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CENTRAL IDEMPOTENT OF RINGS 

    
** 

MOHAMED-KHEIR AHMAD (1)  AND  SUMYYAH AL-HIJJAWI (2) 

ABSTRACT:  In this paper, we find several necessary conditions for the idempotents of a 

ring R  to be central (for example: if eUeU RR =  for every idempotente of R  then the 

idempotents of R are central, where RU is the set of units in R ).We present some 

several properties of a ring whose idempotents are central (for instance: If RR CI ⊆ then

RclSRreg .=  where Rreg  is the set of regular elements in R  and RclS. is the set of 

strongly clean element in R ). 

 

1. INTRODUCTION 

Idempotent elements in rings are important concepts that contribute deeply and widely 

in Ring Theory. The central idempotents has drew the attention of many researchers in Ring 

Theory. For example as in [1], [2], and [6]. In this paper we discuss many necessary 

conditions that make all idempotents of a ring central. Then we use central idempotents to 

obtain many properties for rings which possess central idempotents such as linking different 

rings together. Although the proofs look straight forward, the results merit to be recorded.  

2. DEFINITIONS AND BASIC PROPERTIES 

We present in this section the notations and the necessary definitions of terms used in 

this paper.  

 Also, we give some known or simple results which are useful in the next sections.  
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Notation 1.1 Throughout this paper the following notations will be adopted. 

 

R: Associative ring with unity.  :RU  Group of units inR . 

 

If A  is a subset ofR , then A  denote the set AR \  
 

:RP  Set of all periodic elements inR . 

 

:RC  Center ofR . 

 
:RT  Set of all torsion elements ofR . 

 

:RI  Set of all idempotent elements ofR . 

 
RST : Which is { }1; 2 =∈ xRx  the set of all simple 

torsion elements ofR . 

:RN  Set of all nilpotent elements ofR . 

 
Rreg : Which is { }xyxxRyRx =∈∃∈ ;;  the set of 

all regular elements ofR .  

:RSN  Which is { }0; 2 =∈ xRx  the set of all 

simple nilpotent elements ofR . 
 

:Rreg−π  which is the set of all π-regular elements of 

R. 
 

:Rt NS  Set of all strongly nilpotent elements ofR . 

 
Rcl  : Which is { }euxIeUuRx RR +=∈∈∃∈ ;&;  

the set of all clean elements ofR . 
 

:RZ  Set of all zero divisor ofR . 

 
RclS. : Which is { }ueeuxIeUuRx RR ⋅=⋅=∈∈∃∈ ;&;  

the set of all strongly clean  elements ofR . 

:Rrad  Prime radical ofR . 
 

RclA.  : Which is { }rexZrIeRx RR +=∈∈∃∈ ;&;  

the set of all almost clean elements  ofR . 
 

:RJ  Jacobson radical ofR . φ : The empty set. 
 

Notes 1.2 We can see easily that:  

1) φ=RR USN I , so RR USN ⊆ . 

2) { }0=RR SNI I , so }0{URR SNI ⊆  and }0{URR ISN ⊆ . 

3) { }1=RR UI I , so }1{URR UI ⊆  and }1{URR IU ⊆ . 

4) If RIe∈ , then( ) 112 2 =−e , so( ) RSTe ∈−12  .  

Definitions 1.3 

• A ring R is said to be semi commutative if RaRaaR ∈∀= . 

• A ring R is said to be regular ring if RRreg = . 

• A right idealI  of a ring R  is right pure if for all IbIa ∈∃∈ ,  such that
aba = . 
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The ring R  is called a fully right pure ring if each proper right ideal of R  is right 

pure. 

• An element a of a ring R is said to be a right (left) strongly regular if there 
exists an element b  of R  such that ( )22 baabaa == . A ring R  is said to be 
a right (left) strongly regular ring if all its elements are right (left) a strongly 
regular. R is a strongly regular ring if it is both right and left strongly regular. 

• A ring R  is called a zero-insertive ring if for every Rba ∈,  with 0=ab , 
then Rrrba ∈∀= 0 . 

