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ON D - CONTINUOUS FUNCTIONS AND ITS SOME

PROPERTIES

J. ANTONY REX RODRIGO (1) AND K. DASS (2)

Abstract. In this paper, we introduce a new class of continuous functions called

D-continuous functions by utilizing D-closed sets. We study their properties in

topological space. It turns out, among others, the D-continuous is weaker than

perfect continuity and stronger than both gp-continuity and πgp-continuity.

1. Introduction

Continuous functions in topology found a valuable place in the applications of

mathematics as it has applications to engineering especially to digital signal process-

ing and neural networks. Topologist studied weaker and stronger forms of continuous

functions in topology using the sets stronger and weaker than open and closed sets.

Balachandran et.al [7], Levine [19], Mashour et.al [21], Rajesh et.al [27], Ghanam-

bal et.al [15], Park et.al [25], J. K. Kohli et al.[18], E. Ekici [13], I. L. Reilly et

al.[29], K. Dass et al.[8], M. Akdağ [1] have introduced g-continuity, semi-continuity,

pre-continuity, g̃ continuity, gpr-continuity and πgp-continuity, D-super continuity,

perfectly continuity, δ−continuity, contra D-continuity, lower and upper multi D-

continuity respectively. As generalization of closed sets , D-closed sets were intro-

duced and studied by the same author [3]. The aim of this paper is to introduce new
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classes of functions called D-continuous functions. Moreover, the relationships and

properties of D-continuous functions are obtained.

2. Preliminaries

Throughout this paper (X, τ), (Y, σ), (Z, η) represent non-empty topological spaces

on which no separation axioms are assumed unless otherwise mentioned. We recall

the following definitions in the sequel.

Definition 2.1. Let (X, τ) be a topological space. A subset A of the space X is said

to be

(1) Pre-open [21] if A ⊆ Int(cl(A)) and pre-closed if cl(Int(A)) ⊆ A.

(2) Semi-open [19] if A ⊆ cl(Int(A)) and semi-closed if Int(cl(A)) ⊆ A.

(3) Semi-preopen [2] if A ⊆ cl(int(cl(A))) and semi-preclosed if

int(cl(int(A))) ⊆ A.

(4) Regular open [30] if A = Int(cl(A)) and regular closed if A = cl(Int(A)).

(5) π-open [39] if it is a finite union of regular open sets.

Recall that the intersection of all semi-closed (resp. pre-closed, semi-preclosed)

sets containing A is called the semi-closure of A and is denoted by scl(A) (resp.

pcl(A), spcl(A)).

Definition 2.2. Let (X, τ) be a topological space. A subset A ⊆ X is said to be

(1) generalized closed (briefly g-closed) [20] if cl(A) ⊆ U whenever A ⊆ U and U

is open in X.

(2) generalized pre-closed (briefly gp-closed) [23] if pcl(A) ⊆ U whenever A ⊆ U

and U is open in X.

(3) generalized pre-regular closed (briefly gpr-closed) [14] if pcl(A) ⊆ U whenever

A ⊆ U and U is regular open in X.



ON D - CONTINUOUS FUNCTIONS 209

(4) pre-generalized closed (briefly pg-closed) [23] if pcl(A) ⊆ U whenever A ⊆ U

and U is preopen in X.

(5) g∗-preclosed (briefly g∗p-closed) [37] if pcl(A) ⊆ U whenever A ⊆ U and U is

g-open in X.

(6) generalized semi-preclosed (briefly gsp-closed ) [10] if spcl(A) ⊆ U whenever

A ⊆ U and U is open in X.

(7) pre semi-closed [38] spcl(A) ⊆ U whenever A ⊆ U and U is g-open in X.

(8) ω-closed [32] if cl(A) ⊆ U whenever A ⊆ U and U is semi-open in X.

(9) πgp-closed [24] if pcl(A) ⊆ U whenever A ⊆ U and U is π-open in X.

(10) ĝ-closed [34] if cl(A) ⊆ U whenever A ⊆ U and U is semi-open in X.

(11) ∗g-closed [36] if cl(A) ⊆ U whenever A ⊆ U and U is ĝ-open in X.

(12) #g-semi closed (briefly #gs-closed)[35] if scl(A) ⊆ U whenever A ⊆ U and

U is ∗g-open in X.

(13) g̃-closed [17] if cl(A) ⊆ U whenever A ⊆ U and U is #gs-open in X.

(14) ρ-closed [9] if pcl(A) ⊆ Int(U) whenever A ⊆ U and U is g̃-open in X.

(15) D-closed [3] if pcl(A) ⊆ Int(U) whenever A ⊆ U and U is ω-open in X.

The complements of the above mentioned sets are called their respective open sets

Definition 2.3. A function f : (X, τ)→ (Y, σ) is called

(1) semi-continuous [19] if f−1(V ) is semi-open in (X, τ) for every open set V in

(Y, σ).

(2) pre-continuous [21] if f−1(V ) is pre-closed in (X, τ) for every closed set V in

(Y, σ).

(3) g-continuous [7] if f−1(V ) is g-closed in (X, τ) for every closed set V in (Y, σ).

(4) ω-continuous [31] if f−1(V ) is ω-closed in (X, τ) for every closed set V in

(Y, σ).
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(5) gsp-continuous [10] if f−1(V ) is gsp-closed in (X, τ) for every closed set V in

(Y, σ).

(6) gp-continuous [5] if f−1(V ) is gp-closed in (X, τ) for every closed set V in

(Y, σ).

(7) gpr-continuous [15] if f−1(V ) is gpr-closed in (X, τ) for every closed set V in

(Y, σ).

