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COMPLEMENT GRAPHS FOR ZERO - DIVISORS OF C(X)

GHADA ALAFIFI (1) AND EMAD ABU OSBA (2)

Abstract. Let X be a completely regular Hausdorff space and let C(X) be the

ring of all continuous real valued functions defined on X. The complement graph

for the zero-divisors in C(X) is a simple graph in which two zero-divisor functions

are adjacent if their product is non-zero.

In this article, the complement graph for the zero-divisor graph of C(X) and its

line graph are studied. It is shown that if X has more than 2 points, then these

graphs are connected with radius 2, and diameter less than or equal to 3. The girth

is also calculated for them to be 3, and it is shown that they are always triangulated

and hypertriangulated. Bounds for the dominating number and clique number are

also found for them in terms of the density number of X.

1. Introduction

Let X be a completely regular Hausdorff space, βX the Stone-Čech compactifica-

tion of X, C(X) the ring of all continuous real valued functions defined on X and

C∗(X) the subring of all bounded functions in C(X).

For each f ∈ C(X), let Z(f) = {x ∈ X : f(x) = 0}, coz(f) = X \ Z(f), and

Supp(f) = ClXcoz(f) and let Ann(f) = {g ∈ C(X) : fg = 0}. For each A ⊆ βX,
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let OA = {f ∈ C(X) : A ⊆ IntβXClβXZ(f)}, and let MA = {f ∈ C(X) : A ⊆
ClβXZ(f)}. For p ∈ X, Op = Op = {f ∈ C(X) : p ∈ IntXZ(f)} and Mp = Mp =

{f ∈ C(X) : f(p) = 0}. A zero-set Z in X is said to be a middle zero-set if there

exist two proper zero-sets E and F such that Z = E ∩F and E ∪F = X. A space X

is middle P-space if every non-empty middle zero-set in X has non-empty interior.

The density of X, denoted by d(X), is the smallest cardinal number of the form |A|,
where A is a dense subset of X. The weight of X, denoted by $(X), is the smallest

cardinality of the form |ß|, where ß is a base for X. The cellularity of the space X is

c(X) = sup {|F | : F is a family of pairwise disjoint non-empty open subsets of X}.
Let ℵ0 denotes the infinite countable cardinal number, and let ℵ1 denotes the first un-

countable cardinal number. If ℵn is an infinite cardinal number, then let ℵn+1 = 2ℵn .

For all notations and undefined terms concerning the ring C(X) in this paper the

reader may consult [7].

If |X| = 1, then C(X) is a field isomorphic to R. So, in this article we will always

assume that |X| > 1.

Let R be a commutative ring with unity 1. Let Spec(R) be the spectrum of the

prime ideals. For each a ∈ R and any ideal I of R, let V (a) = {P ∈ Spec(R) : a ∈ P},
D(a) = Spec(R) \ V (a) and V (I) =

⋂
a∈I

V (a). A proper prime ideal in a ring R that

contains no smaller prime ideal is called a minimal prime ideal, and the set of all

minimal prime ideals in R will be denoted by Min(R). For any subset S of a ring

R, we define the hull of S to be h(S) = {P ∈ Min(R) : S ⊂ P}. An ideal I in R is

called pure if for each f ∈ I, there exists g ∈ I such that f = fg. The ring R is

called von Neuman regular ring if for every f ∈ R, then there exists g ∈ R such

that f = f 2g. While if for every non-unit f ∈ R there exist g ∈ R \ {1} such that

f = fg, R will be called an almost regular ring. The following are well-known

facts:
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The ring C(X) is von Neuman regular if and only if X is a P-space (every Gδ-set

is open) if and only if Z(f) is open for every f ∈ C(X).

The ring C(X) is almost regular if and only if X is an almost P-space (every

non-empty Gδ-set has non-empty interior) if and only if IntXZ(f) 6= φ, whenever

Z(f) 6= φ.

Let Z(R) be the set of zero-divisors of R, and Z∗(R) = Z(R) \ {0}. The zero-

divisor graph of R, Γ(Z∗(R)), usually written Γ(R), is the simple graph in which

each element of Z∗(R) is a vertex, i.e. V (Γ(R)) = Z∗(R), and two distinct vertices f

and g are adjacent if and only if fg = 0. This graph was studied and characterized

in [3] and [4]. If G is a graph, then the complement graph G is defined on the same

vertex set, but two distinct vertices f and g are adjacent if and only if f and g are

not adjacent in G. The line graph of a graph G, denoted by L(G), is a graph

whose vertices are the edges of G and two vertices of L(G) are adjacent wherever the

corresponding edges of G are incident to a common vertex in G, see [8]. In this case,

if a, b are adjacent vertices in G, then [a, b] is a vertex in L(G).

Let G be a graph and let u and v be two distinct vertices in G. The distance

d(u, v) between u and v is the length of a shortest path joining them in G; if no such

path exists, we set d(u, v) = ∞. The greatest distance between any two vertices in

G is the diameter of G, denoted by diam(G). The associate number e(u) of a

vertex u of G is defined to be e(u) = sup {d(u, v) : u 6= v}. A vertex is center in G if

its greatest distance from any other vertex is as small as possible, this distance is the

radius of G, denoted by ρ(G). G is connected if any two of its vertices are linked

by a path in G, otherwise G is disconnected.

A cycle in G is a closed walk such that no vertex, except the initial and the final

vertex, appears more than once. While the girth of G, which is denoted by gr(G),

is the length of the shortest cycle in G. If G has no cycles, then we set gr(G) = ∞.