• A duo- ring is a ring in which every one sided ideal is a two sided ideal. 
• A ring R is said to be a clean ring if RclR = . 

•  A ring R is said to be a strongly clean ring if RclS R =⋅ . 

• A ring R is said to be an almost clean ring if RclA R =⋅ . 

• A proper right ideal P  of R is said to be a generalized right primary right 
ideal if 

for any two right ideals JI , of R such that PIJ ⊆ , we have either PI ⊆  or Nn∈∃

such  that PJ n ⊆ . 

• A ring R is said to be a generalized right primary right ring if { }0  is a 
generalized right primary right ideal.  

• A ring R is said to be a fully generalized right primary right ring if each 
proper right ideal of R is a generalized right primary right ideal inR . 

 Lemma 1.4 [7] If one of the following conditions is satisfied, then RR CI ⊆ : 

1) R  Is a semi commutative ring. 
2) { }0=RSN . 

3) RIeeeeee ∈′∀⋅′=′⋅ , . 

4) RIeeReR ∈∀= . 
5) R  is a strongly regular ring. 
6) R  is a zero- insertive ring. 
7) R  is a duo-ring. 
8) R  is a local ring. 

Proof: We give the proof of 3) because this proof will occur several times in the article. 

Let eaeaeeyeaeeaex −+=−+= & , then RIyx ∈,  . 
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Thus, 

eeaeeaeeaeeaeexeex )()( −+=−+⇒=  )1(Keaeea =⇒  

eeaeaeeeaeaeaeeyeey )()( −+=−+⇒=  )2(Keaeae =⇒  

From (1) & (2) we conclude that Raeaae ∈∀= . Therefore RR CI ⊆ . 

Corollary 1.5  
a) If R  is a semi prime ring and the elements of RSN  are right semi commutative [ i.e.,   

Ra ⊆ aR ∀ a∈SNR ] , then RR CI ⊆ . 

b) If R is a fully right pure ring, then IR ⊆ CR. 

Proof: 

a) Let a∈SNR, then aRRa ⊆  and hence { }02 =⊆ RaaRa . Since{ }0 is a semi prime 

ideal, we get { }0∈a . Thus { }0=RSN . By (2) of  Lemma 1.4 RR CI ⊆ . 
b) Let RSNa ∈ , thenaR is a right ideal ofR and aRa ∈ . SinceaR is a right pure ideal, 

there exists an elementb of aR  such that aba = , but aRb ∈  implies Rrarb ∈= ; . 

So 002 === rraa .  

Thus { }0=RSN . By Lemma 1.4 RR CI ⊆ . 

Lemma 1.6  If R  is a regular ring, then the following conditions are equivalent: 

1) RR CI ⊆ . 

2) { }0=RSN . 

3) { }0=RN . 
 

Proof: The proof is very easy. 

 Lemma 1.7 LetR  be a right strongly regular ring. Then RR CI ⊆ . Moreover, if baa 2=  for 

some b∈R, then 2baa = , ab = ba, andR  is a strongly regular ring. 

Proof: It is clear that { }0=RSN  and hence RR CI ⊆  (by Lemma 1.4). 

 Let Ra ∈  such that baa 2= .Then ( ) 02 =− abaa . Hence( ) { }0=∈− RSNabaa , which 

implies abaa = . It follows thatab  and ba belong to RR CI ⊆ . So, 2baabaa == , which 

yields babbaab == 2 .  

Lemma 1.8 Let Ra ∈ . The following conditions are equivalent: 

1) There exists Rb ∈ such that baa 2= and baab = . 
2) The elementa is a strongly clean element. 
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Proof: 1 ⇒ 2: By hypotheses we have abaa = . Let babc =  then we can easily see 

that caccacaa == , , and caac = . So 22 cacaa == and 22 acacc == .  

Thus, ( )( ) ( )( ) 11111 =+−+−=+−+− aaccaccacaac  which means that ( )aacu +−= 1

is a unit. Denote the idempotentac bye . 