(8) semi-pre-continuous [2] if f−1(V ) is semi-preopen in (X, τ) for every open set

V in (Y, σ).

(9) pre-semi-continuous [38] if f−1(V ) is pre-semiclosed in (X, τ) for every closed

set V in (Y, σ).

(10) πgp-continuous [25] if f−1(V ) is πgp-closed in (X, τ) for every closed set V in

(Y, σ)).

(11) pg-continuous [23] if f−1(V ) is pg-closed for every closed set V in (Y, σ).

(12) g∗p-continuous [37] if f−1(V ) is g∗p-closed for every closed set V in (Y, σ)).

(13) #g-semi-continuous [35] if f−1(V ) is #gs-closed in (X, τ) for every closed set

V in (Y, σ).

(14) g̃-continuous [27] if f−1(V ) is g̃-closed in (X, τ) for every closed set V in (Y, σ).

(15) contra-continuous [11] if f−1(V ) is closed in (X, τ) for every open set V in

(Y, σ).

(16) perfectly continuous [6] if f−1(V ) is clopen in (X, τ) for every open set V in

(Y, σ).

(17) contra-pre-continuous [16] if f−1(V ) is pre-closed in (X, τ) for every open set

V in (Y, σ).

(18) g̃-irresolute [28] if f−1(V ) is g̃-closed in (X, τ) for every g̃-closed set V in

(Y, σ).

(19) M-pre closed [22] if f(V ) is pre closed in (Y, σ) for every pre closed set V in

(X, τ).
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(20) RC-continuous [12] if f−1(V ) is regular closed in (X, τ) for every open set V

in (Y, σ).

(21) D-irresolute [4] if f−1(V ) is D-closed in (X, τ) for every D-closed set V in

(Y, σ).

Definition 2.4. A space (X, τ) is called

(1) a T 1

2

-space [20] if every g-closed set is closed.

(2) a Tω-space [31] if every ω-closed set is closed.

(3) a gsT
#
1

2

-space [35] if every #g-semi closed set is closed.

(4) a T g̃-space [37] if every g̃-closed set is closed.

Theorem 2.5. [3]

(1) Every open and preclosed subset of (X, τ) is D-closed.

(2) Every D-closed set is ρ-closed (resp.gp-closed ,gpr-closed,gsp-closed). Con-

verse need not be true.

(3) If D[A] ⊆ Dp[A] for each subset A of a space (X, τ), then the union of two

D-closed set is D-closed.

(4) A subset A of (X, τ) is regular open iff A is both open and D-closed.

3. D-continuous functions

Definition 3.1. A function f : (X, τ)→ (Y, σ) is said to be D-continuous if f−1(V )

is D-closed in (X, τ) for every closed set V in (Y, σ).

Example 3.2. Let X = Y = {a, b, c}, τ = {∅, {a}, {c}, {a, c}, X} and σ = {∅, {a, c}, Y }.

Then the identity function f : (X, τ)→ (Y, σ) is D-continuous.

Theorem 3.3. Every continuous is D-continuous.

Proof. Let V be closed in (Y, σ). Since f is continuous, f−1(V ) is closed in (Y, σ).

By Theorem 2.8 [4], f−1(V ) is D-closed in (X, τ). Hence f is D-continuous. �
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Remark 3.4. The converse of the above theorem need not be true as seen from the

following example.

Example 3.5. Let X = {a, b, c} = Y, τ = {∅, {a}, {b, c}, X} and σ = {∅, {a, c}, Y }.

Define f : (X, τ)→ (Y, σ) by f(a) = a; f(b) = b = f(c). Then f is D-continuous but

not continuous. Since for the closed set V = {b}, f−1(V ) = {b, c} is D-closed but not

closed.

Proposition 3.6. Every contra-continuous and Pre-continuous is D-continuous

Proof. Let f : (X, τ) → (Y, σ) be Contra-continuous and pre-continuous. Let V be

closed in (Y, σ). Then f−1(V ) is pre-closed also open in (X, τ). Hence by theorem

2.5(1), f−1(V ) is D-closed in (X, τ). Hence f is D-continuous. �

Remark 3.7. The converse of the above proposition need not be true as seen from

the following example.

Example 3.8. Let X = {a, b, c} = Y, τ = {∅, {b}, X} and σ = {∅, {a, b}, Y }. Define

f : (X, τ) → (Y, σ) by f(a) = f(b) = c and f(c) = b. Then f is D-continuous but

neither contra-continuous nor pre-continuous. Since for the closed set V = {c} in

(Y, σ), f−1(V ) = {a, b} is D-closed and it is neither pre-closed nor open in (X, τ).

Proposition 3.9. Every D-continuous is gp-continuous.

Proof. By theorem 2.5(2), every D-closed set is gp-closed, the proof follows. �

Remark 3.10. The converse of the above proposition need not be true as seen from

the following example.

Example 3.11. Let X = Y = {a, b, c}, τ = {∅, {a}, {b, c}, X} and σ = {∅, {a, b}, Y }.

Define f : (X, τ) → (Y, σ) by f(a) = a; f(b) = c and f(c) = b. Then f is

gp-continuous but not D-continuous. Since for the closed set V = {c} in (Y, σ),

f−1(V ) = {b} is gp-closed but not D-closed in (X, τ).
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Proposition 3.12. Every D-continuous is gpr-continuous.

Proof. By theorem 2.5(2), every D-closed set is gpr-closed, the proof follows. �

Remark 3.13. The converse of the above proposition need not be true as seen from

the following example.