If u and v are two vertices in G, by c(u, v), we mean the length of the smallest cycle
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containing u and v. We write c(u, v) = ∞ if there is no cycle containing u and v. An

edge which joins two vertices of a cycle but is not itself an edge of the cycle is a chord

of that cycle. The graph G is chordal if every cycle of length greater than three has

a chord. G is called triangulated if each vertex in G is a vertex of a triangle. G is

called hypertriangulated if each edge in G is an edge of a triangle.

A simple graph G in which all the vertices of G are pairwise adjacent is called

complete graph. A complete graph on n vertices is denoted by Kn. A maximal

complete subgraph of G is called a clique. The clique number of G, denoted by

ω(G), is defined by ω(G) = sup {|H| : H is a complete subgraph of G}. A domi-

nating set in G is a set of vertices A such that every vertex outside A is adjacent

to at least one vertex in A. The dominating number of G, denoted by dt (G),

is the smallest number of the form |A|, where A is a dominating set. For distinct

vertices a and b in G, we say that a and b are orthogonal, written a ⊥ b if a and

b are adjacent and there is no vertex c of G which is adjacent to both a and b. G

is called complemented if for each vertex a of G, there is a vertex b of G (called a

complement of a) such that a ⊥ b. For all notations and undefined terms concerning

graph theory in this paper the reader may consult [10].

This article is a continuation of the work done in [5] and [2], where the zero-divisor

graph of C(X) and the line graph of the zero-divisor graph of C(X) were studied

respectively.

In this article, we start with Γ(C(X)), the complement graph of the zero-divisor

graph of C(X). We will study the cases at which Γ(C(X)) is connected, and we will

find its diameter, radius and girth. We will show that it is always triangulated and

hypertriangulated. We will also show that it is chordal if and only if |X| is 2 or 3.

We will find bounds for the clique number, and show that its dominating number is

2.
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Then we will study L(Γ(C(X))), the line graph for the complement graph of the

zero- divisor graph of C(X). We will study when L(Γ(C(X))) is connected, find its

diameter, radius and girth. We will show that it is never chordal, but it is always

triangulated and hypertriangulated. We will find bounds for its clique number and

dominating number.

This study shows the deep relations between algebra, topology and graph theory.

2. The complement graph for zero-divisors of C(X)

Note first that f ∈ Z∗(C(X)) if and only if IntXZ(f) 6= φ. In this section, we

study Γ(C(X)), the complement graph of the zero-divisor graph of C(X). The vertex

set of Γ(C(X)) is Z∗(C(X)) and two distinct vertices f, g ∈ Z∗(C(X)) are adjacent

in Γ(C(X)) if and only if fg 6= 0.

2.1. Connectedness. Unlike the case of the zero-divisor graph, which is always

connected, the complement of the zero-divisor graph may not be. So, in this section

we will study when Γ(C(X)) is connected, we will also calculate the diameter and

radius of Γ(C(X)).

Theorem 2.1. For any space X, Γ(C(X)) is connected with diam(Γ(C(X))) = 2 if

and only if |X| > 2.

Proof. If |X| = 1, then C(X) is a field and Γ(C(X)) is empty. If X = {a, b}, then f

is a vertex in Γ(C(X)) if f(a) = 0 and f(b) 6= 0 or conversely. Thus Γ(C(X)) is the

disjoint union of the two complete subgraphs A = {f ∈ C(X) : f(a) = 0 and f(b) 6=
0} and B = {f ∈ C(X) : f(a) 6= 0 and f(b) = 0}. Hence diam(Γ(C(X))) = ∞. Now

assume that |X| > 2 and let f, g ∈ Z∗(C(X)) such that fg = 0. Let a ∈ coz(f),

b ∈ coz(g), and c /∈ {a, b}. By regularity of X, there exists an open set U such that

c ∈ U ⊆ ClXU ⊆ X \ {a, b}. By complete regularity of X there exist h1, h2 ∈ C(X)

such that h1(ClXU) = 0, h1(a) = 1, h2(ClXU) = 0, and h2(b) = 1. Let h = h2
1 + h2

2.
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Then h ∈ Z∗(C(X)) \ {f, g} and f − h − g is a path of length 2 between f and g.

Thus Γ(C(X)) is connected with diameter 2. ¤

Corollary 2.1. If |X| > 2, then for any distinct vertices f, g ∈ Z∗(C(X)), there

exists h ∈ Z∗(C(X)) such that h is adjacent to both f and g.

Proof. If fg = 0, then Theorem 2.1 shows that there exists h ∈ Z∗(C(X)) such that

f − h− g is a path in Γ(C(X)). If fg 6= 0, then let h = 2f if g 6= 2f and otherwise

let h = 3f . Then h ∈ Z∗(C(X)) \ {f, g} and f − h− g is a path in Γ(C(X)). ¤

Corollary 2.2. Let f, g be vertices in Γ(C(X)). Then

(1) d(f, g) = 1 if and only if coz(f) ∩ coz(g) 6= φ if and only if Z(f) ∪ Z(g) 6= X.

(2) d(f, g) = 2 if and only if coz(f) ∩ coz(g) = φ if and only if Z(f) ∪ Z(g) = X.

Using Proposition 2.2 of [9], one can conclude the following:

Corollary 2.3. Let f, g be vertices in Γ(C(X)). Then

(1) d(f, g) = 1 if and only if D(f) ∩D(g) 6= φ.

(2) d(f, g) = 2 if and only if D(f) ∩D(g) = φ.