 We have, ( ) ( ) ( )acaacaacaccaacacaacaca +−=+−=+−=+−= 1122  or, 

.ueeua ==  This means that a is strongly clean. 

2 ⇒ 1: Let a be a strongly clean element of R then there exist RUu ∈  and RIe∈ such 

that euuea == . So ueueuuea =⋅=2 , and hence aeuueauua ==== −− 2112 . Let 1−= ub . 

Then baa 2=  and baaueauab ==== −− 11 . 

Lemma 1.9 If RR SNU ⊆ , then RR CI ⊆ . 

Proof: It is enough to proof that RR JU ⊆ to conclude that R  is a local ring,(proposition 1, 

of [8])so { }1,0=RI . Let RUa ∈≠0  then, by hypotheses, RSNa ∈ , so 02 =a and 0≠a . Let 

Rs ∈  and put asx =  then 02 ==⋅= saasaax  so x  is not right invertible, so RUx ∉ , 

therefore RR SNUx ⊆∈ . Hence 02 =x  , this implies( )( ) 111 =+− xx , i.e., xas −=− 11  is 

right invertible for all s of R . This means that RJa ∈ [proposition 3, of [8]].Thus R  is a 

local ring. So, { } RR CI ⊆= 1,0 .  

Remark 1.10  In Lemma 1.9, we can use RN  instead of RSN .  

3. NECESSARY CONDITIONS ON RINGS THAT IMPLY RR CI ⊆ . 

 We find in this section several necessary conditions in order for the set of all 

idempotents of a ring R be included in the centre of  R. 

Lemma 2.1 Let RA ⊆  and RIe ∈ . If eAAe ⋅=⋅ , then Aaeaae ∈∀= .. . 

Proof: Let Aa ∈ and RIe∈ .Then eAAeea ⋅=⋅∈  so there exists a'∈A such that eaae ⋅′=⋅ . 

    So )1(Keaeaeeaeae =′=′=  
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Also, eAAeae =∈  so there exists Aa ∈′′  such that aeae ′′=  which implies 

)2(Kaeaeaeeeae =′′=′′=  

From (1) & (2) we conclude that .eaae =  

Corollary 2.2  a) If RRR IeeIIe ∈∀⋅=⋅ , then RR CI ⊆ . 

                  b) Let RR CIA \= . If RIeeAAe ∈∀⋅=⋅ , then RR CI ⊆ . 

Proof:  a) Let RRR IeeIIe ∈∀⋅=⋅ . By Lemma 2.1 , RIeeeeee ∈′∀⋅′=′⋅ , .  

         So, by 3) of Lemma 1.4, RR CI ⊆ .  

     b) Let ee ′,  be elements ofRI . If RCe ∈′ ,then eeee ⋅′=′⋅ , if RCe ∉′ ,then Ae ∈′ .    

Since eAAe ⋅=⋅ , by Lemma 2.1, eeee ⋅′=′⋅ . Therefore, by 3) of Lemma 1.4,  

RR CI ⊆ . 

The following Lemma is a generalization of Theorem 1 of [6]. 

Lemma 2.3 a) If the elements of RSN commute with the elements ofRI , then RR CI ⊆ . 

b) If the element of RSN commute with the elements of RST  in a ring R  in             

which  002 =⇒= xx , then RR CI ⊆ . 

Proof: a) Let Rr ∈  and RIe∈ . Then ( ) RSNerere ∈− . By hypotheses,  

        ( ) ( ) )1(0 Kerereerereeeerere =⇒=−=−  

Also, RSNereer ∈− . Similarly, ( ) ( ) )2(0 Kereereerereereree =⇒=−=−  

From (1) & (2) we obtain Rrreer ∈∀= , or equivalently RR CI ⊆ . 

b) Let RIe ∈ . Then( ) RSTe ∈−12 . By hypotheses, for each s of RSN  we have  

( ) ( ) ( ) seesesseesseessesees =⇒=−⇒=−⇒=⇒−=− 002221212 .  

By (a) of this Lemma, we get RR CI ⊆ . 

