
Jordan Journal of Mathematics and Statistics (JJMS) 7(2), 2014, pp.109 - 118

MONOTONIC ANALYSIS: SOME RESULTS OF INCREASING
AND POSITIVELY HOMOGENEOUS FUNCTIONS

H.MAZAHERI(1) AND Z. GOLINEJAD (2)

Abstract. The theory of increasing and positively homogeneous (IPH) functions

defined on a convex cone in a topological vector space X, is well developed. In

this article, we present necessary and sufficient conditions for the minimum of the

difference of strictly IPH functions defined on X. We study convergence of sequences

of increasing positively homogeneous (IPH) functions defined on X.

1. Introduction

Recently many authors have discussed the theoretical development of optimality

conditions for certain classes of global optimization problems (see [1,2]). One of the

most important global optimization problems is to minimize a DC function (difference

of two convex functions) that is

minimize h(x) subject to x ∈ X,

where h(x) = q(x) − p(x) and p, q are convex functions. In a general case, DC

functions can be replaced by DAC functions (difference of two abstract convex func-

tions)[5]. In this paper, we replace p and q by increasing positively homogeneous

(IPH) functions and we present a necessary and sufficient condition for the global

minimum of h. Then we consider four different types of convergence for sequences of
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IPH functions defined on X. In particular pointwise convergence and epi-convergence.

We shall use the following notations:

R = (−∞, +∞); R̄ = [−∞, +∞]; R̄+ = [0, +∞].

2. Main Results

Let X be a topological vector space. A setK ⊆ X is called conic, if λk ⊆ K for

all λ > 0. We assume that X is equipped with a closed convex pointed cone K (the

latter means that K ∩−K = 0). The increasing property of our functions taken with

respect to the ordering ≤ induced on X by K:

x ≤ y ⇐⇒ y − x ∈ K

A function p : X −→ R̄ is called positively homogeneous if

p(λx) = λp(x).

for all x ∈ X and λ ≥ 0. The function p is called increasing if x ≥ y → p(x) ≥ p(y).

We shall study increasing positively homogeneos (briefly IPH) functions definded on

X. Denote the set of all such functions by P(X).

A function p : X −→ R+∞ is called proper if domf 6= ∅, where dom f is defined by

domf = {x ∈ X : f(x) < +∞}.
Now, consider the function l : X ×X → R̄+ defined by:

l(x, y) := max{λ ≥ 0 : λy ≤ x}

(with the convention . maxR := +∞ , max ∅ := 0)

In the sequel, for each y ∈ X, consider the coupling function ly : X → R̄+ defined

by ly(x) := l(x, y) for all x ∈ X, and set L := {ly : y ∈ X}.
Let X ′ = X\(−K) and L′ = {Ly : y ∈ X ′}.
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Theorem 2.1. The mapping ψ : X ′ → L′ defined by ψ(y) := ly is a bijection from

X ′ onto L′, and

y1 ≤ y2 ⇐⇒ ly2 ≤ ly1 y1, y2 ∈ X ′

Proof. Since, by the definition of L′, ψ is obviously onto. Thus we only have to

prove that ψ is one-to-one. Assume that y1, y2 ∈ X ′ are such that ly1 = ly2 . Thus

1 = l(y1, y1) = l(y1, y2). Hence, we get y2 ≤ y1. By symmetry it follows that y2 ≥ y1.

Since K is pointed, we conclude that y2 = y1.

Assume now that ly2 ≤ ly1 . Then either y2 = 0, whence ly2 = +∞ = ly1 . So that

y1 = y2, or y2 6= 0 and hence,

1 = ly2(y2) ≤ ly1(y2) = max{λ ≥ 0 : λy1 ≤ y2};

Which implies that y1 ≤ y2, the converse follows from definition of l . ¤

The lower polar function of p : X → R̄+ is the function p0 : L → R̄+ defined by:

p0(ly) = sup
x∈X

ly(x)

p(x)
, ly ∈ L.

Theorem 2.2. ([5]). Let p : X → R̄+ be a function. Then p is IPH if and only if

p0(ly) =
1

p(y)
,∀ly ∈ L.

.