Now, we find the radius of Γ(C(X)). If |X| = 2, then e(f) = ∞, for each f ∈
Z∗(C(X)), since Γ(C(X)) is disconnected; and so ρ(Γ(C(X))) = ∞.

Theorem 2.2. For any space X with |X| > 2, ρ(Γ(C(X))) = 2.

Proof. It is clear that for any vertex f in Γ(C(X)), we have 1 ≤ e(f) ≤ 2, and so

1 ≤ ρ(Γ(C(X))) ≤ 2. Let f ∈ C(X) \ {0}. Since the set {coz(g) : g ∈ C(X) \ {0}}
is a base for open sets in X, we have: fg 6= 0 for each g ∈ C(X) \ {0} if and only

if coz(f) ∩ coz(g) 6= φ for each g ∈ C(X) \ {0} if and only if coz(f) is dense in X if

and only if Supp(f) = X if and only if IntXZ(f) = φ if and only if f /∈ Z∗(C(X)).

Thus for each f ∈ Z∗(C(X)), there exists g ∈ Z∗(C(X)) such that fg = 0 and so

2 ≥ e(f) ≥ d(f, g) = 2. Thus ρ(Γ(C(X))) = 2. ¤
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Note that in Γ(C(X)), every vertex is a center.

2.2. Cycles. In this section, we will calculate the girth of Γ(C(X)). We will show

that it is always triangulated and hypertriangulated, and we will find the length of

the shortest cycle joining any two non-adjacent vertices. Finally we will characterize

the case in which Γ(C(X)) is chordal.

It was shown in [5] that Γ(C(X)) is triangulated if and only if X has no isolated

points, while Γ(C(X)) is hypertriangulated if and only if X is a connected middle

P-space.

Theorem 2.3. For each space X with |X| > 1, the graph Γ(C(X)) is both triangu-

lated and hypertriangulated.

Proof. Let f ∈ Z∗(C(X)). Then f − 2f − 3f − f is a cycle of length 3 in Γ(C(X)),

hence Γ(C(X)) is triangulated.

Now let f − g be any edge in Γ(C(X)). Let h = 2f if g 6= 2f and otherwise let

h = 3f . Then h ∈ Z∗(C(X))\{f, g} and f −g − h −f is a triangle in Γ(C(X)), hence

the edge f − g is an edge in a triangle. Therefore Γ(C(X)) is hypertriangulated. ¤

The following corollary follows immediately concerning the girth of Γ(C(X)).

Corollary 2.4. If |X| > 1, then gr(Γ(C(X))) = 3.

Now, we find the length of the shortest cycle joining any two vertices in Γ(C(X)).

Theorem 2.4. Let f and g be two distinct vertices in Γ(C(X)). Then

(1) c(f, g) = 3 if and only if coz(f) ∩ coz(g) 6= φ if and only if Z(f) ∪ Z(g) 6= X.

(2) c(f, g) = 4 if and only if coz(f) ∩ coz(g) = φ if and only if Z(f) ∪ Z(g) = X.

Proof. (1) If c(f, g) = 3, then obviously, f and g are adjacent in Γ(C(X)), i.e. coz(f)∩
coz(g) 6= φ and Z(f) ∪ Z(g) 6= X. Conversely, if coz(f) ∩ coz(g) 6= φ then f and g
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are adjacent in Γ(C(X)), and by Corollary 2.1 there exists h ∈ Z∗(C(X)) such that

h is adjacent to both f and g, thus f − g − h− f is a cycle containing f and g, i.e.

c(f, g) = 3.

(2) If c(f, g) = 4, then it follows by (1) that fg = 0, which says that coz(f) ∩
coz(g) = φ. Conversely, given that coz(f)∩ coz(g) = φ, then by (1) there is no cycle

of length 3 containing f and g. Again by Corollary 2.1 there exists h ∈ Z∗(C(X))

such that h is adjacent to both f and g. Let r ∈ R \ {0, 1} such that rh /∈ {f, g, h},
thus f − h− g − rh− f is a cycle of length 4 and it is the smallest cycle containing

f and g, hence c(f, g) = 4. ¤

We now characterize the cases at which Γ(C(X)) is chordal.

Theorem 2.5. The graph Γ(C(X)) is chordal if and only if |X| ≤ 3.

Proof. Assume Γ(C(X)) is chordal graph and |X| ≥ 4. Pick four distinct points

x1, x2, x3, and x4 in X. Since X is a completely regular Hausdorff space there exist

four mutually disjoint open sets Ui, where i ∈ {1, 2, 3, 4} and xi ∈ Ui. Consider

the functions hi ∈ Z∗(C(X)) such that hi(xi) = 1, and hi(X \ Ui) = 0 for each

i ∈ {1, 2, 3, 4}. Clearly hihj = 0, whenever i 6= j. Consider the functions f1 = h1+h4,

f2 = h1 + h2, f3 = h2 + h3 and f4 = h3 + h4. Then clearly fi ∈ Z∗(C(X)) and

f1−f2−f3 −f4−f1 is a chordless cycle since f1f3 = 0 and f4f2 = 0, a contradiction.