Corollary 2.4 It results from Lemma 2.3, that: 

1) If R is a ring in which RR CST ⊆ ( in particular, }1{=RST  when R  is a torsion free 

ring) and 002 =⇒= xx , then RR CI ⊆ . 

 2) If R is a ring in which RR CSN ⊆ (in particular, }0{=RSN  when R is a reduced ring) 

then RR CI ⊆ .  
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Corollary 2.5 

a) If RRR IeeSNSNe ∈∀⋅=⋅ , then RR CI ⊆ . 

b) If eSNSNe RR .. =  RIe∈∀ , then RR CI ⊆ . 

c) If eIIe RR .. =  RIe∈∀ , then RR CI ⊆ .  

d) Let RR CSNA \= . If RIeeAAe ∈∀⋅=⋅ , then RR CI ⊆ . 

Proof: a) By Lemma 2.1, we have esse ⋅=⋅ , for all RSNs ∈  and all RIe∈ . So by Lemma 

2.3 we have  RR CI ⊆ . 

b) Assume eSNSNe RR .. =  for every RIe∈ . By Lemma 2.1, RSNxexxe ∈∀⋅=⋅ . 

Since { } RR SNI ⊆0\ , We have RIeeeeee ∈′∀⋅′=′⋅ , . By Lemma 1.2 RR CI ⊆ .  

c) Assume eIIe RR ⋅=⋅  for every RIe∈  . By Lemma 2.1 , RIxexxe ∈∀⋅=⋅ . 

Since { } RR ISN ⊆0\ ,we have RSNsesse ∈∀⋅=⋅  , By part (a) of this Corollary,

RR CI ⊆ .  

The proof of d) is similar to the proof of b) of Corollary 2.2. 

Remark 2.6 In Corollary 2.5 , we can useRN in place of RSN .  

Proposition 2.7 

a) If RRR IeeUUe ∈∀⋅=⋅ , then RR CI ⊆ . 

b) If RRR IeeUUe ∈∀⋅=⋅ , then RR CI ⊆ . 

c) If the group RU  is commutative in a ring R  in which 002 =⇒= xx , then

RR CI ⊆ . 

d) If the elements of RST commutes with itself in a ring R  in which

004 =⇒= xx , then RR CI ⊆ . 

e) Let RR CUA \= . If RIeeAAe ∈∀⋅=⋅ , then RR CI ⊆ . 

f) Let RR CUB \= . If RIeeBBe ∈∀⋅=⋅ , then RR CI ⊆ . 

Proof: a) eUUe RR ⋅=⋅  implies, by Lemma 2.1, RUueuue ∈∀⋅=⋅ . 

Let RSNs ∈ , then 02 =s , so( )( ) 111 =+− ss , i.e.,( ) RUs ∈−1  thus ( ) ( )esse −=− 11 , or   

RSNssees ∈∀=  and RIe∈ , therefore, by Lemma 2.3 , we have RR CI ⊆ . 

    b) Apply the fact that RR UI ⊆  along with part (a) of Corollary 2.2. 
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c) Let RIe∈  and RSNs ∈ then )1( −s and ( )12 −e  belong to RU . The equation 

( ) ( ) ( ) ( )121112 −⋅−=−⋅− esse  implies ( ) 02 =− sees , which gives in turn that esse ⋅=⋅  

 therefore, by Lemma 2.3 , we have RR CI ⊆ . 

d) Let RIee ∈′,  , then ( )12 −e  and( )12 −′e  belong to RST . 

Thus,  ( ) ( ) ( ) ( ) ( ) RIeeeeeeeeeeeeee ∈′∀′=′⇒=′−′⇒−⋅−′=−′⋅− ,0412121212 .  

By 3) of Lemma 1.4 RR CI ⊆ .  

The proofs of e) and f) are similar to the proof of b) of Corollary 2.2. 

Remark 2.8 It follows from the above proposition that if RR CI ⊄ , then RIe∈∃  and RUu ∈  

such that ueeu ≠ . This means that R  is not a strongly clean ring. So if R is strongly clean 

then RR CI ⊆ .  

