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VARIOUS ERROR ESTIMATIONS FOR SEVERAL NEWTON–COTES
QUADRATURE FORMULAE IN TERMS OF AT MOST FIRST DERIVATIVE

AND APPLICATIONS IN NUMERICAL INTEGRATION

M. W. ALOMARI(1) AND S. S. DRAGOMIR(2)

Abstract. Error estimates for midpoint, trapezoid, Simpson’s, Maclaurin’s, 3/8-Simpson’s and

Boole’s type rules are obtained. Some related inequalities of Ostrowski’s type are pointed out.

These results are obtained for mappings of bounded variation, Lipschitzian, and absolutely con-

tinuous mappings whose first derivatives are belong to Lp[a, b] (1 ≤ p ≤ ∞). Applications to

numerical integration are provided.

1. Introduction

Let f : I ⊆ R→ R be a convex function defined on the interval I of real numbers and a, b ∈ I,

with a < b. The following inequality, known as the Hermite–Hadamard inequality for convex

functions, holds:

(1.1) f

(
a + b

2

)
≤

∫ b

a

f (x) dx ≤ f (a) + f (b)
2

.

In 1938, Ostrowski established a very interesting inequality for differentiable mappings with

bounded derivatives, as follows:

Theorem 1.1. Let f : I ⊂ R→ R be a differentiable mapping on I◦, the interior of the interval I,

such that f ′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′ (x)| ≤ M , then the following inequality,
∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (u) du

∣∣∣∣∣ ≤ M (b− a)

[
1
4

+

(
x− a+b

2

)2

(b− a)2

]
(1.2)

holds for all x ∈ [a, b]. The constant 1
4 is the best possible in the sense that it cannot be replaced by

a smaller constant.
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In [22], Dragomir, Cerone and Roumeliotis proved the following generalization of Ostrowski’s

inequality.

Theorem 1.2. Let f : [a, b] → R be a continuous on [a, b], differentiable on (a, b) and whose

derivative f ′ is bounded on (a, b). Denote ‖f ′‖∞ := sup
t∈[a,b]

|f ′ (t)| < ∞. Then,

(1.3)

∣∣∣∣∣(b− a)
[
λ

f (a) + f (b)
2

+ (1− λ) f (x)
]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤
[

(b− a)2

4

(
λ2 + (1− λ)2

)
+

(
x− a + b

2

)2
]
‖f ′‖∞ .

for all λ ∈ [0, 1] and a + λ b−a
2 ≤ x ≤ b− λ b−a

2 .

Using (1.3), the authors obtained estimates for the remainder term of the midpoint, trapezoid,

and Simpson formulae. They also gave applications of the mentioned results in numerical integra-

tion and for special means. For recent results, generalizations and new inequalities of Hermite–

Hadamard, Ostrowski and Simpson’s type the reader may be refer to [1]–[44] and the references

therein.

Motivated by [31], Dragomir in [20] has proved the following companion of the Ostrowski in-

equality:

Theorem 1.3. Let f : [a, b] → R be an absolutely continuous function on [a, b]. Then we have the

inequalities

(1.4)

∣∣∣∣∣
f (x) + f (a + b− x)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣

≤





[
1
8 + 2

(
x− 3a+b

4
b−a

)2
]

(b− a) ‖f ′‖∞ , f ′ ∈ L∞ [a, b]

21/q

(q+1)1/q

[(
x−a
b−a

)q+1

+
(

a+b
2 −x

b−a

)q+1
]1/q

(b− a)1/q ‖f ′‖[a,b],p ,

p > 1, 1
p + 1

q = 1, and f ′ ∈ Lp [a, b]

for all x ∈ [a, a+b
2 ].

In [21], Dragomir established some inequalities for this companion for mappings of bounded

variation.
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Theorem 1.4. Let f : [a, b] → R be a mapping of bounded variation on [a, b]. Then we have the

inequalities:
∣∣∣∣∣
f (x) + f (a + b− x)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
[

1
4

+

∣∣∣∣∣
x− 3a+b

4

b− a

∣∣∣∣∣

]
·

b∨
a

(f) ,(1.5)

for any x ∈ [a, a+b
2 ] , where

∨b
a(f) denotes the total variation of f on [a, b]. The constant 1/4 is

best possible.

In [32], Liu introduced some companions of an Ostrowski type inequality for functions whose first

derivative are absolutely continuous. In [12], Barnett et al. have proved some companions for the

Ostrowski inequality and the generalized trapezoid inequality. In his recent papers, Alomari [1]–[4]

has proved several inequalities for Dragomir’s companion of Ostrowski’s inequality for absolutely

continuous, differentiable mappings and mappings of bounded variation.