Hence whenever |X| ≥ 4, Γ(C(X)) is never chordal. Conversely, we have two cases:

Case I: X = {a, b}. Then f is a vertex in Γ(C(X)) if f(a) = 0 and f(b) 6= 0

or conversely. Thus Γ(C(X)) is the disjoint union of the two complete subgraphs

A = {f ∈ C(X) : f(a) = 0 and f(b) 6= 0} and B = {f ∈ C(X) : f(a) 6= 0 and

f(b) = 0}. Hence if C is an induced cycle in Γ(C(X)), then it is contained in either

the complete graph induced by A or B. Thus C has a chord if it is of length greater

than 3. Hence Γ(C(X)) is chordal.
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Case II: X = {a, b, c}. Let C be an induced cycle in Γ(C(X)) of length greater

than 3.

Let f1− f2− f3− f4 be a path in C with f1, f2, f3 and f4 are distinct. If coz(f1)∩
coz(f3) 6= φ or coz(f2)∩coz(f4) 6= φ, then we have a chord joining f1 and f3 or a chord

joining f2 and f4. So assume that coz(f1) ∩ coz(f3) = φ and coz(f2) ∩ coz(f4) = φ.

But in this case we must have |coz(f2)| = 2 = |coz(f3)|. If f1 and f4 are adjacent,

then there must be a chord joining f2 and f4. So assume that f1 and f4 are not

adjacent, and hence there is a vertex f5 which is adjacent to f4. If coz(f5) has only

one element, then there is a chord joining f5 and f3, while if coz(f5) has two elements,

then either f5 is adjacent to f1 and f2 or it is adjacent to f2 and f3. In each case the

cycle C has a chord and Γ(C(X)) is chordal. ¤

2.3. Dominating Sets. In this section, we will calculate the dominating number for

Γ(C(X)) and characterize the dominating sets. Further, we will give an estimation

for the clique number.

Theorem 2.6. If |X| > 1, then dt
(
Γ(C(X))

)
= 2.

Proof. It is clear that dt
(
Γ(C(X))

)
6= 1. Let f ∈ Z∗(C(X)) and let a ∈ IntXZ(f).

So f ∈ Oa, which is a pure ideal, see [1]. Thus there exists g ∈ Oa ⊆ Z(C(X)), such

that f = fg, i.e. g = 1 on Supp(f). Therefore, 1 − g ∈ Z∗(C(X)) and {g, 1 − g}
dominates Z∗(C(X)). ¤

Note that if f ∈ Z∗(C(X)) such that f = 1 on a non-empty set with empty interior,

then 1− f /∈ Z∗(C(X)).

Theorem 2.7. If |X| > 1, then the following statements are equivalent for f, g ∈
Z∗(C(X)):

(1) {f, g} dominates Γ(C(X)).

(2) Supp(f) ∪ Supp(g) = X.
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(3) Ann(f) ∩ Ann(g) = {0}.
(4) V (Ann(f)) ∪ V (Ann(g)) = Spec(C(X)).

Proof. (1) ⇒ (2) Assume that y ∈ X \ (Supp(f)∪Supp(g)). Let h ∈ C(X) such that

h(y) = 1 and h(Supp(f) ∪ Supp(g)) = 0. Then h ∈ Z∗(C(X)), h /∈ {f, g}, fh = 0

and gh = 0, a contradiction.

(2)⇒ (3) Let h ∈ C(X)\{0}. Then φ 6= coz(h) = coz(h)∩X = coz(h)∩(Supp(f)∪
Supp(g)). Thus coz(h) ∩ Supp(f) 6= φ or coz(h) ∩ Supp(g) 6= φ. Suppose that

coz(h)∩Supp(f) 6= φ, and hence φ 6= ClX(coz(h)∩Supp(f)) = ClX(coz(h)∩coz(f)),

which implies that coz(h)∩coz(f) 6= φ. So h /∈ Ann(f). Hence for any h ∈ C(X)\{0},
h /∈ Ann(f) or h /∈ Ann(g). Thus Ann(f) ∩ Ann(g) = {0}.

(3) ⇒ (4) If P ∈ Spec(C(X)) \ {V (Ann(f)) ∪ V (Ann(g))}, then there exist h1 ∈
Ann(f) \ P and h2 ∈ Ann(g) \ P , and so h1h2 ∈ Ann(f) ∩ Ann(g) \ {0}, since

h1h2 /∈ P , a contradiction.

(4) ⇒ (1) If h ∈ C(X) such that fh = 0 and gh = 0, then for each P ∈
Spec(C(X)) = V (Ann(f)) ∪ V (Ann(g)), either Ann(f) ⊆ P or Ann(g) ⊆ P , and

therefore, h ∈ P for each P ∈ Spec(C(X)). Hence h = 0, since C(X) is a reduced

ring, and so {f, g} dominates Γ(C(X)). ¤

Example 2.1. Consider the function

f(x) =





1 x ≥ 1

x 0 < x < 1

0 x ≤ 0

Then f ∈ C(R), and {f, 1− f} dominates Γ(C(X)).

Theorem 2.8. The ring C(X) is a von Neuman regular ring if and only if C(X) is

an almost regular ring and for all f ∈ Z∗(C(X)) there exists g ∈ Z∗(C(X)) such that

fg = 0 and {f, g} dominates Γ(C(X)).



COMPLEMENT GRAPHS FOR ZERO - DIVISORS OF C(X) 195

Proof. Assume that C(X) is a von Neuman regular ring. Then clearly C(X) is an

almost regular ring. For each f ∈ Z∗(C(X)), Z(f) is open, and so the function

g(x) =





1 x ∈ Z(f)

0 x /∈ Z(f)

belongs to Z∗(C(X)), and Supp(f) ∪ Supp(g) = coz(f) ∪ Z(f) = X. Hence it

follows by Theorem 2.7, that {f, g} dominates Γ(C(X)).