Proposition 2.9 

a) If RIeeregRregRe ∈∀⋅=⋅ , then RR CI ⊆ . 

b) If RIeeregRregRe ∈∀⋅−=−⋅ )()( ππ , then RR CI ⊆ . 

c) Let RCregRA \= . If RIeeAAe ∈∀⋅=⋅ , then RR CI ⊆ . 

d) Let RCregRB \)( −= π . If IeeBBe ∈∀⋅=⋅ , then RR CI ⊆ . 

Proof: a) Assume eRregRrege ⋅=⋅  for every e of IR. By Lemma 2.1, 

Rregxexxe ∈∀⋅=⋅ . Since regRI R ⊆ , we have eeee ⋅′=′⋅  for all e and e′ of RI , By 3) 

of Lemma 1.4, RR CI ⊆ . 
b) This follows from the fact that RregRreg −⊆ π and Lemma 2.1. 

The proofs of c) and d) are similar to the proof of b) in Corollary 2.2. 

Proposition 2.10 

a) If RRR Ieeclcle ∈∀⋅=⋅ , then RR CI ⊆ . 

b) If ( ) ( ) RRR IeeclSclSe ∈∀⋅=⋅ .. , then RR CI ⊆ . 

c) Let RR CclA \= . If RIeeAAe ∈∀⋅=⋅ , then RR CI ⊆ . 

d) Let ( ) RR CclSB \.= . If RIeeBBe ∈∀⋅=⋅ , then RR CI ⊆ . 
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Proof: a) Assume eclcle RR .=⋅ for every RIe∈ . By Lemma 2.1, Rclxexxe ∈∀⋅=⋅ . 

Since RR clI ⊆ , we have eeee ⋅′=′⋅  for all e and e′  of RI  . By Lemma 1.4, RR CI ⊆ . 

    b) This follows from the fact that RR clclS ⊆.  and Lemma 2.1. 

The proofs of c) and d) are similar to the proof of b) in Corollary 2.2. 

Proposition 2.11 

 a) If RRR IeePPe ∈∀⋅=⋅ , then RR CI ⊆ . 

 b) If RRR IeeSTSTe ∈∀⋅=⋅ in a ring R in which 002 =⇒= xx , then RR CI ⊆ . 

 c) If RRR IeeTTe ∈∀⋅=⋅  in a ring R in which 002 =⇒= xx , then RR CI ⊆ . 

 d) If RRR IeeJJe ∈∀= .. , then RR CI ⊆ . 

 e) If RIeeRradRrade ∈∀⋅=⋅ , then RR CI ⊆ .  

Proof: a) Suppose ePPe RR ⋅=⋅  , RIe ∈∀ . By Lemma 2.1, RPxexxe ∈∀⋅=⋅ . 

Since RR PI ⊆ , we have eeee ⋅′=′⋅  for all e and e′  in RI . By 3) of Lemma 1.4, RR CI ⊆ . 

b) Suppose eSTSTe RR ⋅=⋅ . This implies ,by Lemma 2.1, RSTxxeex ∈∀= . Let

RIe ∈′ , then( ) RSTe ∈−′ 12 , we have ( ) ( ) eeee ⋅−′=−′⋅ 1212 . Therefore ( ) 02 =′−′ eeee , i.e., 

RIeeeeee ∈′∀⋅′=′⋅ , . Thus RR CI ⊆ follows from 3) of Lemma 1.4.  

c) This follows from the fact that RR TST ⊆ . 

d) We know that { }0URR JI ⊆  [In fact ( ) ( ) RRRR JeUeIeIe ∉⇒∉−⇒∈−⇒∈≠ 110 . 

This follows from proposition.5of [8]. So, eJJe RR ⋅=⋅  which implies eeee ⋅′=′⋅  for all e

and e′  in RI . By 3) of Lemma 1.4 RR CI ⊆ . 

e) We have { }0URradI R ⊆ [In fact let RIe ∈≠0 . If Rrade∈ . By Proposition 1 of 

[8],  Rt NSe∈ . So RNe ∈ , which implies 0=e , which is a contradiction, so Rrade ∈ ]. 