Among other, Alomari [3], proved a companion of (1.3), as follows:

Theorem 1.5. Let f : I ⊂ R → R be a differentiable on I◦, the interior of the interval I, where

a, b ∈ I with a < b. If f ′ is bounded on [a, b], i.e., ‖f ′‖∞ := sup
t∈[a,b]

|f ′ (t)| < ∞. Then the inequality

holds

(1.6)

∣∣∣∣∣(b− a)
[
λ

f (a) + f (b)
2

+ (1− λ)
f (x) + f (a + b− x)

2

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤
[

(b− a)2

8

(
2λ2 + (1− λ)2

)
+ 2

(
x− (3− λ) a + (1 + λ) b

4

)2
]
‖f ′‖∞ .

holds, for all λ ∈ [0, 1] and a + λ b−a
2 ≤ x ≤ a+b

2 .

In recent years, a number of authors have considered an error analysis quadrature rules of

Newton-Cotes type. In particular, the midpoint, trapezoid, Simpson’s, Maclaurin’s, 3/8-Simpson’s

and Boole’s rules have been investigated more recently with the view of obtaining bounds on the

quadrature rule in terms of a variety of differentiable mappings, at most first derivative. Simply,

they tried to reduce the condition of higher derivatives in these formulae and then to have alternative

quadrature formulae with weaker conditions. The reader may refer to a sample of these results in

the references. Here, we consider the above mentioned formulae, as follow [15]:
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Let f : I ⊂ R → R be n-times differentiable mapping on I◦, the interior of the interval I,

where a, b ∈ I with a < b, such that f (n) ∈ L1[a, b]. Assume that f (n) is bounded on [a, b], i.e.,
∥∥f (n)

∥∥
∞ := sup

t∈[a,b]

∣∣f (n) (t)
∣∣ < ∞.

(1) If n = 2, then the midpoint inequality is given by
∣∣∣∣∣(b− a) f

(
a + b

2

)
−

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
(b− a)3

24
‖f ′′‖∞ .(1.7)

(2) If n = 2, then the trapezoid inequality is given by
∣∣∣∣∣(b− a)

f (a) + f (b)
2

−
∫ b

a

f (t) dt

∣∣∣∣∣ ≤
(b− a)3

12
‖f ′′‖∞ .(1.8)

(3) If n = 4, then the Simpson’s inequality is given by
∣∣∣∣∣
(b− a)

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
(b− a)5

2880

∥∥∥f (4)
∥∥∥
∞

.(1.9)

(4) If n = 4, then the Maclaurin’s inequality is given by

(1.10)

∣∣∣∣∣
b− a

8

[
3f

(
5a + b

6

)
+ 2f

(
a + b

2

)
+ 3f

(
a + 5b

6

)]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ 7 (b− a)5

51840

∥∥∥f (4)
∥∥∥
∞

.

(5) If n = 4, then the 3/8-Simpson’s inequality is given by

(1.11)

∣∣∣∣∣
b− a

8

[
f (a) + 3f

(
2a + b

3

)
+ 3f

(
a + 2b

3

)
+ f (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ (b− a)5

6480

∥∥∥f (4)
∥∥∥
∞

.

(6) If n = 6, then the Boole’s inequality is given by

(1.12)

∣∣∣∣∣
b− a

90

[
7f (a) + 32f

(
3a + b

4

)
+ 12f

(
a + b

2

)
+ 32f

(
a + 3b

4

)
+ 7f (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ 4
945

(b− a)7
∥∥∥f (6)

∥∥∥
∞

.

The aim of this paper is to obtain various error estimations for the above mentioned inequalities.

Some related inequalities of Ostrowski’s type for mappings of bounded variation, Lipschitzian, and

absolutely continuous mappings whose first derivatives are belong to Lp[a, b] (1 ≤ p ≤ ∞) are also

pointed out. Applications to numerical integration are provided.
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2. The case when f is of bounded variation

We begin with the following result:

Theorem 2.1. Let f : [a, b] → R be a mapping of bounded variation on [a, b]. Then we have the

inequality

(2.1)

∣∣∣∣∣
(b− a)

2δ

[
αf (a) + βf (x) + 2 (γ − δ) f

(
a + b

2

)
+ βf (a + b− x) + αf (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ 1
2δ

max {2δ (x− a)− α (b− a) , α (b− a) , (α + β) (b− a)− 2δ (x− a) ,

(δ − α− β) (b− a)} ·
b∨
a

(f) ,

for all (2δ−α)a+αb
2δ ≤ x ≤ (2δ−α−β)a+(α+β)b

2δ , where,
∨b

a (f) denotes to total variation of f over [a, b],

and α, β, γ, δ are positive constants such that α + β + γ = 2δ with γ ≥ δ > 0.