Example 3.14. By Example 3.11, f is gpr-continuous but not D-continuous. Since

for the closed set V = {c} in (Y, σ), f−1(V ) = {b} is gpr-closed but not D-closed in

(X, τ).

Proposition 3.15. Every D-continuous is gsp-continuous.

Proof. By theorem 2.5(2), every D-closed set is gsp-closed, the proof follows. �

Remark 3.16. The converse of the above proposition need not be true as seen from

the following example.

Example 3.17. By example 3.14, f is gsp-continuous but not D-continuous. Since

for the closed set V = {c} in (Y, σ), f−1(V ) = {b} is gsp-closed but not D-closed in

(X, τ).

Proposition 3.18. Every D-continuous is πgp-continuous.

Proof. From the definitions 2.2 (9) and (15), every D-closed is πgp-closed, the proof

follows. �

Remark 3.19. The converse of the above proposition need not be true as seen from

the following example.

Example 3.20. Let X = Y = {a, b, c}, τ = {∅, {a}, {b, c}, X} and σ = {∅, {a, c}, Y }.

Define f : (X, τ) → (Y, σ) by f(a) = a; f(b) = c and f(c) = b. Then f is

πgp-continuous but not D-continuous. Since for the closed set V = {b} in (Y, σ),

f−1(V ) = {c} is πgp-closed but not D-closed in (X, τ).
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Remark 3.21. D-continuous and pre-continuous are independent. It is shown by

the following examples.

Example 3.22. By example 3.20, f is pre-continuous but not D-continuous. Since

for the closed set V = {b}, f−1(V ) = {c} is pre-closed but not D-closed.

Example 3.23. Let X = Y = {a, b, c}, τ = {∅, {c}, {a, c}, X} and σ = {∅, {a, c}, Y }.

Define f : (X, τ)→ (Y, σ) by f(a) = a; f(b) = b = f(c). Then f is D-continuous but

not pre-continuous. Since for the closed set V = {b}, f−1(V ) = {b, c} is D-closed but

not pre-closed.

Remark 3.24. D-continuous is independent of semi-continuous and semi-pre con-

tinuous. It is shown by the following examples.

Example 3.25. By example 3.23, f is D-continuous but neither semi-continuous nor

semi-pre continuous. Since for the closed set V = {b} in (Y, σ), f−1(V ) = {b, c} is

D-closed but neither semi-closed nor semi-pre closed.

Example 3.26. Let X = Y = {a, b, c}, τ = {∅, {a}, {a, b}, X} and σ = {∅, {a, c}, Y }.

Then the identity function f : (X, τ) → (Y, σ) is semi-continuous and semi-pre con-

tinuous but not D-continuous. Since for the closed set V = {b}, f−1(V ) = {b}

semi-closed and semi-pre-closed but not D-closed .

Remark 3.27. D-continuous and pre-semi-continuous are independent. It is shown

by the following examples.

Example 3.28. Let X = Y = {a, b, c}, τ = {∅, {c}, X} and σ = {∅, {b, c}, Y }.

Define f : (X, τ)→ (Y, σ) by f(a) = f(c) = a and f(b) = b. Then f is D-continuous

but not pre-semi-continuous. Since for the closed set V = {a}, f−1(V ) = {a, c} is

D-closed but not pre-semi-closed.
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Example 3.29. By example 3.20, f is pre-semi-continuous but not D-continuous.

Since for the closed set V = {b} in (Y, σ), f−1(V ) = {c} is pre-semi-closed but not

D-closed in (X, τ).

Remark 3.30. D-continuous and pg-continuous are independent. It is shown by the

following examples.

Example 3.31. By example 3.23, f is D-continuous but not pg-continuous. Since

for the closed set V = {b} in (Y, σ), f−1(V ) = {b, c} is D-closed but not pg-closed in

(X, τ).

Example 3.32. By example 3.20, f is pg-continuous but not D-continuous. Since

for the closed set V = {b} in (Y, σ), f−1(V ) = {c} is pg-closed but not D-closed in

(X, τ).

Remark 3.33. D-continuous and g*p-continuous are independent. It is shown by

the following examples.

Example 3.34. By example 3.28, f is D-continuous but not g∗p-continuous. Since

for the closed set V = {a} in (Y, σ), f−1(V ) = {a, c} is D-closed but not g∗p-closed.

Example 3.35. By example 3.20, f is g∗p-continuous but not D-continuous. Since

for the closed set V = {b} in (Y, σ), f−1(V ) = {c} is g∗p-closed but not D-closed.

Remark 3.36. D-continuous and g-continuous are independent. It is shown by the

following examples.

Example 3.37. Let X = Y = {a, b, c}, τ = {∅, {b}, {a, b}, X} and σ = {∅, {b, c}, Y }.

Then the identity function f : (X, τ)→ (Y, σ) is D-continuous but not g-continuous.

Since for the closed set V = {a}, f−1(V ) = {a} is D-closed but not g-closed.
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Example 3.38. Let X = Y = {a, b, c}, τ = {∅, {a}, {b, c}, X} and σ = {∅, {a, c}, Y }.

Then the identity function f : (X, τ)→ (Y, σ) is g-continuous but not D-continuous.

Since for the closed set V = {b}, f−1(V ) = {b} is g-closed but not D-closed.

Proposition 3.39. Every D-continuous is ρ-continuous.

Proof. By theorem 2.5(2), every D-closed set is ρ-closed, the proof follows. �

Remark 3.40. The converse of the above theorem need not be true as seen from the

following example.