Conversely, assume that C(X) is an almost regular ring and for all f ∈ Z∗(C(X))

there exists g ∈ Z∗(C(X)) such that fg = 0 and {f, g} dominates Γ(C(X)). Every

non-unit element in C(X) has a zero-set with non-empty interior, meaning that

every element in C(X) is either a unit or a zero-divisor. If f ∈ C(X) is a unit,

then f = f 2f−1. So assume that f ∈ Z∗(C(X)). By the hypothesis, there exists

g ∈ Z∗(C(X)) such that IntXZ(f) ∩ IntXZ(g) = φ and Z(f) ∪ Z(g) = X. Assume

a ∈ Z(f) ∩ Z(g). Now h = f 2 + g2 is a function in C(X), with Z(h) = Z(f) ∩ Z(g).

But C(X) is an almost regular ring and a ∈ Z(h), thus IntXZ(h) 6= φ, and hence

IntXZ(f) ∩ IntXZ(g) 6= φ, a contradiction. So Z(f) ∩ Z(g) = φ which implies that

Z(f) is open, since Z(f) = X \Z(g). Hence C(X) is a von Neuman regular ring. ¤

Using Theorem 2.7 together with Proposition 2.2 and Corollary 2.5 in [5], we get:

Theorem 2.9. The following are equivalent:

(1) Γ(C(X)) is complemented.

(2) For all f ∈ Z∗(C(X), there exists g ∈ Z∗(C(X)) such that Z(f) ∪ Z(g) = X

and IntXZ(f) ∩ IntXZ(g) = φ.

(3) For all f ∈ Z∗(C(X), there exists g ∈ Z∗(C(X)) such that h(g) = h(Ann(f))

(4) For all f ∈ Z∗(C(X), there exists g ∈ Z∗(C(X)) such that fg = 0 and {f, g}
dominates Γ(C(X)).

(5) Min(C(X)) is compact.
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Now, we estimate the clique number for Γ(C(X)).

Lemma 2.1. If |X| > 1, then ω(Γ(C(X))) ≥ ℵ1.

Proof. Let f ∈ Z∗(C(X)), and consider the set M = {rf : r ∈ R \ {0}}. Then M is

a complete subgraph in Γ(C(X)), and ℵ1 ≤ |M | ≤ ω(Γ(C(X))). ¤

Theorem 2.10. If 2 ≤ |X| ≤ ℵ0, then ω(Γ(C(X))) = ℵ1, otherwise 2c(X) ≤
ω(Γ(C(X))) ≤ 2d(X).

Proof. If 2 ≤ |X| ≤ ℵ0, then by the above Lemma, ℵ1 ≤ |M | ≤ ω(Γ(C(X))) ≤
|C(X)| ≤ 2ℵ0 = ℵ1.

Assume |X| > ℵ0, and let F = {Oi : i ∈ Λ} be a family of pairwise disjoint non-

empty open subsets of X with |F | = c(X). For all Oi ∈ F there exists a non-zero

continuous function fi such that Supp(fi) ⊂ Oi. Let Ω be the power set of F \ {O1}.
Then for every β ∈ Ω \ {F \ {O1}, φ}, the function gβ defined by

gβ(x) =





f1(x) x ∈ O1

fi(x) x ∈ Oi ∈ β

0 otherwise

is a well-defined continuous zero-divisor function, and gα 6= gβ for α 6= β. Hence

we have 2Λ distinct continuous functions. Consider the induced subgraph H of

{gβ : β ∈ Ω \ {F \ {O1} , φ}} in Γ(C(X)). Obviously H is a complete subgraph in

Γ(C(X)), hence 2c(X) ≤ ω(Γ(C(X))). Since |C(X)| ≤ 2d(X), see [6], then we’ll have

the inequality 2c(X) ≤ ω(Γ(C(X))) ≤ 2d(X). ¤

Example 2.2. Let X = βN. Then d(X) = |N| = ℵ0. Thus ℵ1 ≤ ω(Γ(C(X))) ≤
2d(X) = 2ℵ0 = ℵ1, and so ω(Γ(C(βN))) = ℵ1. Similarly ω(Γ(C(R))) = ℵ1. If

X = βR, then d(X) = |Q| = ℵ0, hence ω(Γ(C(βR))) = ℵ1.
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3. The Line graph of the complement graph for zero-divisors of C(X)

Let f, g ∈ Z∗(C(X)). Then [f, g] is a vertex in L(Γ(C(X))) if fg 6= 0. Since

Γ(C(X)) is an undirected graph, then [f, g] = [g, f ]. It is clear that for distinct

vertices [f1, f2] and [g1, g2] in L(Γ(C(X))), [f1, f2] is adjacent to [g1, g2] if fi = gj for

some i, j ∈ {1, 2}.

3.1. Connectedness. Unlike the case of L(Γ(C(X))), the graph L(Γ(C(X))) needs

not be connected. We will characterize in this section the case at which L(Γ(C(X)))

is connected and calculate its diameter and radius.

Lemma 3.1. Let [f1, f2] and [g1, g2] be distinct vertices in L(Γ(C(X))). Then there

is a vertex [h1, h2] that is adjacent to both [f1, f2] and [g1, g2] in L(Γ(C(X))) if and

only if figj 6= 0 for some i, j ∈ {1, 2}.