Proof. Using the integration by parts formula for Riemann–Stieltjes integral, we have
∫ x

a

K (x, t;α, β, γ, δ) df (t) =
(

x− (2δ − α) a + αb

2δ

)
f (x) +

α

2δ
(b− a) f (a)−

∫ x

a

f (t) dt,

∫ a+b
2

x

K (x, t; α, β, γ, δ) df (t) =
(

a + b

2
− (2δ − α− β) a + (α + β) b

2δ

)
f

(
a + b

2

)

−
(

x− (2δ − α− β) a + (α + β) b

2δ

)
f (x)−

∫ a+b
2

x

f (t) dt,

∫ a+b−x

a+b
2

K (x, t; α, β, γ, δ) df (t) =
(

a + b− x− (α + β) a + (2δ − α− β) b

2δ

)
f (a + b− x)

−
(

a + b

2
− (α + β) a + (2δ − α− β) b

2δ

)
f

(
a + b

2

)
−

∫ a+b−x

a+b
2

f (t) dt,

and

∫ b

a+b−x

K (x, t;α, β, γ, δ) df (t)

=
(

b− αa + (2δ − α) b

2δ

)
f (b)−

(
a + b− x− αa + (2δ − α) b

2δ

)
f (a + b− x)−

∫ b

a+b−x

f (t) dt.
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Adding the above equalities, and since α + β + γ = 2δ, simple calculations yield that

∫ b

a

K (x, t; α, β, γ, δ) df (t)

=
(b− a)

2δ

[
αf (a) + βf (x) + 2 (δ − α− β) f

(
a + b

2

)
+ βf (a + b− x) + αf (b)

]
−

∫ b

a

f (t) dt

=
(b− a)

2δ

[
αf (a) + βf (x) + 2 (γ − δ) f

(
a + b

2

)
+ βf (a + b− x) + αf (b)

]
−

∫ b

a

f (t) dt,

where,

K (x, t;α, β, γ, δ) =





t− (2δ−α)a+αb
2δ , t ∈ [a, x]

t− (2δ−α−β)a+(α+β)b
2δ , t ∈ (

x, a+b
2

]

t− (α+β)a+(2δ−α−β)b
2δ , t ∈ (

a+b
2 , a + b− x

]

t− αa+(2δ−α)b
2δ , t ∈ (a + b− x, b]

Now, we use the fact that for a continuous function p : [c, d] → R and a function ν : [c, d] → R

of bounded variation, one has the inequality

∣∣∣∣∣
∫ d

c

p (t) dν (t)

∣∣∣∣∣ ≤ sup
t∈[c,d]

|p (t)|
d∨
c

(ν) .(2.2)

Applying the inequality (2.2) for p(t) = K (x, t; α, β, γ, δ), as above and ν(t) = f(t), t ∈ [a, b], we

get

∣∣∣∣∣
∫ b

a

K (x, t;α, β, γ, δ) df (t)

∣∣∣∣∣

≤ sup
t∈[a,b]

|K (x, t;α, β, γ, δ)| ·
b∨
a

(f)

=
1
2δ

max {2δ (x− a)− α (b− a) , α (b− a) , (α + β) (b− a)− 2δ (x− a) ,

(δ − α− β) (b− a)} ·
b∨
a

(f) ,

which completes the proof. ¤
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Corollary 2.1. Let f as in Theorem 2.1. Choose α = 0, then we get the following three-point

inequality

(2.3)

∣∣∣∣∣
(b− a)

2δ

[
βf (x) + 2 (γ − δ) f

(
a + b

2

)
+ βf (a + b− x)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ 1
2δ

max {2δ (x− a) , β (b− a)− 2δ (x− a) , (δ − β) (b− a)} ·
b∨
a

(f) .

Corollary 2.2. Let f as in Corollary 2.1. Choose β = λ, γ = 2− λ and δ = 1. Then we have

(2.4)

∣∣∣∣∣(b− a)
[
λ

f (x) + f (a + b− x)
2

+ (1− λ) f

(
a + b

2

)]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ 1
2

max {2 (x− a) , λ (b− a)− 2 (x− a) , (1− λ) (b− a)} ·
b∨
a

(f) .

for all λ ∈ [0, 1] and a ≤ x ≤ a+b
2 . For instance, let x = a, we get

(2.5)

∣∣∣∣∣(b− a)
[
λ

f (a) + f (b)
2

+ (1− λ) f

(
a + b

2

)]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ (b− a)
2

[
1
2

+
∣∣∣∣
1
2
− λ

∣∣∣∣
]
·

b∨
a

(f) .

