a μ -codense ideal \mathcal{H} . Then $\sigma(\mu^*) = \Psi_{\mathcal{H}}C(X)$.

Proof. Let $A \in \sigma(\mu^*)$. Then $A \subset c_{\mu}^* i_{\mu}^*(A) \subset c_{\mu} i_{\mu}^*(A) = c_{\mu}(A \cap \Psi_{\mathcal{H}}(A))$, by Theorem 2.3(b) and so $A \subset c_{\mu} \Psi_{\mathcal{H}}(A)$. Hence $\sigma(\mu^*) \subset \Psi_{\mathcal{H}}C(X)$. Conversely, let $A \in \Psi_{\mathcal{H}}C(X)$. If $x \notin c_{\mu}^* i_{\mu}^*(A)$, then $U \cap i_{\mu}^*(A) = \emptyset$ for some μ^* -open set U containing x which implies that $(A \cap \Psi_{\mathcal{H}}(A)) \cap U = \emptyset$. Since $U \in \mu^*$, there exists $G \in \mu$ and $H \in \mathcal{H}$ such that

 $x \in G-H \subset U$. Now $(A \cap \Psi_{\mathcal{H}}(A)) \cap U = \emptyset$ implies that $A \cap \Psi_{\mathcal{H}}(A) \cap (G-H) = \emptyset$ which implies that $A \cap \Psi_{\mathcal{H}}(A) \cap G \subset H$ which in turn implies that $(A \cap \Psi_{\mathcal{H}}(A) \cap G)^* \subset H^* = X - \mathcal{M}_{\mu}$ and so $A^* \cap \Psi_{\mathcal{H}}(A) \cap G \subset X - \mathcal{M}_{\mu}$, by Lemma 1.4. Thus, $A^* \cap \Psi_{\mathcal{H}}(A) \cap G = \emptyset$ and so $\Psi_{\mathcal{H}}(A) \cap G = \emptyset$, by Lemma 2.2. Therefore, $x \notin c_{\mu}\Psi_{\mathcal{H}}(A)$ so that $x \notin A$. Thus, $A \in \sigma(\mu^*)$ which implies that $\Psi_{\mathcal{H}}(X) \subset \sigma(\mu^*)$.

Corollary 3.1. Let (X, μ) be a quasi-topological space with a μ -codense ideal \mathcal{H} . Then $\sigma(\mu) \subset \Psi_{\mathcal{H}}C(X)$.

Corollary 3.2. Let (X, μ) be a quasi-topological space with a μ -codense ideal \mathcal{H} . Then $\mu_{\mathcal{A}} = \mathcal{H}O(\mu) \cap \Psi_{\mathcal{H}}C(X)$.

Proof. We know that $\alpha(\mu) = \sigma(\mu) \cap \pi(\mu)[8]$. Since \mathcal{H} is strongly μ -codense and hence μ -codense, by Theorem 3.5, $\pi(\mu^*) = \mathcal{H}O(\mu)$ and by Theorem 3.6, $\sigma(\mu^*) = \Psi_{\mathcal{H}}C(X)$. Therefore, the proof follows from Theorem 2.4.

Theorem 3.7. Let (X, μ) be a quasi-topological space with an ideal \mathcal{H} and $A, B \subset X$. If $A \in \mu_A$, then $A \cap B \in \Psi_{\mathcal{H}}C(X)$ for every $B \in \Psi_{\mathcal{H}}C(X)$.

Proof. Let $A \in \mu_A$ and $B \in \Psi_{\mathcal{H}}C(X)$. Then $A \subset i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A)$ and $B \subset c_{\mu}\Psi_{\mathcal{H}}(B)$. Suppose $x \in A \cap B$ and U be a μ -open set containing x. Since $x \in A$ and $A \subset i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A)$, $i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A)$ is a μ -open set containing x. Since μ is a quasi-topology, $U \cap i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A)$ is also a μ -open set containing x. Since $x \in c_{\mu}\Psi_{\mathcal{H}}(B)$, $U \cap i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A) \cap \Psi_{\mathcal{H}}(B) \neq \emptyset$. Let $V = (U \cap i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A)) \cap \Psi_{\mathcal{H}}(B)$. Then V is an μ -open set containing x such that $V \subseteq i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A) \subseteq c_{\mu}\Psi_{\mathcal{H}}(A)$. Therefore, $V \cap \Psi_{\mathcal{H}}(A) \neq \emptyset$ which implies that $U \cap i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A) \cap \Psi_{\mathcal{H}}(A) \neq \emptyset$ which in turn implies that $U \cap \Psi_{\mathcal{H}}(A \cap B) \neq \emptyset$, by Lemma 2.1. Hence $x \in c_{\mu}\Psi_{\mathcal{H}}(A \cap B)$ and so $A \cap B \subseteq c_{\mu}\Psi_{\mathcal{H}}(A \cap B)$. Thus, $A \cap B \in \Psi_{\mathcal{H}}C(X)$. **Theorem 3.8.** Let (X, μ) be a strong generalized space with a strong μ -codense hereditary class \mathcal{H} and $A, B \subset X$. If $A \cap B \in \Psi_{\mathcal{H}}C(X)$ for all $B \in \Psi_{\mathcal{H}}C(X)$, then $A \in \mu_A$.