Now, eRradRrade .. =  implies eeee ⋅′=′⋅ , for all e and e′ in RI . By 3) of Lemma 1.4,

RR CI ⊆ .  

Remark 2.12: RRR IeeJJe ∈∀⋅=⋅  does not imply RR CI ⊆ , as shown in the next 

example. 
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Example 2.13 In the ring RM =ℜ× )(22 , we have }0{=RJ . So RRR IeeJJe ∈∀⋅=⋅ , but

RR CI ⊄  because RIe ∈
















=

2

1

2

1
2

1

2

1

and RCe∉ . 

Similarly, the same example shows that RIeeRradRrade ∈∀⋅=⋅  does not imply

RR CI ⊆ . 

proposition 2.14 

1) If eZZe RR .. =  for all RIe ∈ , then RR CI ⊆ . 

2) If RRR IeeZZe ∈∀= .. , then RR CI ⊆ . 

3) If the elements of RZ commute with themselves, then RR CI ⊆ . 

4) If the elements of RZ commute with themselves in a ring R in which 

002 =⇒= xx . Then RR CI ⊆ . 

5) If the elements of RZ commute with the elements of RZ  in a ring R  in 

winch 002 =⇒= xx , then RR CI ⊆ . 

Proof: 1) If RIe∈∀ . eZZe RR .. = . Then ezze .. =  for all z ∈ZR. Since RR ZSN ⊆ , then 

esse .. =  Ss ∈∀  and RIe∈∀ . So RR CI ⊆  follows from Lemma 2.3 

2) If RRR IeeZZe ∈∀= .. , we have exxe .. =  for all RZx ∈ . Since RR ZU ⊆  , 

RUueuue ∈∀= .. . 

 So RR CI ⊆ follows from proposition 2.7. 

3) Let RIee ∈′,  . Then RZee ∈′, . So eeee .. ′=′ . By Lemma 1.4, RR CI ⊆ . 

4) Let RR SNsIe ∈∈ , .Then( )12 −e and ( ) RZs ∈−1 .Now, ( )( ) ( )( )121112 −−=−− esse  

( ) seessees =⇒=−⇒ 02 . By Lemma 2.3 RR CI ⊆  . 

5) Since RR ZSN ⊆  and RR IeZe ∈∀∈− )12( , we have

RR IeSNsesse ∈∀∈∀−=− ,)12()12(  .Now, ( ) 02 =− sees  or sees = . By Lemma 2.3 

RR CI ⊆ . 

  



 
 141                                                      CENTRAL IDEMPOTENT OF RINGS                                   

     
                         
                                                       

 

 

 

 

 

Corollary 2.15 1) If eclAclAe RR ⋅=⋅ .. , for all RIe∈ , then RR CI ⊆ . 

2) If the elements of RclA. commute with themselves, then RR CI ⊆ . 

Proof: 1) Let RZr ∈ . Then RclAr .1∈+ . Now, RRR clAxxeexclAclAe ... ∈∀=⇒=⋅ (by 

Lemma 2.1) 

( ) ( ) reererre =⇒+=+⇒ 11 . So, by Proposition 2.14 RR CI ⊆ . 

2)It is clear that RRR clAclI .⊆⊆ , so if RIee ∈′, , then by hypotheses eeee ′=′ , so, by 3) 

of Lemma 1.4 RR CI ⊆ . 

 Proposition 2.16 If R  is a strongly clean ring, then R  is a clean ring and RR CI ⊆ . 

However, the converse is not true.  

Proof: Let Ra ∈ . Since R  is strongly clean, there exist RIe∈  and RUu ∈  such that

ueeua == . Let ee −=11 , 11 eau −=  then RIe ∈1  and ( ) ( ) 11
1

1
1

1 =−=− −− ueeueeuu . So 

RUu ∈1  and we have 11 uea += , i.e., a  is a clean element. Thus R  is a clean ring.  