Example 3.41. Let X = Y = {a, b, c}, τ = {∅, {a, b}, X} and σ = {∅, {a, c}, Y }.

Then the identity function f : (X, τ)→ (Y, σ) is ρ-continuous but not D-continuous.

Since for the closed set V = {b}, f−1(V ) = {b} is ρ-closed but not D-closed.

Remark 3.42. We have the following relationship between D-continuous and other

related generalized continuous. A → B (A 6←→ B) represent A implies B but not

conversely (A and B are independent of each other).

Continuous Semi-Continuous Semi pre-Continuous pre semi continuous

Perfectly Continuous Contra continuous
and pre continuous D-continuous pre continuous

g∗p-continuous

pg-continuous

pigp-continuousgp-continuouscontinuous

g-continuous

gpr-continuous e-continuous

gsp-continuous
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4. Characterization of D-continuous functions

Now we shall obtain characterization of D-continuous functions in the sense of

definition 3.1

Theorem 4.1. A function f : (X, τ)→ (Y, σ) is D-continuous iff f−1(U) is D-open

in (X, τ) for every open set U in (Y, σ).

Proof. Let f : (X, τ) → (Y, σ) be D-continuous and U be open set in (X, τ). Then

f−1(U c) is D-closed in (X, τ). But f−1(U c) = (f−1(U))c and so f−1(U) is D-open

in (X, τ). Conversely, let U be an open set in (Y, σ). Then U c is a closed set in

(Y, σ). Since f−1(U) is D-open in (X, τ), (f−1(U))c is D-closed in (X, τ). Therefore

f−1(U c) = (f−1(U))c is D-closed in (X, τ). �

Remark 4.2. The composition of two D-continuous functions need not be D-continuous.

It is shown by the following example.

Example 4.3. Let X = Y = Z = {a, b, c}, τ = {∅, {a, b}, X}, σ = {∅, {a}, X} and

η = {∅, {a, c}, X}. Define f : (X, τ) → (Y, σ) by f(a) = b; f(b) = a; f(c) = c and

define g : (Y, σ) → (Z, η) by g(x) = x. Then f and g are D-continuous but gof

is not D-continuous. Since {b} is closed in (Z, η), (gof)−1({b}) = f−1(g−1{b}) =

f−1({b}) = {a} is not D-closed in (X, τ).

Definition 4.4. (1) A space (X, τ) is said to be D − Ts space if every D-closed

set is closed.

(2) A space (X, τ) is said to be D − T 1

2

space if every D-closed set is pre-closed.

Theorem 4.5. Let (X, τ) and (Z, η) be topological spaces and (Y, σ) be D−Ts space.

Then the composition gof : (X, τ) → (Z, η) of D-continuous (resp.continuous) func-

tion f : (X, τ) → (Y, σ) and the D-continuous function g : (Y, σ) → (Z, η) is D-

continuous (resp. continuous).
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Proof. Let G be any closed set of (Z, η). Then by assumption g−1(G) is closed in

(Y, σ). Since f is D-continuous (resp. continuous), then f−1(g−1(G)) = (gof)−1(G)

is D-closed (resp. closed) in (X, τ). Thus gof is D-continuous (resp. continuous). �

Theorem 4.6. Let (X, τ) and (Z, η) be topological spaces and (Y, σ) be T 1

2

-space (resp

Tω-space, T g̃-space, gsT
#
1

2

-space). Then the composition gof : (X, τ)→ (Z, η) of D-

continuous function f : (X, τ) → (Y, σ) and the g-continuous (resp ω-continuous,

g̃-continuous, #gs-continuous) function g : (Y, σ)→ (Z, η) is D-contiounus.

Proof. Let G be any closed set of (Z, η). Then g−1(G) is g-closed (resp ω-closed,

g̃-closed, #gs-closed) in (Y, σ) and by assumption, g−1(G) is closed in (Y, σ). Since

f is D-continuous, f−1(g−1(G)) = (gof)−1(G) is D-closed in (X, τ). Thus gof is

D-continuous. �

Theorem 4.7. Let f : (X, τ) → (Y, σ) be D-continuous and g : (Y, σ) → (Z, η) be

continuous. Then their composition gof : (X, τ)→ (Z, η) is D-continuous.

Proof. Let G be any closed set of (Z, η). Then g−1(G) is closed in (Y, σ). Since

f is D-continuous, f−1(g−1(G)) = (gof)−1(G) is D-closed in (X, τ). Thus gof is

D-continuous. �

Theorem 4.8. Let f : (X, τ) → (Y, σ) be contra-continuous and g : (Y, σ) → (Z, η)

be contra-continuous. Then their composition gof : (X, τ)→ (Z, η) is D-continuous.

Proof. Let G be any closed set of (Z, η). Since g is contra- continuous, then g−1(G)

is open in (Y, σ). Since f is contra-continuous, f−1(g−1(G)) = (gof)−1(G) is closed

in (X, τ). Then by theorem 2.8[4] , (gof)−1(G) is D-closed in (X, τ). Hence gof is

D-continuous. �

Theorem 4.9. Let f : (X, τ) → (Y, σ) be D-irresolute and g : (Y, σ) → (Z, η) be

D-continuous. Then their composition gof : (X, τ)→ (Z, η) is D-continuous.



ON D - CONTINUOUS FUNCTIONS 219

Proof. Let G be any closed set of (Z, η). Since g is D-continuous, g−1(G) is D-closed

in (Y, σ). Since f is D-irresolute, f−1(g−1(G)) = (gof)−1(G) is D-closed in (X, τ).