Proposition 2.1. ([5]). Let p : X → R̄+ be an IPH function. Then p is IPH, if and

only if

supp(p, L) = {ly ∈ L : p(y) ≥ 1}.

.
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3. Necessary and Sufficient Conditions

In this section, we present necessary and sufficient conditions for the global mini-

mum of the difference of strictly IPH functions. Recall that, p : X → R̄ for a function,

x0 ∈ X is a global minimizer of the function p if:

−∞ < p(x0) ≤ p(x), ∀x ∈ X.

First, consider the function h := q − p, where p, q : X → R̄ are proper functions.

Let η := inf
x∈X

h(x). This implies that p(x) ≤ q(x)− η, ∀x ∈ X. Let q̃(x) := q(x)− η.

It is easy to see that p(x) ≤ q̃(x) for all x ∈ X if and only if supp(p, L) ⊂ supp(q̃, L),

or equivalently, x0 is a global minimizer of the function h if and only if

supp(p, L) ⊂ supp(q̃, L).

Now, consider a set U of functions defined on a set X. We assume that U is equipped

with the natural (pointwise) order relation. Recall that a function f is called a max-

imal element of the set U, if f ∈ U and f̄ ∈ U , f̄(x) ≥ f(x) for all x ∈ X → f̄ = f.

We now concentrate on the support set of IPH functions and we obtain some results

which will be used later.

Proposition 3.1. Let p : X → R̄ be an IPH function and let ly ∈ supp(p, L). Assume

that ly is a maximal element of supp(p, L). Then p(y) = 1.

Proof. Let ly ∈ supp(p, L) then by Proposition (2.1), we have p(y) ≥ 1. Consider

l(y, y
p(y)

) ∈ L. Then, in view of the definition of ly we conclude that

l(y, y
p(y)

) = p(y).

Since p(y) ≥ 1, it follows from Proposition (2.1) that

l(y, y
p(y)

) ∈ supp(p, L).
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Also, by using p(y) ≥ 1 and the definition of ly one has

ly(x) ≤ l y
p(y)

(x), ∀x ∈ X.

Since ly is a maximal element of supp(p,L) , then we obtain

ly(x) = l y
p(y)

(x), ∀x ∈ X.(3.1)

Put x := y in (1), we get p(y) = 1. ¤

The converse statement of Proposition (3.1) is not valid. Consider IPH function

f : R → R defined by f(x) = x for all x ∈ R. It follows from Proposition (2.1) that

l1 ∈ supp(f, L) and f(1) = 1. But, l1 is not maximal element of the support set of f .

Proposition 3.2. Let p : X → R̄ be a strictly IPH function and let ly ∈ supp(p, L).

Then ly is a maximal element of supp(p, L) if and only if p(y) = 1.

Proof. Due to Proposition (3.1) we only show that if p(y) = 1. Thus ly is a maximal

element for the support set of p. Consider ly′ ∈ supp(p, L) such that ly(x) ≤ ly′(x)

for all x ∈ X. We are going to show that ly = ly′ . We have

1 = ly(y) ≤ ly′(y).

Consider the element ȳ = y
p(y)

. We have

1 = p(y) = ly(ȳ) ≤ ly′(ȳ) ≤ p(ȳ) = 1

Then, ly′(ȳ) = 1. This, together with p(y) = 1 imply that y′ ≤ y. Now since p is

strictly increasing and y′ ≤ y, we obtain y = y′, which completes the proof. ¤

Proposition 3.3. Let p : X → R̄ be a strictly IPH function. Then for each ly ∈
supp(p, L) there exists a maximal element ly′ of support of f such that ly ≤ ly′ .

Proof. Consider y′ = y
p(y)

. Since p(y′) = 1 it follows from Proposition (3.2) that ly′ is

a maximal element and ly ≤ l′y. ¤
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Theorem 3.1. Let p, q : X → R̄ be strictly IPH functions. Then the following

assertions are equivalent

(i) supp(p, L) ⊂ supp(q, L)

(ii) For each maximal element l1 of supp(p, L) there exists a maximal element l2 of

supp(q, L) such that l1(x) ≤ l2(x) ∀x ∈ X.