Corollary 2.3. Let f as above, if we choose

(1) α = β = 0, γ = 3
2 and δ = 1, then we get the following midpoint inequality

∣∣∣∣∣(b− a) f

(
a + b

2

)
−

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
1
2

(b− a) ·
b∨
a

(f) .(2.6)

(2) α = 1, β = 0 and δ = γ = 1, then we get the following trapezoid inequality

∣∣∣∣∣(b− a)
f (a) + f (b)

2
−

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
1
2

(b− a) ·
b∨
a

(f) .(2.7)

(3) α = 1, β = 0, γ = 5 and δ = 3, then we get the following Simpson’s inequality

∣∣∣∣∣
(b− a)

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
1
3

(b− a) ·
b∨
a

(f) .(2.8)
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(4) if we choose α = 0, β = 3, γ = 5 and δ = 4 with x = 5a+b
6 , then we get the following

Maclaurin’s inequality

(2.9)

∣∣∣∣∣
b− a

8

[
3f

(
5a + b

6

)
+ 2f

(
a + b

2

)
+ 3f

(
a + 5b

6

)]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ 5
24

(b− a) ·
b∨
a

(f) .

(5) α = 1, β = 3 and γ = δ = 4 with x = 2a+b
3 , then we get the following 3/8-Simpson’s

inequality

(2.10)

∣∣∣∣∣
b− a

8

[
f (a) + 3f

(
2a + b

3

)
+ 3f

(
a + 2b

3

)
+ f (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ 5
24

(b− a) ·
b∨
a

(f) .

(6) α = 7, β = 32, γ = 51 and δ = 45 with x = 3a+b
4 , then we get the following Boole’s

inequality

(2.11)

∣∣∣∣∣
b− a

90

[
7f (a) + 32f

(
3a + b

4

)
+ 12f

(
a + b

2

)
+ 32f

(
a + 3b

4

)
+ 7f (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ 11
60

(b− a) ·
b∨
a

(f) .

We may write the following result regarding monotonic mappings:

Corollary 2.4. Let f : [a, b] → R be a monotonous mapping on [a, b]. Then for all x ∈ [a, b], we

have the inequality

(2.12)

∣∣∣∣∣
(b− a)

2δ

[
αf (a) + βf (x) + 2 (γ − δ) f

(
a + b

2

)
+ βf (a + b− x) + αf (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ 1
2δ

max {2δ (x− a)− α (b− a) , α (b− a) , (α + β) (b− a)− 2δ (x− a) , (δ − α− β) (b− a)}

× |f (b)− f (a)| .

The following result holds for L–lipschitz mappings:
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Corollary 2.5. Let f : [a, b] → R be a L–lipschitz mapping on [a, b]. Then for all x ∈ [a, b], we

have the inequality

(2.13)

∣∣∣∣∣
(b− a)

2δ

[
αf (a) + βf (x) + 2 (γ − δ) f

(
a + b

2

)
+ βf (a + b− x) + αf (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ L (b− a)
2δ

max {2δ (x− a)− α (b− a) , α (b− a) , (α + β) (b− a)− 2δ (x− a) ,

(δ − α− β) (b− a)} .

Remark 2.1. If we assume that f is continuous differentiable on (a, b) and f ′ is integrable on

(a, b), then we have

(2.14)

∣∣∣∣∣
(b− a)

2δ

[
αf (a) + βf (x) + 2 (γ − δ) f

(
a + b

2

)
+ βf (a + b− x) + αf (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ ‖f ′‖1
2δ

max {2δ (x− a)− α (b− a) , α (b− a) , (α + β) (b− a)− 2δ (x− a) , (δ − α− β) (b− a)} .

3. The case when f is Lipschitzian

Theorem 3.1. Let f : [a, b] → R be an L-Lipschitzian mapping on [a, b]. Then we have the

following inequality

(3.1)

∣∣∣∣∣
(b− a)

2δ

[
αf (a) + βf (x) + 2 (γ − δ) f

(
a + b

2

)
+ βf (a + b− x) + αf (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ L

[
(b− a)2

16
+

(
x− 3a + b

4

)2

+ 2
(

α (b− a)− δ (x− a)
2δ

)2

+
(

(2δ − α− β) a + (α + β) b

2δ
− 1

2

(
a + b

2
+ x

))2

+
(

(α + β) a + (2δ − α− β) b

2δ
− a + b

2
− 1

2

(
a + b

2
− x

))2
]

,

for all (2δ−α)a+αb
2δ ≤ x ≤ (2δ−α−β)a+(α+β)b

2δ , where, α, β, γ, δ are positive constants such that α +

β + γ = 2δ with γ ≥ δ > 0.