Proof. Assume there is a vertex [h1, h2] that is adjacent to both [f1, f2] and [g1, g2] in

L(Γ(C(X))). If fi = gj for some i, j ∈ {1, 2}, then figj = f 2
i 6= 0. So assume that

fi 6= gj for all i, j ∈ {1, 2}. If [f1, f2]− [h1, h2]− [g1, g2] is a path in L(Γ(C(X))), then

h1 = fi for some i ∈ {1, 2} and h2 = gj for some j ∈ {1, 2}. Thus figj = h1h2 6= 0.

Conversely, assume that f1g1 6= 0. If f1 6= g1, then [f1, g1] is adjacent to both

[f1, f2] and [g1, g2] in L(Γ(C(X))). If f1 = g1, then there exists r ∈ R \ {0, 1} such

that g2 6= rg1 and f2 6= rf1, so [f1, rf1] is adjacent to both [f1, f2] and [g1, g2] in

L(Γ(C(X))). ¤

Theorem 3.1. Assume that |X| ≥ 3, [f1, f2] and [g1, g2] are distinct vertices in

L(Γ(C(X))). Then

(1) d([f1, f2], [g1, g2]) = 1 if and only if fi = gj for some i, j ∈ {1, 2}.
(2) d([f1, f2], [g1, g2]) = 2 if and only if fi 6= gj for all i, j ∈ {1, 2} and figj 6= 0

for some i, j ∈ {1, 2}.
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(3) d([f1, f2], [g1, g2]) = 3 if and only if fi 6= gj for all i, j ∈ {1, 2} and figj = 0 for

all i, j ∈ {1, 2}.

Proof. (1) Clear.

(2) The result follows immediately by Lemma 3.1.

(3) Using (1) and (2), we get d([f1, f2], [g1, g2]) > 2. It follows by Corollary 2.1

that there exists h ∈ Z∗(C(X)) such that f1 − h− g1 is a path in Γ(C(X)). Clearly

one can choose h such that h /∈ {f2, g2}. Thus we have the path [f1, f2] − [f1, h] −
[h, g1]− [g1, g2] in L(Γ(C(X))). Hence d([f1, f2], [g1, g2]) = 3. ¤

Corollary 3.1. If |X| ≥ 3, then L(Γ(C(X))) is connected with diam(L(Γ(C(X)))) ≤
3.

Proof. It follows by Theorem 2.1 that if |X| = 2, then Γ(C(X)) is disconnected, and

so L(Γ(C(X))) is disconnected too. Now the result follows by Theorem 3.1. ¤

We now find the radius of L(Γ(C(X))).

Theorem 3.2. Assume |X| > 2 and [f1, f2] is a vertex in L(Γ(C(X))). Then

e([f1, f2]) =





2 Supp(f1) ∪ Supp(f2) = X

3 otherwise

Proof. Since diam(L(Γ(C(X)))) ≤ 3, we have 1 < e([f1, f2]) ≤ 3. Assume that

[g1, g2] is a vertex that is not adjacent to [f1, f2] in L(Γ(C(X))). So gi 6= fj for all

i, j ∈ {1, 2}. But φ 6= coz(g1) = coz(g1)∩X = coz(g1)∩ (Supp(f1)∪Supp(f2)). Thus

coz(g1)∩Supp(f1) 6= φ or coz(g1)∩Supp(f2) 6= φ. Suppose that coz(g1)∩Supp(f1) 6=
φ, and hence φ 6= ClX(coz(g1) ∩ Supp(f1)) = ClX(coz(g1) ∩ coz(f1)), which implies

that coz(g1)∩ coz(f1) 6= φ. Hence [f1, f2]− [f1, g1]− [g1, g2] is a path in L(Γ(C(X))),

and therefor d([f1, f2], [g1, g2]) = 2. Thus e([f1, f2]) = 2.
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Now, assume that y ∈ X \ (Supp(f1) ∪ Supp(f2)). Let V be an open set in X

such that y ∈ V ⊆ ClXV ⊆ X \ (Supp(f1) ∪ Supp(f2)). Let g1, g2 ∈ C(X) such that

gi(y) = i and g(Supp(f1) ∪ Supp(f2)) = 0 for i ∈ {1, 2}. Then fi 6= gj and figj = 0

for all i, j ∈ {1, 2}. So it follows by Theorem 3.1 that d([f1, f2], [g1, g2]) = 3, and

hence e([f1, f2]) = 3. ¤

Corollary 3.2. If |X| > 2, then ρ(L(Γ(C(X)))) = 2.

Proof. It follows by the proof of Theorem 2.6 that there exists g ∈ Z∗(C(X)) such

that {g, 1 − g} dominates Γ(C(X)), and clearly Supp(g) ∪ Supp(1 − g) = X. Now,

if g(1 − g) 6= 0, then using Theorem 3.2, we get ρ(L(Γ(C(X)))) = e([g, 1 − g]) = 2.

If g(1 − g) = 0, then g2 = g is an idempotent, and hence Z(g) and coz(g) are non-

empty clopen sets with coz(1−g)∪ coz(g) = X. Since |X| ≥ 3, either |coz(g)| ≥ 2 or

|coz(1− g)| ≥ 2. Assume that |coz(1− g)| ≥ 2, and let x, y be two distinct points in

coz(1− g). Since X is a completely regular Hausdorff space, there exist two disjoint

open sets U and V , such that x ∈ U ⊂ coz(1− g) and y ∈ V ⊂ coz(1− g). Consider

h ∈ C(X) such that h(x) = 1 and h(X \ U) = 0. Clearly (g + h) ∈ Z∗(C(X)), with

(g + h)(1− g) 6= 0 and Supp(g + h)∪Supp(1− g) = X, hence again by Theorem 3.2,

ρ(L(Γ(C(X)))) = e([h + g, 1− g]) = 2. ¤

3.2. Cycles. In this section, we will show that L(Γ(C(X))) is always triangulated

and hypertriangulated, we will also find the length of the shortest cycle containing

two distinct vertices and show that L(Γ(C(X))) is never chordal.