Proof. (i) ⇒ (ii). Let supp(p, L) ⊂ supp(q, L). Let l1 be a maximal element of

supp(p, L), so l1 ∈ supp(q, L). Then by Proposition (3.3) there exists a maximal

element l2 of supp(q, L) such that l1 ≤ l2.

(ii) ⇒ (i) Let, l ∈ supp(p, L) be arbitary. Then by (3.3) there exists a maximal

element l1 of supp(p, L) such that l ≤ l1. Let l2 ∈ supp(q, L) and l ≤ l2. Then, l2 ≥ l,

and hence l ∈ supp(q, L). This completes the proof. ¤

In the following, we present necessary and sufficient conditions for the minimum

of the difference of strictly IPH functions.

Theorem 3.2. Let p, q : X → R̄ be strictly IPH functions such that p(x) ≤ q(x) for

all x ∈ X. Then x0 is a global minimizer of the function h = p− q if and only if for

each y ∈ X with 0 6= p̃(y) = 1 there exists z ∈ X whit q(z) = 1 such that ly ≤ lz,

where p̃(x) = p(x) + h(x0) for all x ∈ X.

Proof. We have that x0 is a global minimizer of the function h if and only if supp(p̃, L) ⊂
supp(q, L). Now the result follows from Theorem (3.1). ¤

4. Convergence of IPH functions

We need the following well-known definition, A sequence Uk of subsets of X con-

verges to a non-empty set U is the sense of PainleveKuratowski, if U contains all

cluster points of all sequences (uk) with uk ∈ Uk and for each u ∈ U there exists a

sequence uk → u with uk ∈ Uk(k = 1, ..., ). The sequence Uk converges to the empty

set if each sequence uk ∈ Uk has no cluster points.
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We shall also use epigraphical convergence (briefly,e-convergence or epi-convergence)

of functions. Recall that a sequence of functions fk : X → R̄, e-converges to

a function f if epi fk PainleveKuratowski converges to epi f. This means that

lim infk fk(xk) ≥ f(x) for each sequence xk → x and for every x ∈ X there ex-

ists xk → x such that lim supk fk(xk) ≤ f(x). Due to the liminf inequality the

latter is equivalent to limfk(xk) = f(x). We shall also use the pointwise convergence:

fk → f pointwise if fk(x) → f(x) for all x ∈ X.

Definition 4.1. Consider a sequence (fk) of functions defined on X. We say that fk

Li-converges to f if for each x ∈ X there exists xk → x such that fk(xk) → f(x).

Proposition 4.1. Let pk ∈ P(X ′). Then pk Li-converges to p ∈ P(X ′) if and only

if pk pointwise converges to p.

Proof. We need only to prove that Li-convergence implies pointwise convergence. Let

pk Li-converges to p. Then for each x ∈ X ′ there exists a sequence xk → x such that

pk(xk) → p(x). Since xk → x and xk ∈ X ′ it follows that for each ε > 0 and for large

enough k it holds that (1− ε)x ≤ xk ≤ (1 + ε)x. So by monotonicity of pk

pk((1− ε)x) ≤ pk(xk) ≤ pk((1 + ε)x).

Applying positive homogeneity and monotonicity of pk we get (1ε)pk(x) ≤ pk(xk) ≤
(1 + ε)pk(x), hence

pk(xk)

(1 + ε)
≤ pk(x) ≤ pk(xk)

(1− ε)
.

Since ε is an arbitrary positive number, we conclude that pk(x) → p(x). ¤

Proposition 4.2. Let pk be a sequence of IPH functions defined on X ′. Then pk

Li-converges to p if and only if p0
k Li-converges to p0.

Proof. Recall that by Theorem(2.1) yk → y ⇐⇒ lyk
→ ly. The result follows from

the equality p0(ly) = 1
p(y)

in Theorem(2.2). ¤
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Definition 4.2. Let pk be a sequence of proper IPH functions defined on X and

p ∈ P(X). We say that pk L-converges to p 6= 0 if pk Li-converges to p and for each

l ∈ supp(p, L) there exists lk ∈ supp(pk, L) such that lk → l; pk L-converges to p = 0

if pk Li-converges to p and each sequence lk ∈ supp(pk, L) has no limit points.