Proof. Using the integration by parts formula for Riemann–Stieltjes integral, we have

∫ b

a

K (x, t;α, β, γ, δ) df (t)

=
(b− a)

2δ

[
αf (a) + βf (x) + 2 (γ − δ) f

(
a + b

2

)
+ βf (a + b− x) + αf (b)

]
−

∫ b

a

f (t) dt
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Now, we use the fact that for a Riemann integrable function p : [c, d] → R and L-Lipschitzian

function ν : [c, d] → R, one has the inequality

∣∣∣∣∣
∫ d

c

p (t) dν (t)

∣∣∣∣∣ ≤ L

∫ d

c

|p (t)| dt.(3.2)

Applying the inequality (3.2) for p(t) = K (x, t; α, β, γ, δ), as above and ν(t) = f(t), t ∈ [a, b], we

get

∣∣∣∣∣
∫ b

a

K (x, t;α, β, γ, δ) df (t)

∣∣∣∣∣ ≤ L

∫ b

a

|K (x, t;α, β, γ, δ)| dt.(3.3)

Now, since

∫ r

p

|t− q| dt =
∫ q

p

(q − t) dt +
∫ r

q

(t− q) dt =
(q − p)2 + (r − q)2

2

=
1
4

(p− r)2 +
(

q − r + p

2

)2

,(3.4)

for all r, p, q such that p ≤ q ≤ r. Then, we observe that

∫ x

a

∣∣∣∣t−
(2δ − α) a + αb

2δ

∣∣∣∣ dt =
1
4

(x− a)2 +
(

α (b− a)− δ (x− a)
2δ

)2

,

∫ a+b
2

x

∣∣∣∣t−
(2δ − α− β) a + (α + β) b

2δ

∣∣∣∣ dt

=
1
4

(
a + b

2
− x

)2

+
(

(2δ − α− β) a + (α + β) b

2δ
− 1

2

(
a + b

2
+ x

))2

,

∫ a+b−x

a+b
2

∣∣∣∣t−
(α + β) a + (2δ − α− β) b

2δ

∣∣∣∣ dt

=
1
4

(
a + b

2
− x

)2

+
(

(α + β) a + (2δ − α− β) b

2δ
− a + b

2
− 1

2

(
a + b

2
− x

))2

,

and

∫ b

a+b−x

∣∣∣∣t−
αa + (2δ − α) b

2δ

∣∣∣∣ dt =
1
4

(x− a)2 +
(

α (b− a)− δ (x− a)
2δ

)2

.
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Then, we have

∫ b

a

|K (x, t; α, β, γ, δ)| dt =
1
2

(x− a)2 +
1
2

(
a + b

2
− x

)2

+ 2
(

α (b− a)− δ (x− a)
2δ

)2

+
(

(2δ − α− β) a + (α + β) b

2δ
− 1

2

(
a + b

2
+ x

))2

+
(

(α + β) a + (2δ − α− β) b

2δ
− a + b

2
− 1

2

(
a + b

2
− x

))2

Using (3.4), to simplify the above equality, we get

(3.5)
∫ b

a

|K (x, t;α, β, γ, δ)| dt =
(b− a)2

16
+

(
x− 3a + b

4

)2

+ 2
(

α (b− a)− δ (x− a)
2δ

)2

+
(

(2δ − α− β) a + (α + β) b

2δ
− 1

2

(
a + b

2
+ x

))2

+
(

(α + β) a + (2δ − α− β) b

2δ
− a + b

2
− 1

2

(
a + b

2
− x

))2

.

Thus, by (3.3), we have the required result, which completes the proof. ¤

Corollary 3.1. Let f as in Theorem 3.1. Choose α = 0, then we get the following three-point

inequality

(3.6)

∣∣∣∣∣
(b− a)

2δ

[
βf (x) + 2 (γ − δ) f

(
a + b

2

)
+ βf (a + b− x)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ L

[
(b− a)2

16
+

(
x− 3a + b

4

)2

+
(x− a)2

2
+

(
(2δ − β) a + βb

2δ
− 1

2

(
a + b

2
+ x

))2

+
(

βa + (2δ − β) b

2δ
− a + b

2
− 1

2

(
a + b

2
− x

))2
]

,

for all a ≤ x ≤ (2δ−β)a+βb
2δ .