Thus gof is D-continuous. �

Theorem 4.10. Let f : (X, τ) → (Y, σ) be a D-continuous then f is continuous if

(X, τ) is D − Ts.

Proof. Let G be any closed set of (Y, σ). Since f is D-continuous and by assumption

f−1(G) is closed in (X, τ), f is continuous. �

Definition 4.11. (1) Let x be a point of (X, τ) and V be a subset of X. Then

V is called a D-neighborhood of x in (X, τ) if there exists a D-open set U of

(X, τ) such that x ∈ U ⊆ V .

2 The intersection of all D-closed sets containing a set A in a topological space

X is called a D-closure of A and in denoted by D − cl(A).

Theorem 4.12. Let A be a subset of (X, τ). Then x ∈ D − cl(A) if and only if for

any D-neighborhood Nx of x in (X, τ) such that A ∩Nx 6= ∅.

Proof. Necessity : Assume that x ∈ D − cl(A). Suppose that there exists a D-

neighborhood Nx of x such that A ∩ Nx = ∅. Since Nx is a D-Neighborhood of x

in (X, τ), by definition 4.11, there exists a D-open set Vx such that x ∈ Vx ⊆ Nx.

Therefore, we have A ∩ Vx = ∅ and so A ⊆ (Vx)
c. Since (Vx)

c is a D-closed set

containing A, we have D − cl(A) ⊆ (Vx)
c and therefore x 6∈ D − cl(A). Which is a

contradiction.

Sufficiency : Assume that for each D-neighborhood Nx of x in (X, τ) such that

A ∩ Nx 6= ∅. Suppose x 6∈ D − cl(A). Then there exists a D-closed set V of(X, τ)

such that A ⊆ V and x 6∈ V . Thus x ∈ V c is D-open in (X, τ). But A ∩ V c = ∅.

Which is a contradiction. �
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Theorem 4.13. Let f : (X, τ)→ (Y, σ) be a function. Then the following statements

are equivalent:

(1) The function f is D-continuous.

(2) The inverse of each open set in (Y, σ) is D-open in (X, τ)

(3) The inverse of each closed set in (Y, σ) is D-closed in (X, τ)

(4) For each x in (X, τ) the inverse of every neighborhood of f(x) is a D-neighborhood

of x.

(5) For each x in (X, τ) and each neighborhood N of f(x), there is a D-neighborhood

W of x such that f(W ) ⊆ N

(6) For each subset A of (X, τ), f(D − cl(A)) ⊆ cl(f(A)).

(7) For each subset B of (Y, σ), D − cl(f−1(B)) ⊆ f−1(cl(B))

Proof. 1⇔ 2 This follows from theorem 4.1

2⇔ 3 The proof is clear from the result f−1(Ac) = (f−1(A))c

2⇔ 4 Letx ∈ X and let N be a neighborhood of f(x). Then there exists an open

set V in (Y, σ) such that f(x) ∈ V ⊆ N . Consequently f−1(V ) is D-open in (X, τ)

and x ∈ f−1(V ) ⊆ f−1(N). Thus f−1(N) is a D-neighborhood of x.

4 ⇔ 5 Let x ∈ X and let N be a neighborhood of f(x). Then by assumption,

W = f−1(N) is a D-neighborhood of x and f(W ) = f(f−1(N)) ⊆ N .

5⇔ 6 Suppose that (5) holds. Let y ∈ f(D−cl(A)) and let N be any neighborhood

of y. Then there exists x ∈ X and a D-neighborhood W of x such that f(x) = y,

x ∈ W . Hence x ∈ D − cl(A) and f(W ) ⊆ N . By theorem 4.12, W ∩ A 6= ∅ and

hence f(A)∩N 6= ∅. Hence y = f(x) ∈ cl(f(A)). Therefore f(D−cl(A)) ⊆ cl(f(A)).
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Conversely,suppose that (6) holds. Let x ∈ X and N be any neighborhood of f(x).

Let A = f−1(N c). Since f(D − cl(A)) ⊆ cl(f(A)) ⊆ N c, D − cl(A) ⊆ A. Hence

D − cl(A) = A. Since x 6∈ D − cl(A), there exists a D-neighborhood W of x such

that W ∩ A = ∅. Hence f(W ) ⊆ f(Ac) ⊆ N .

6 ⇔ 7 Suppose that (6) holds. Let B be any subset of (Y, σ). Then replacing A

by f−1(B) in (6), we obtain f(D − cl(f−1(B)) ⊆ cl(f(f−1(B))) ⊆ cl(B). That is

D − cl(f−1(B)) ⊆ f−1(cl(B)).

Conversely,suppose (7) holds. Let B = f(A), where A is a subset of (X, τ). Then

D − cl(A) ⊆ D − cl(f−1(B)) ⊆ f−1(cl(f(A)) and so f(D − cl(A)) ⊆ cl(f(A)). �

Definition 4.14. A function f : (X, τ)→ (Y, σ) is called ω-irresolute if f−1(V ) is a

ω-closed set of (X, τ) for every ω-closed set V of (Y, σ).

Proposition 4.15. If f : (X, τ) → (Y, σ) is ω-irresolute and M-pre closed function

then f(A) is D-closed in (Y, σ) for every D-closed set A of (X, τ).

Proof. Let U be any ω-open set in (Y, σ) such that f(A) ⊆ U . Then A ⊆ f−1(U).