Theorem 3.3. If |X| > 1, then gr(L(Γ(C(X)))) = 3.

Proof. Let [f, g] be a vertex in L(Γ(C(X))). Then there exists r ∈ R \ {0, 1}
such that f 6= rg. Thus we have the cycle [f, g] − [g, rg] − [rg, f ] − [f, g]. Hence

gr(L(Γ(C(X)))) = 3. ¤
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Theorem 3.4. If |X| > 1, then L(Γ(C(X))) is both triangulated and hypertriangu-

lated.

Proof. We have showed in the proof of Theorem 3.3 that L(Γ(C(X))) is triangulated.

Let [f1, f2]− [f2, g] be an edge in L(Γ(C(X))). Then there exists r ∈ R \ {0, 1} such

that f1 6= rg and f2 6= rg. Hence [f1, f2] − [f2, g] − [f2, rg] − [f1, f2] is a cycle in

L(Γ(C(X))), which implies that L(Γ(C(X))) is hypertriangulated. ¤

Theorem 3.5. Let [f1, f2] and [g1, g2] be two distinct vertices in L(Γ(C(X))). Then

(1) c([f1, f2], [g1, g2]) = 3 if and only if fi = gj for some i, j ∈ {1, 2}.
(2) c([f1, f2], [g1, g2]) = 4 if and only if fi 6= gj for all i, j ∈ {1, 2} and ((for

some i ∈ {1, 2}, figj 6= 0 for all j ∈ {1, 2}) or (f1gi 6= 0 and f2gj 6= 0 where

{i, j} = {1, 2})).
(3) c([f1, f2], [g1, g2]) = 5 if and only if fi 6= gj for all i, j ∈ {1, 2} and for only

one i ∈ {1, 2}, figj 6= 0 for only one j ∈ {1, 2}.
(4) c([f1, f2], [g1, g2]) = 6 if and only if fi 6= gj for all i, j ∈ {1, 2} and figj = 0 for

all i, j ∈ {1, 2}.

Proof. (1) Assume f1 = g1. Then there exists r ∈ R\{0} such that rg2 /∈ {f1, f2, g2},
and so

[f1, f2]− [f1, g2]− [f1, rg2]− [f1, f2]

is a cycle of length 3 in L(Γ(C(X))) containing [f1, f2] and [g1, g2]. It is clear that

if a triangle contains [f1, f2] and [g1, g2], then fi = gj for some i, j ∈ {1, 2}.
(2) Since fi 6= gj for all i, j ∈ {1, 2}, then there is no triangle containing [f1, f2] and

[g1, g2], because they are non-adjacent. Now, assume that f1gj 6= 0 for all j ∈ {1, 2}.
Then

[f1, f2]− [f1, g2]− [g1, g2]− [g1, f1]− [f1, f2]
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is a cycle of length 4 in L(Γ(C(X))) containing [f1, f2] and [g1, g2]. Also if f1g1 6= 0

and f2g2 6= 0, then

[f1, f2]− [f1, g1]− [g1, g2]− [g2, f2]− [f1, f2]

is a cycle of length 4 in L(Γ(C(X))) containing [f1, f2] and [g1, g2]. Hence in both

cases we have c([f1, f2], [g1, g2]) = 4.

Assume that c([f1, f2], [g1, g2]) = 4. Then it follows by (1) that fi 6= gj for all

i, j ∈ {1, 2}. Hence we have the cycle

[f1, f2]− [a, b]− [g1, g2]− [c, d]− [f1, f2],

where a, c ∈ {f1, f2} and b, d ∈ {g1, g2}. Assume that a = f1, c = f2, b = g1 and

d = g2 , which implies that f1g1 6= 0 and f2g2 6= 0. Now if a = c = f1, b = g1

and d = g2, then f1g1 6= 0 and f1g2 6= 0. Finally, if a = c = f1, b = d = g2, then

[a, b] = [c, d], which is a contradiction.

(3) Assume fi 6= gj for all i, j ∈ {1, 2} and for only one i ∈ {1, 2}, figj 6= 0

for only one j ∈ {1, 2}, say f1g1 6= 0. By (1) and (2), there is no cycle of length

3 or 4 containing both [f1, f2] and [g1, g2]. There exists r ∈ R \ {0} such that

rg1 /∈ {f1, g1, g2}, and so the cycle

[f1, f2]− [f1, g1]− [g1, g2]− [g2, rg1]− [rg1, f1]− [f1, f2]

is of length 5 in L(Γ(C(X))) containing [f1, f2] and [g1, g2].

Hence we have c([f1, f2], [g1, g2]) = 5.

Now, assume that c([f1, f2], [g1, g2]) = 5. Then fi 6= gj for all i, j ∈ {1, 2}. If

figj = 0 for all i, j ∈ {1, 2} and we have the cycle

[f1, f2]− [k1, l1]− [g1, g2]− [k2, l2]− [k3, l3]− [f1, f2]
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of length 5 in L(Γ(C(X))), then k1 ∈ {f1, f2} and l1 ∈ {g1, g2}. But k1l1 6= 0,

contradicting the assumption. Similarly if we have the cycle

[f1, f2]− [k1, l1]− [k2, l2]− [g1, g2]− [k3, l3]− [f1, f2],

we will have a contradiction. Thus we must have figj 6= 0 for only one i ∈ {1, 2}
and only one j ∈ {1, 2}.