Corollary 3.2. Let f as in Corollary 3.1. Choose β = λ, γ = 2− λ and δ = 1. Then we have

(3.7)

∣∣∣∣∣(b− a)
[
λ

f (x) + f (a + b− x)
2

+ (1− λ) f

(
a + b

2

)]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ L

[
(b− a)2

16
+

(
x− 3a + b

4

)2

+
(x− a)2

2
+

(
(2− λ) a + λb

2
− 1

2

(
a + b

2
+ x

))2

+
(

λa + (2− λ) b

2
− a + b

2
− 1

2

(
a + b

2
− x

))2
]

,
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for all λ ∈ [0, 1] and a ≤ x ≤ a+b
2 .

Corollary 3.3. Let f as above, if we choose

(1) α = β = 0, γ = 3
2 and δ = 1 with x = a, then we get the following midpoint inequality
∣∣∣∣∣(b− a) f

(
a + b

2

)
−

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
1
4
L (b− a)2 .(3.8)

(2) α = 1, β = 0 and δ = γ = 1 with x = a+b
2 , then we get the following trapezoid inequality

∣∣∣∣∣(b− a)
f (a) + f (b)

2
−

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
1
4
L (b− a)2(3.9)

(3) α = 0, β = 1, and γ = δ = 1, then we get the following two-point inequality

(3.10)

∣∣∣∣∣(b− a)
f (x) + f (a + b− x)

2
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ L

[
(b− a)2

16
+

(
x− 3a + b

4

)2

+
(x− a)2

2
+

1
2

(
a + b

2
− x

)2
]

.

for all a ≤ x ≤ a+b
2 .

4. The case when f ′ ∈ L∞[a, b]

Theorem 4.1. Let f : I ⊂ R → R be an absolutely continuous mapping on I◦, the interior of

the interval I, where a, b ∈ I with a < b, such that f ′ ∈ L1[a, b]. If f ′ is bounded on [a, b], i.e.,

‖f ′‖∞ := sup
t∈[a,b]

|f ′ (t)| < ∞, then we have the following inequality:

(4.1)

∣∣∣∣∣
(b− a)

2δ

[
αf (a) + βf (x) + 2 (γ − δ) f

(
a + b

2

)
+ βf (a + b− x) + αf (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤ ‖f ′‖∞
[

(b− a)2

16
+

(
x− 3a + b

4

)2

+ 2
(

α (b− a)− δ (x− a)
2δ

)2

+
(

(2δ − α− β) a + (α + β) b

2δ
− 1

2

(
a + b

2
+ x

))2

+
(

(α + β) a + (2δ − α− β) b

2δ
− a + b

2
− 1

2

(
a + b

2
− x

))2
]

,

for all (2δ−α)a+αb
2δ ≤ x ≤ (2δ−α−β)a+(α+β)b

2δ , where, α, β, γ, δ are positive constants such that α +

β + γ = 2δ with γ ≥ δ > 0.
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Proof. Integrating by parts, we obtain

∫ b

a

K (x, t;α, β, γ, δ) f ′ (t) dt

=
(b− a)

2δ

[
αf (a) + βf (x) + 2 (γ − δ) f

(
a + b

2

)
+ βf (a + b− x) + αf (b)

]
−

∫ b

a

f (t) dt.

Since, f ′ is bounded, we can state that

∣∣∣∣∣
(b− a)

2δ

[
αf (a) + βf (x) + 2 (γ − δ) f

(
a + b

2

)
+ βf (a + b− x) + αf (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤
∫ b

a

|K (x, t; α, β, γ, δ)| |f ′ (t)| dt

≤ ‖f ′‖∞
∫ b

a

|K (x, t)| dt.

By (3.5), we get the required result. ¤

Remark 4.1. In the inequalities (3.6)–(3.10), replace L by ‖f ′‖∞ and assume f as in Theorem

4.1, then we get new inequalities for absolutely continuous mappings whose first derivatives are

bounded.