Since f is ω-irresolute then f−1(U) is ω-open. Since A is D-closed in (X, τ) we have

pcl(A) ⊆ Int(f−1(U)). Hence f(pcl(A)) ⊆ Int(U). Since f is M-pre closed, f(pcl(A))

is a preclosed in (Y, σ). Now pcl(f(A)) ⊆ pcl(f(Pcl(A))) = f(pcl(A)) ⊆ Int(U).

Hence f(A) is D-closed in (Y, σ). �

Theorem 4.16. If the bijective function f : (X, τ) → (Y, σ) is pre-irresolute and

ω-open then f is D-irresoulte.

Proof. Let A be D-closed in (X, τ) and let U be any ω-open set in (X, τ) such

that f−1(A) ⊆ U . Then A ⊆ f(U). Since f is ω-open, f(U) is ω-open in (Y, σ).

Since A is D-closed in (Y, σ), we have pcl(A) ⊆ Int(f(U)). Thus f−1(pcl(A)) ⊆

f−1(Int(f(U))) ⊆ Int(f−1(f(U))) = Int(U). Since f is pre-irresolute, we have
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f−1(pcl(A)) is a pre-closed in (X, τ). Now, pcl(f−1(A)) ⊆ pcl(f−1(pcl(A))) = f−1(pcl(A)) ⊆

Int(U). Hence f−1(A) is D-closed in (X, τ) and so f is D-irresolute. �

Theorem 4.17. (1) If f : (X, τ)→ (Y, σ) is gp-continuous and contra-continuous

then f is D-continuous.

(2) If f : (X, τ) → (Y, σ) is gpr-continuous and RC-continuous then f is D-

continuous.

Proof. (1) Let V be any closed set in (Y, σ). Since f is gp-continuous and contra-

continuous, f−1(V ) is gp-closed and open in (X, τ). By Theorem 4.17 [3],

f−1(V ) is D-closed in (X, τ). Hence f is D-continuous.

(2) Let V be any closed set in (Y, σ). Since f is gpr-continuous and RC-continuous,

f−1(V ) is gpr-closed and regular open. By theorem 4.15 [3], f−1(V ) is D-closed

in (X, τ). Hence f is D-continuous.

�

Theorem 4.18. If f : (X, τ) → (Y, σ) is D-irresolute and g : (Y, σ) → (Z, η) is

D-irrusolute then gof : (X, τ)→ (Z, η) is D-irresolute.

Proof. Let G be any D-closed set in (Z, η). Since g is D-irresolute, g−1(G) is D-closed

in (Y, σ). Since f is D-irresolute, f−1(g−1(G)) = (gof)−1(G) is D-closed in (X, τ).

Thus gof is D-irresolute. �

Regarding the restriction of a D-continuous function, we have the following.

Lemma 4.19. [17]

(1) Let A be ω-closed in (X, τ). If A is regular closed, then pcl(A) is also ω-closed.

(2) If A ⊆ Y ⊆ X where A is ω-open in Y and Y is ω-open in X then A is

ω-open in X.

(3) Let A ⊆ Y ⊆ X and suppose that A is ω-closed in X then A is ω-closed in Y .
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Theorem 4.20. Let f : (X, τ)→ (Y, σ) be a D-continuous function and H be a open

D-closed subset of X. Assume that DC(X, τ) (the class of all D-closed sets of (X, τ))

is D-closed under finite intersections. Then the restriction f |H : (H, τ |H) → (Y, σ)

is D-continuous.

Proof. Let F be a closed subset of Y . By hypothesis and assumption, f−1(F )∩H =

H1 (say) is D-closed in X. Since (f |H)−1(F ) = H1, it is sufficient to show that

H1 is D-closed in H. Let G1 be a ω-open set in H such that H1 ⊆ G1. Then

by hypothesis and by lemma 4.19(2), G1 is ω-open in X. Since H1 is D-closed in

X, pclX(H1) ⊆ Int(G1). Since H is open and by lemma 2.10[15], pclH(H1) =

pclX(H1)∩H ⊆ Int(G1)∩H = Int(G1)∩ Int(H) = Int(G1 ∩H) ⊆ Int(G1). Hence

H1 = (f |H)−1(F ) is D-closed in H. Thus f |H is D-continuous. �

Theorem 4.21. Let A and Y be subsets of (X, τ) such that A ⊆ Y ⊆ X. Let A be

ω-closed and regular closed in (X, τ). If A is D-closed in (Y, σ) and Y is open and

D-closed in (X, τ) then A is D-closed in (X, τ).

Proof. Let U be a ω-open set of (X, τ) such that A ⊆ U . Since Y is open in (X, τ) and

A is D-closed in (Y, σ), we have pclY (A) ⊆ IntY (U∩Y ). Thus pcl(A)∩Y ⊆ pclY (A) ⊆

IntY (U ∩Y ) = Int(U ∩ Y ). By lemma 4.19 (1), (pcl(A))c is ω-open in (X, τ). Hence

Int(U ∩ Y ) ∪ (pcl(A))c is ω-open in (X, τ) and it contains Y . Since Y is D-closed in

(X, τ), we have pcl(A) ⊆ pcl(Y ) ⊆ Int[Int(U ∩ Y )∪ (pcl(A))c] ⊆ Int(U)∪ (pcl(A))c.