(4) Assume that fi 6= gj for all i, j ∈ {1, 2} and figj = 0 for all i, j ∈ {1, 2}. By

the previous steps c([f1, f2], [g1, g2]) > 5. It follows by Corollary 2.1 that there exists

h ∈ Z∗(C(X) such that f1 − h − g1 is a path in Γ(C(X)). Let r ∈ R \ {0, 1}, then

the cycle

[f1, f2]− [f1, h]− [h, g1]− [g1, g2]− [g1, rh]− [rh, f1]− [f1, f2]

is of length 6 in L(Γ(C(X))) containing [f1, f2] and [g1, g2].

Hence we have c([f1, f2], [g1, g2]) = 6.

If c([f1, f2], [g1, g2]) = 6, then by (1), (2), and (3) fi 6= gj for all i, j ∈ {1, 2} and

figj = 0 for all i, j ∈ {1, 2}. ¤

Theorem 3.6. The graph L(Γ(C(X))) is never chordal.

Proof. Let f ∈ Z∗(C(X)). Then [f, 2f ] − [2f, 3f ] − [3f, 4f ] − [4f, f ] − [f, 2f ] is a

cycle of length 4 in L(Γ(C(X))), where no chord can be added. ¤

3.3. Dominating Sets. In this section, we will give bounds for the dominating

number and the clique number for L(Γ(C(X))).

Lemma 3.2. For any dominating set D in L(Γ(C(X))), |D| ≥ ℵ1.

Proof. If for each f ∈ Z∗(C(X)), there exists g ∈ Z∗(C(X)) \ Ann(f) such that

[f, g] ∈ D, then |D| ≥ |Z∗(C(X))| ≥ ℵ1. So assume that there exists f ∈ Z∗(C(X))

such that [f, g] /∈ D for all g ∈ Z∗(C(X)) \ Ann(f). Hence K = {[gr, rf ] : r ∈
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R \ {0, 1}} ⊆ D, where gr ∈ Z∗(C(X)) \ Ann(rf), since [f, rf ] /∈ D. Therefor

|D| ≥ |K| ≥ ℵ1. ¤

Theorem 3.7. If |X| > 1, then $(X) ≤ dt(L(Γ(C(X)))).

Proof. Let D be a dominating set in L(Γ(C(X))), and let B = {coz(f), coz(g) :

[f, g] ∈ D}. Let U be any non-empty open set in X and let a ∈ U . Let V be

an open set in X such that a ∈ V ⊆ ClXV ⊆ U . Let f, g ∈ C(X) such that

f(a) = 1, g(a) = 2 and f(X \ V ) = g(X \ V ) = 0. Then f, g ∈ Z∗(C(X)) and [f, g]

is a vertex in L(Γ(C(X))). We now have 3 cases:

Case I: [f, g] ∈ D, and so a ∈ coz(f) ⊆ U.

Case II: [f, h] ∈ D for some h ∈ Z∗(C(X)) \ Ann(f), and so a ∈ coz(f) ⊆ U.

Case III: [g, k] ∈ D for some k ∈ Z∗(C(X)) \ Ann(g), and so a ∈ coz(g) ⊆ U.

Thus B is a base for X, and so $(X) ≤ |B| ≤ 2 |D| = |D|.
Since this is true for any dominating set D, we have $(X) ≤ dt(L(Γ(C(X)))). ¤

Corollary 3.3. If |X| > 1, then d(X) ≤ dt(L(Γ(C(X)))).

Proof. The result is immediate, since d(X) ≤ $(X). ¤

Theorem 3.8. If |X| > 1, then dt(L(Γ(C(X)))) ≤ 2d(X).

Proof. It was shown in the proof of Theorem 2.6 that there exists g ∈ Z∗(C(X)) such

that {g, 1 − g} dominates Γ(C(X)). Let D1 = {[g, h] : h ∈ Z∗(C(X)) \ Ann(g)},
D2 = {[1 − g, k] : k ∈ Z∗(C(X)) \ Ann(1 − g)}, and D = D1 ∪ D2. It is clear that

D dominates L(Γ(C(X))), and so dt(L(Γ(C(X)))) ≤ |D| ≤ |Z∗(C(X)) \ Ann(g)}|+
|Z∗(C(X)) \ Ann(1− g)| ≤ |C(X)| ≤ 2d(X), see [6]. ¤

Corollary 3.4. If d(X) = ℵn, then ℵn ≤ dt(L(Γ(C(X)))) ≤ ℵn+1.

We now investigate cliques and clique number in L(Γ(C(X))).
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Theorem 3.9. If |X| > 1, then ω(L(Γ(C(X)))) = |Z∗(C(X))|.

Proof. Let {f, g} be a dominating set of Γ(C(X)).

Let Af = {[f, h] : h ∈ Z∗(C(X)) and fh 6= 0} and

Ag = {[g, h] : h ∈ Z∗(C(X)) and gh 6= 0}. Then clearly the induced subgraphs

H1 and H2 of Af and Ag respectively are complete in L(Γ(C(X))). But |Af |+
|Ag| = |Z∗(C(X))|. Hence sup {|Af | , |Ag|} = |Z∗(C(X))|. i.e. ω(L(Γ(C(X)))) =

|Z∗(C(X))|. ¤
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