5. The case when f ′ ∈ Lp[a, b]

Theorem 5.1. Let f : I ⊂ R→ R be an absolutely continuous mapping on I◦, the interior of the

interval I, where a, b ∈ I with a < b. If f ′ is belong to Lp[a, b], p > 1, Then we have the following

inequality

(5.1)

∣∣∣∣∣
(b− a)

2δ

[
αf (a) + βf (x) + 2 (γ − δ) f

(
a + b

2

)
+ βf (a + b− x) + αf (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤
(

2
q + 1

)1/q
[(

x− (2δ − α) a + αb

2δ

)q+1

+
(

α (b− a)
2δ

)q+1

+
(

(δ − α− β) (b− a)
2δ

)q+1

+
(

(2δ − α− β) a + (α + β) b

2δ
− x

)q+1
]1/q

‖f ′‖p ,

for all (2δ−α)a+αb
2δ ≤ x ≤ (2δ−α−β)a+(α+β)b

2δ , where, α, β, γ, δ are positive constants such that α +

β + γ = 2δ with γ ≥ δ > 0 and 1
p + 1

q = 1, p > 1.
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Proof. Using the well known Hölder inequality, we have
∣∣∣∣∣
b− a

90

[
7f (a) + 32f

(
3a + b

4

)
+ 12f

(
a + b

2

)
+ 32f

(
a + 3b

4

)
+ 7f (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤
(∫ b

a

|K (x, t; α, β, γ, δ)|q dt

)1/q (∫ b

a

|f (t)|p dt

)1/p

=
(

2
q + 1

)1/q
[(

x− (2δ − α) a + αb

2δ

)q+1

+
(

α (b− a)
2δ

)q+1

+
(

(δ − α− β) (b− a)
2δ

)q+1

+
(

(2δ − α− β) a + (α + β) b

2δ
− x

)q+1
]1/q

‖f ′‖p ,

which is required. ¤

Corollary 5.1. Let f as above, choose α = 0, then we get the following three-point inequality

(5.2)

∣∣∣∣∣
(b− a)

2δ

[
βf (x) + 2 (γ − δ) f

(
a + b

2

)
+ βf (a + b− x)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤
(

2
q + 1

)1/q
[
(x− a)q+1 +

(
δ − β

2δ
(b− a)

)q+1

+
(

a− x + β
b− a

2δ

)q+1
]1/q

‖f ′‖p .

for all a ≤ x ≤ (2δ−β)a+βb
2δ .

Corollary 5.2. Let f as above, if we choose

(1) α = β = 0, γ = 3
2 and δ = 1 with x = a, then we get the following midpoint inequality

∣∣∣∣∣(b− a) f

(
a + b

2

)
−

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
(b− a)(q+1)/q

2 (q + 1)1/q
‖f ′‖p .(5.3)

(2) α = 1, β = 0 and δ = γ = 1 with x = a+b
2 , then we get the following trapezoid inequality

∣∣∣∣∣(b− a)
f (a) + f (b)

2
−

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
(b− a)(q+1)/q

2 (q + 1)1/q
‖f ′‖p .(5.4)

(3) α = 1, β = 0, γ = 5 and δ = 3 with x = 5a+b
6 , then we get the following Simpson’s

inequality

(5.5)

∣∣∣∣∣
(b− a)

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤
(

2
(
2q+1 + 1

)

6q+1 (q + 1)

)1/q

(b− a)(q+1)/q ‖f ′‖p .
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(4) α = 0, β = 1, and γ = δ = 1, then we get the following two-point inequality

(5.6)

∣∣∣∣∣(b− a)
f (x) + f (a + b− x)

2
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤
(

2
q + 1

)1/q
[
(x− a)q+1 +

(
a + b

2
− x

)q+1
]
‖f ′‖p .

for all a ≤ x ≤ a+b
2 .

(5) if we choose α = 0, β = 3, γ = 5 and δ = 4 with x = 5a+b
6 , then we get the following

Maclaurin’s inequality

(5.7)

∣∣∣∣∣
b− a

8

[
3f

(
5a + b

6

)
+ 2f

(
a + b

2

)
+ 3f

(
a + 5b

6

)]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤
(

2
q + 1

)1/q
[(

1
6

)q+1

+
(

1
8

)q+1

+
(

5
24

)q+1
]1/q

(b− a)(q+1)/q ‖f ′‖p .

(6) α = 1, β = 3 and γ = δ = 4 with x = 2a+b
3 , then we get the following 3/8-Simpson’s

inequality

(5.8)

∣∣∣∣∣
b− a

8

[
f (a) + 3f

(
2a + b

3

)
+ 3f

(
a + 2b

3

)
+ f (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤
(

2
q + 1

)1/q
[(

5
24

)q+1

+
(

1
8

)q+1

+
(

1
6

)q+1
]1/q

(b− a)(q+1)/q ‖f ′‖p .

(7) α = 7, β = 32, γ = 51 and δ = 45 with x = 3a+b
4 , then we get the following Boole’s

inequality

(5.9)

∣∣∣∣∣
b− a

90

[
7f (a) + 32f

(
3a + b

4

)
+ 12f

(
a + b

2

)
+ 32f

(
a + 3b

4

)
+ 7f (b)

]
−

∫ b

a

f (t) dt

∣∣∣∣∣

≤
(

2
q + 1

)1/q
[(

31
180

)q+1

+
(

7
90

)q+1

+
(

1
15

)q+1

+
(

11
60

)q+1
]1/q

(b− a)(q+1)/q ‖f ′‖p .