Thus pcl(A) ⊆ Int(U). Hence A is D-closed in (X, τ). �

Theorem 4.22. Let X = G ∪ H be a topological space with topology τ and Y be a

topological space with topology σ. Let f : (G, τ |G)→ (Y, σ) and g : (H, τ |H)→ (Y, σ)

be D-continuous functions such that f(x) = g(x) for every x ∈ G ∩H. Assume that

D[E] ⊆ Dp[E], for any E ⊆ X. Suppose that both G and H are open and D-closed in

(X, τ). Then their combination f∆g : (X, τ)→ (Y, σ) defined by (f∆g)(x) = f(x) if

x ∈ G and (f∆g)(x) = g(x) if x ∈ H is D-continuous.
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Proof. Let F be a closed subset of (Y, σ). Then f−1(F ) is D-closed in (G, τ |G) and

g−1(F ) is D-closed in (H, τ |H). Since G and H are both open and D-closed subsets

of (X, τ), by Theorem 4.20, f−1(F ) and g−1(F ) are both D-closed sets in (X, τ). By

theorem 2.5(3), f−1(F ) ∪ g−1(F ) is D-closed in (X, τ). By definition, (f∆g)−1(F ) =

f−1(F ) ∪ g − 1(F ) is D-closed in (X, τ). Hence f∆g is D-continuous. �

5. STRONGLY D-CONTINUOUS AND PERFECTLY D-CONTINUOUS

FUNCTIONS

Definition 5.1. A function f : (X, τ)→ (Y, σ) is called

(1) Strongly gp-continuous [26] if f−1(V ) is closed (resp.open) in (X, τ) for every

gp-closed set (resp. gp-open set) V of (X, τ).

(2) Strongly πgp-continuous [25] if f−1(V ) is closed (resp.open ) in (X, τ) for

every πgp-closed set ( resp. πgp-open set) V of (Y, σ).

(3) Perfectly D-continuous [4] if f−1(V ) is clopen in (X, τ) for every D-closed set

(resp. D-open set) V of (Y, σ).

(4) Strongly D-continuous if f−1(V ) is closed (resp.open ) in (X, τ) for every

D-closed set (resp. D-open set) V of (Y, σ).

(5) Pre-D-continuous if f−1(V ) is D-closed in (X, τ) for every pr-closed set V of

(Y, σ).

Remark 5.2. From the above definition and closed −→ D-closed, D-closed −→ gp-

closed (resp. πgp-closed) we have the following

Strongly gp-continuous

Strongly D-continuousPerfectly D-continuous

Strongly πgp-continuous

D-continuous
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Theorem 5.3. (1) If f : (X, τ) → (Y, σ) is perfectly D-continuous then f is

strongly D-continuous and also D-irresoulte.

(2) If f : (X, τ)→ (Y, σ) is pre-D-continuous then f is D-continuous.

(3) If f : (X, τ) → (Y, σ) is strongly D-continuous and g : (Y, σ) → (Z, η) is

D-continuous then gof : (X, τ)→ (Z, η) is continuous.

(4) If f : (X, τ) → (Y, σ) is strongly D-continuous and g : (Y, σ) → (Z, η) is

perfectly D-continuous then gof : (X, τ)→ (Z, η) is strongly D-continuous.

(5) If f : (X, τ) → (Y, σ) is perfectly D-continuous and g : (Y, σ) → (Z, η) is pre

D-continuous then gof : (X, τ)→ (Z, η) is D-continuous.

Proof. (1) Let V be D-closed in (Y, σ). Then f−1(V ) is clopen in (X, τ) and hence

f−1(V ) is closed in (X, τ) and so f is strongly D-continuous. By Theorem

2.8 [4], closed set implies D-closed, f−1(V ) is D-closed in (X, τ). Thus f is

D-irresolute.

(2) Closed set implies pre-closed set and the proof is obvious.

(3) Let V be closed in (Z, η). Then g−1(V ) is D-closed in (Y, σ) and f−1(g−1(V )) =

(gof)−1(V ) is closed in (X, τ). Then gof is continuous.

(4) Let V be D-closed in (Z, η). Then g−1(V ) is clopen in (Y, σ). Since closed

set implies D-closed and by theorem 2.8 [4], g−1(V ) is D-closed in (Y, σ).

Hence f−1(g−1(V )) = (gof)−1(V ) is closed in (X, τ). Then gof is strongly

D-continuous.

(5) Let V be closed in (Z, η). Since closed implies pre-closed , g−1(V ) is D-closed

in (Y, σ). Hence f−1(g−1(V )) = (gof)−1(V ) is clopen in (X, τ). By Theorem

2.8 [4], (gof)−1(V ) is D-closed in (X, τ). Hence gof is D-continuous.

�

Theorem 5.4. Let f : (X, τ)→ (Y, σ) be a bijective, D-irresolute and M-pre closed.

If (X, τ) is a D-T 1

2

space ,then (Y, σ) is also D-T 1

2

space.
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Proof. Let A be D-closed in (Y, σ). Since f is D-irresolute, f−1(A) is D-closed in

(X, τ). Since (X, τ) is a D-T 1

2

space, f−1(A) is pre-closed in (X, τ). Since f is M-pre

closed then f(f−1(A)) = A is pre-closed in (Y, σ). Hence (Y, σ) is a D-T 1

2

space. �

6. D-compact and D-connected

Definition 6.1. (1) A topological space (X, τ) is S-closed [33] if every regular

closed cover of X has a finite sub cover.

(2) A topological space (X, τ) is strongly S-closed [11] if every closed cover of X

has a finite sub cover.

Definition 6.2. A topological space (X, τ) is D-compact if every D-open cover of X

has a finite subcover.

Theorem 6.3. Let f : (X, τ)→ (Y, σ) be a bijective, D-continuous function. If X is

D-compact then Y is compact.

Proof. Let {Ai : i ∈ I} be an open cover of Y . Then {f−1(Ai) : i ∈ I} is a D-open

cover of X. Since X is D-compact, it has a finite sub cover say {f−1(A1), . . . , f
−1(An)}.