Proof. Since $\emptyset \in \mathcal{H}$, by Lemma 1.1(a), $c_{\mu}\Psi_{\mathcal{H}}(X) = c_{\mu}(M_{\mu}) = X$ which implies that $X \in \Psi_{\mathcal{H}}C(X)$ and so $A \in \Psi_{\mathcal{H}}C(X)$, by hypothesis. Suppose that $x \in A$ and $x \notin i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A)$. Then $x \in X - i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A) = c_{\mu}(X - c_{\mu}\Psi_{\mathcal{H}}(A))$. Let B = $X - c_{\mu}\Psi_{\mathcal{H}}(A)$, then $x \in c_{\mu}(B)$ so that $V_x \cap B \neq \emptyset$ for every μ -open set V_x containing x. Since B is μ -open, $B \subset \Psi_{\mathcal{H}}(B)$ implies that $V_x \cap B \subset V_x \cap \Psi_{\mathcal{H}}(B)$ and so $V_x \cap \Psi_{\mathcal{H}}(B) \neq \emptyset$ which implies that $x \in c_\mu \Psi_{\mathcal{H}}(B) \subset c_\mu \Psi_{\mathcal{H}}(\{x\} \cup B)$ implies that $\{x\} \subset c_{\mu}\Psi_{\mathcal{H}}(\{x\} \cup B)$. Also, $B \subset c_{\mu}\Psi_{\mathcal{H}}(B)$ implies that $B \subset c_{\mu}\Psi_{\mathcal{H}}(\{x\} \cup B)$. Hence $\{x\} \cup B \subset c_{\mu}\Psi_{\mathcal{H}}(\{x\} \cup B)$. Therefore, $\{x\} \cup B \in \psi_{\mathcal{H}}C(X)$. Therefore, by hypothesis, $A \cap (\{x\} \cup B) \in \Psi_{\mathcal{H}}C(X)$. If possible, suppose there exists $y \in X$ such that $x \neq y$ and $y \in A \cap (\{x\} \cup B)$. Then $y \in A$ and $y \in B$. Now $y \in A$ implies that $y \in c_{\mu} \Psi_{\mathcal{H}}(A)$, a contradiction to $y \in B$. Therefore, $A \cap (\{x\} \cup B) = \{x\}$ so that $\{x\} \in \Psi_{\mathcal{H}}C(X)$. Hence $\{x\} \subset c_{\mu}\Psi_{\mathcal{H}}\{x\}$. If $\Psi_{\mathcal{H}}\{x\} = \emptyset$, then $\{x\} \subset c_{\mu}\Psi_{\mathcal{H}}\{x\} \subset c_{\mu}\emptyset = \emptyset$, since μ is strong. Hence $\Psi_{\mathcal{H}}\{x\} \neq \emptyset$. Therefore, $\{x\}$ contains a nonempty μ^* -interior. Hence $\{x\} = i_{\mu}^{\star}\{x\} \subset i_{\mu}^{\star}c_{\mu}\Psi_{\mathcal{H}}\{x\} = i_{\mu}c_{\mu}\Psi_{\mathcal{H}}\{x\} = i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A \cap (\{x\} \cup B)) \subseteq i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A).$ Therefore, $x \in i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A)$, a contradiction to our assumption. Hence $A \subset i_{\mu}c_{\mu}\Psi_{\mathcal{H}}(A)$ and so $A \in \mu_A$.

References

- [1] Á. Császár, Generalized open sets, Acta Math. Hungar., 75(1-2)(1997), 65 87.
- [2] Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106(2005), 351 - 357.
- [3] Á. Császár, Modifications of generalized topologies via hereditary classes, Acta Math. Hungar., 115(2007), 29 36.
- [4] Á. Császár, Remarks on quasi-topologies, Acta Math. Hungar., 119(1-2)(2008), 197 200.

- [5] Y.K. Kim and W.K. Min, On operations induced by hereditary classes on generalized topological spaces, *Acta Math. Hungar.*, 137(1-2)(2012), 130-138. DOI:10.1007/s10474-012-0212-9.
- [6] K. Kuratowski, Topology I, Academic Press, New York, 1966.
- [7] V. Renukadevi and K. Karuppayi, On modifications of generalized topologies via hereditary classes, J. Adv. Res. Pure. Math., 2(2)(2010), 14 20.
- [8] V. Renukadevi and P. Vimaladevi, Note on generalized topological spaces with hereditary classes, *Bol. Soc. Paran. Mat.*, 32(1)(2014), 89 97.
- [9] Sheena Scaria and V. Renukadevi, On hereditary classes in generalized topological spaces, *J. Adv. Res. Pure. Math.*, 3(2)(2011), 21 30.
- [10] P. Sivagami, Remark on γ -interior, Acta Math. Hungar., 119(2008), 81 94.

Department of Mathematics, ANJA College (Autonomous), Sivakasi, Tamil Nadu - 626124, India.

 $E\text{-}mail\ address{:}\qquad (1)\ \texttt{renu_siva2003@yahoo.com}$

E-mail address: (2) vimalkathir_15@gmail.com