Proposition 4.3. Let pk ∈ P(X ′). Then pk Li-converges to p if and only if pk

L-converges to p.

Proof. We need to prove only that Li-convergence implies L-convergence. By Propo-

sition (4.1) we can prove that pointwise convergence implies L-convergence. Let pk

pointwise converges to p. Assume that supp(p, L′) 6= ∅ that is p 6= 0. We need to

prove only that for each l ∈ supp(p, L′) there existslk −→ l with lk ∈ supp(pk, L
′).

Let l = ly ∈ supp(p, L′). Then by Proposition (2.1) p(y) ≥ 1. Now assume that

p(y) > 1. Choose lk = l for all k. Then lk → l and lk ∈ supp(pk, L
′) for large enough

k. Now assume that p(y) = p0(ly) = 1. Let yk = y/pk(y). Since pk(y) → p(y) it

follows that yk → y, hence lyk
→ ly = l. We also have pk(yk) = 1, which implies

lyk
∈ supp(pk, L

′).

Let now p = 0. We have to show that each sequence (lk) with lk ∈ supp(pk, L
′)

has no limit points. Suppose that there is a sequence ki and a sequence lki
with

lki
∈ supp(pki

, L′) such that lki
→ l. Then l(x) = lim lki

(x) ≤ lim pki
(x) = 0 for all

x ∈ X ′, which is impossible

¤

We say that a sequence of proper IPH functions definded on X ′ converges to p

(notation: pk → p) if pk converges to p either pointwise or Li, or epi or L.

Proposition 4.4. The following assertions are equivalent

(i) pk → p;

(ii) supp(pk, L
′) → supp(p, L′)



MONOTONIC ANALYSIS 117

Proof. (i) =⇒ (ii).: Sincepk L-converges to p it is enough to show that lk ∈ supp(pk, L
′),

lk → l implies l ∈ supp(p, L′). This implication follows directly from the definitions

of the support set.

(ii) =⇒ (i). Letx ∈ X ′, λ = lim supk pk(x). We consider separately the cases

0 < λ < +∞, λ = 0 and λ = +∞.

1. Let 0 < λ < +∞. Assume without loss of generality that pk(x) → λ and

λ = 1. Let pk(x) = µk and p̄k = (1/µk)pk. Then p̄k(x) = 1. Applying Theorem

(2.1) we conclude that lx ∈ supp(p̄k, L
′). Now by positive homogeneity of pk we

have supp(p̄k, L
′) = (1/µk)supp(pk, L

′), then supp(p̄k, L
′) → supp(p, L′), hence lx ∈

supp(p, L′). Then by Proposition (2.1), p(x) ≥ 1 = lim supk pk(x).

Now consider the vector x̄ = x/p(x), hence lx̄ ∈ supp(p, L′). Since supp(pk, L
′) →

supp(p, L′), it follows that there exists a sequence lk → lx̄ such that lk ∈ supp(pk, L
′).

We have lk(x) ≤ pk(x), hence p(x) = lx̄(x) = limk lk(x) ≤ lim infk pk(x).

2. λ = 0. This means that pk(x) → 0, so pk(y) → 0 for all y ∈ X ′. Thus, we need

to show that p = 0, in other words supp(p, L′) = ∅. Suppose that supp(p, L′) is not

empty and l ∈ supp(p, L′). Then there exists a sequence lk ∈ supp(pk, L
′) such that

lk(y) → l(y) for all y. Since lk(y) ≤ pk(y) for all y it follows that lk → 0, so l = 0,

which is impossible.

3. λ = +∞. Without loss of generality assume that pk(x) → +∞. Let yk :=

x/pk(x). Then yk → 0, lyk
∈ supp(pk, L

′). Let z ∈ X ′. There exists k′ such that

yk ≤ z for all k ≥ k′. Then lz ≤ lyk
, hence lz ∈ supp(pk, L

′) for k ≥ k′. Since

supp(pk, L
′) → supp(p, L′) it follows that lz ∈ supp(p, L′). We have proved that

supp(p, L′) = L′. ¤
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