Since f is surjective, {A1, A2, . . . , An} is a finite sub cover of Y . Hence Y is com-

pact. �

Definition 6.4. A subset A of a space X is called D-compact relative to X if every

collection {Ui : i ∈ I} of D-open subsets of X such that A ⊆ {Ui : i ∈ I}, there exists

a finite subset I0 of I such that A ⊆ {Ui : i ∈ I0}.

Theorem 6.5. Every D-closed subset of a D-compact space X is D-compact relative

to X.

Proof. Let A be a D-closed subset of a D-compact space X. Let {Ui : i ∈ I} be a

cover of A by D-open subsets of X. So, A ⊆ ∪{Ui : i ∈ I} and then Ac ∪ (∪{Ui :
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i ∈ I}) = X. Since X is D-compact, there exists a finite subset I0 of I such that

Ac ∪ (∪{Ui : i ∈ I0}) = X. Then A ⊆ ∪{Ui : i ∈ I0}. Hence A is D-compact relative

to X. �

Theorem 6.6. If f : (X, τ) → (Y, σ) is D-irresolute and a subset A of X is D-

compact relative to X then its image f(A) is D-compact relative to Y .

Proof. Let {f(Ui) : i ∈ I} be a cover of f(A) by D-open subsets of (Y, σ). Since f

is D-irresolute, {Ui : i ∈ I} is a cover of A by D-open subsets of (X, τ). Since A is

compact relative to X, there exists a finite sub set I0 of I such that A ⊆ ∪{Ui : i ∈ I0}.

Hence f(A) ⊆ ∪{f(Ui) : i ∈ I} . Thus f(A) is compact relative to Y . �

Theorem 6.7. If p : X × Y → X be a projection, then p is D-irresolute.

Proof. Let A be a D-closed subset of X. Since p is a projection, p−1(A) = A × Y is

a subset of X × Y . Now to show that p−1(A) = A× Y is D closed in X × Y . Let U

be ω-open subset of X × Y such that A× Y ⊆ U . Then V × Y = U , for some open

set V of X containing A. Since A is D-closed in X, we have pclX(A) ⊆ Int(V ) and

pclX(A)× Y ⊆ Int(V )× Y . That is pclX×Y (A× Y ) ⊆ Int(V × Y ) = Int(U). Hence

p−1(A) = A× Y is D-closed in X × Y . �

Theorem 6.8. If the product space X × Y is D-compact then each of the spaces X

and Y is D-compact.

Proof. Let X × Y be D-compact. By theorem 6.7, the projection p : X × Y → X is

D-irresolute and then by theorem 6.6, p(X × Y ) = X is D-compact. The proof for

the space Y is similar to the case of X. �

Lemma 6.9. (The tube lemma)

Consider the product space X×Y , where Y is compact. If N is an open set of X×Y



228 J. ANTONY REX RODRIGO AND K. DASS

containing the slice x0×Y of X×Y then N contains some tube W ×Y about x0×Y ,

where W is a neighborhood of x0 in X.

Theorem 6.10. Let A be any subset of Y .

(1) If X ×A is D-closed in the product space X × Y and Y is T g̃-space then A is

D-closed in Y .

(2) If X is compact and A is D-closed in Y and X × Y is T g̃-space then X × A

is D-closed in X × Y .

Proof. (1) Let U be a ω-open set of Y such that A ⊆ U . Then X × A ⊆ X × U .

Since Y is T g̃-space, U is open in Y and X × U is open in X × Y . Hence

X ×U is ω-open in X × Y . Since X ×A is D-closed in X × Y , pcl(X ×A) ⊆

Int(X × U) = X × U . By proposition 2.8[26], X × pcl(A) ⊆ X × Int(U).

Thus pcl(A) ⊆ Int(U). Hence A is D-closed in Y .

(2) Let U be a ω-open set of X × Y such that X × A ⊆ U .Since X is compact

and X × Y is T g̃-space and by the generalization of lemma 6.9, there exists

an open set V in Y containing A such that X × V ⊆ U . Since A is D-

closed in Y , pcl(A) ⊆ Int(V ). Therefore X × pcl(A) ⊆ X × Int(V ). This

implies X×pcl(A) = Int(X)×Int(V ) ⊆ Int(X×U). By proposition 2.8[26],

pcl(X × A) ⊆ Int(X × V ) ⊆ Int(U). Hence X × A is D-closed in X × Y .

�

Definition 6.11. A topological space (X, τ) is D-connected if X can not be written

as the disjoint union of two non-empty D-open sets.

Theorem 6.12. Let f : (X, τ) → (Y, σ) be a surjective, D-continuous (resp. D-

irresolute) function. If X is D-connected then Y is connected (resp. D-connected)

Proof. Suppose Y is not connected (resp. not D-connected). Then Y = A ∪ B,

where A ∩ B = ∅, A 6= ∅, B 6= ∅ and A, B are open (resp.D-open ) sets in Y .
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Since f is surjective, f(X) = Y and since f is D-continuous (resp.D-irresolute),

X = f−1(A) ∪ f−1(B) is the disjoint union of two non-empty D-open sets. Which is

a contradiction to X is D-connected. �

Theorem 6.13. If the product space X × Y is D-connected then each of the spaces

X and Y is D-connected.

Proof. Let X × Y be D-connected. By theorem 6.7, the projection p : X × Y → X

is D-irresolute and then by theorem 6.12, p(X × Y ) = X is D-connected. The proof

for the space Y is similar to the case of X. �
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