Remark 5.1. One may generalizes Theorem 4.1 and gives different approaches for Theorem 5.1,

by applying the Hölder inequality in a different way and we shall left the details to the interested

reader.
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Remark 5.2. One may write new inequalities for mappings whose |f ′| is convex on [a, b], using

the inequality

|f ′ (t)| ≤ t− a

b− a
|f ′ (b)|+ b− t

b− a
|f ′ (a)| ,

for any t ∈ [a, b]. Also, the corresponding version for powers |f ′|q (q > 1) may be considered by

applying the well–known Hölder inequality in two different ways. We left the details to the interested

reader.

6. Applications in Numerical Integration

Consider In : a = x0 < x1 < · · · < xn−1 < xn = b be a division of [a, b] and let hi = xi+1−xi. In

what follows, we point out some upper bounds for the error approximation of the general five-point

formula.

(6.1)

S (f, In) :=
n−1∑

i=0

hi

2δ

[
αf (xi) + βf (ti) + 2 (γ − δ) f

(
xi + xi+1

2

)
+ βf (xi + xi+1 − ti) + αf (xi+1)

]

for all (2δ−α)xi+αxi+1
2δ ≤ ti ≤ (2δ−α−β)xi+(α+β)xi+1

2δ , where, α, β, γ, δ are positive constants such that

α + β + γ = 2δ, with γ ≥ δ > 0.

Theorem 6.1. Assume that the assumptions of Theorem 2.1 hold. Then, we have
∫ b

a

f (t) dt = S (f, In) + R (f, In)

where, S (f, In) is given in (6.1) and the remainder R (f, In) satisfies the bound

(6.2) |R (f, In)| ≤ 1
2δ

n−1∑

i=1

[max {2δ (ti − xi)− α (xi+1 − xi) , α (xi+1 − xi) ,

(α + β) (xi+1 − xi)− 2δ (ti − xi) , (δ − α− β) (xi+1 − xi)} ·
xi+1∨
xi

(f)

]
.

Proof. Applying Theorem 2.1 on the subintervals [xi, xi+1] and then summing the obtained in-

equalities over i = 0, · · · , n− 1, we get the required result. We shall omit the details. ¤

Theorem 6.2. Assume that the assumptions of Theorem 3.1 hold. Then, we have
∫ b

a

f (t) dt = S (f, In) + R (f, In)
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where, S (f, In) is given in (6.1) and the remainder R (f, In) satisfies the bound

(6.3) |R (f, In)| ≤ L

n−1∑

i=0

[
(xi+1 − xi)

2

16
+

(
ti − 3xi + xi+1

4

)2

+ 2
(

α (xi+1 − xi)− δ (ti − xi)
2δ

)2

+
(

(2δ − α− β) xi + (α + β) xi+1

2δ
− 1

2

(
xi + xi+1

2
+ ti

))2

+
(

(α + β) xi + (2δ − α− β)xi+1

2δ
− xi + xi+1

2
− 1

2

(
xi + xi+1

2
− ti

))2
]

,

Proof. Applying Theorem 3.1 on the subintervals [xi, xi+1] and then summing the obtained in-

equalities over i = 0, · · · , n− 1, we get the required result. We shall omit the details. ¤

Theorem 6.3. Assume that the assumptions of Theorem 5.1 hold. Then, we have
∫ b

a

f (t) dt = S (f, In) + R (f, In)

where, S (f, In) is given in (6.1) and the remainder R (f, In) satisfies the bound

(6.4) |R (f, In)| ≤
n−1∑

i=0

(
2

q + 1

)1/q
[(

ti − (2δ − α)xi + αxi+1

2δ

)q+1

+
(

α (xi+1 − xi)
2δ

)q+1

+
(

(δ − α− β) (xi+1 − xi)
2δ

)q+1

+
(

(2δ − α− β)xi + (α + β)xi+1

2δ
− ti

)q+1
]1/q

‖f ′‖p .

Proof. Applying Theorem 5.1 on the subintervals [xi, xi+1] and then summing the obtained in-

equalities over i = 0, · · · , n− 1, we get the required result. We shall omit the details. ¤
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[39] N. Ujević, Two sharp inequalities of Simpson type and applications, Georgian Math. J., 1, (11), 187–194 (2004).
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