The result RR CI ⊆  follows from the fact that every strongly clean ring is a strongly 

regular ring ( as we will see in Corollary 3.2 ). 

The converse is not true because Z4 is commutative clean ring but it is not regular, so it 

is not strongly clean.  

Proposition 2.17 If R a fully generalized right primary right ring containing a non-

idempotent maximal right ideal M , then RR CI ⊆= }1,0{ . 
 

Proof: We will prove thatM is the unique maximal right ideal ofR which means R is a local 

ring. Therefore, }1,0{=RI . Suppose there is another maximal right ideal1M of R . Then 

MM1 is a proper right ideal, and so it is a generalized right primary right ideal. Since

MMMM 11 ⊆ , we have either 111 MMMM ⊆⊆ and hence MMM 11 =  or Nn∈∃ such 

that 11 MMMM n ⊆⊆ . Since 1M is a semi prime right ideal (being a maximal right ideal), 

we get 1MM ⊆ . Hence 1MM = , because M is a maximal right ideal, but this contradicts 

the fact that MM ≠1 . Thus MMM 11 = . 
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Next, MMMMMMMMM ==== 11
2 . This contradicts that M  is not idempotent. 

Consequently, M is a unique maximal right ideal. 

4. Rings With RR CI ⊆  

This section presents several properties of rings whose idempotents are central.  

Lemma 3.1 [7] If RR CI ⊆ , thenR  is a regular ring if and only if R  is a strongly regular 

ring. 

Corollary 3.2 If RR CI ⊆ , then the following conditions are equivalent: 

 1)R  is a regular ring. 

 2)R  is a strongly regular ring. 

 3)R  is a strongly clean ring 

Proof: Follows directly from Lemma 1.7, Lemma 1.8, and Lemma 3.1. 

Proposition 3.3 If RR CI ⊆ , then RclSregR .= . 

Proof: Let RclSa .∈ , then RUu ∈∃ and RIe∈ such that uea = , so aueueae === 2 . 

Thus regRaaeaauaeau ∈⇒==⇒= −− 11 . Hence )1(. KregRclS R ⊆  

On the other hand, let regRa ∈ , then Rb ∈∃  such that abaa = .Let babc = , then  

acaa =  and cacc = .Since caca ,  are in RR CI ⊆ , we have 22 accaa ==  and 

22 caacc == , where accacca == 2 . 

Now, ( )( ) ( )( )caacaccaccaa −+−+==−+−+ 11111 . Let caau −+=1  and cae = , 

then RR IeUu ∈∈ ,  and we have euuea == . So RclSa ⋅∈ . Hence )2(KRclSregR ⋅⊆  . 

 By (1) and (2) we have RclSregR ⋅= . 

It is mentioned in [9] without proof that every periodic ring is clean ring 

We will add the condition RR CI ⊆ and give easy proof for this result. 
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Proposition 3.4 Suppose RR CI ⊆ . If R  is a periodic ring, thenR  is a clean ring. 

Proof: Let Ra ∈ . Since a is periodic, there are Nnm ∈,  with nm >  such that nm aa = , we 

have ( )
R

nmn Ia ∈− . Let ( ) snmn =−  and RR
s CIea ⊆∈= , then ( ) ( ) 11112 eueee +=−+−= . 

 i.e., 11 eua s += , where RUeu ∈−= )12(1  and ( ) RIee ∈−= 11 . Thus sa is a clean 

element.  

Now, ( )( )11
2

1
1

11 eaeaeaeaea ssss ++++−=− −−
K .Put 11

2
1

1 eaeaeax ss ++++= −−
K .  

Then( ) 1111 ueaeaxea sss =−=−=− . Therefore ( ) 11
1

1 =−− xeau . 

In the same way,( ) 11
11 =− −ueax . Thus x is invertible and ( ) ( )1

1
1

1
11

1 eauueax −=−= −−− ,  

From the equation  ( ) 11 uxea =−  it follows that 2
1

11 uxuea ==− − and RUu ∈2 . 

Hence 12 eua += , i.e., a  is a clean element. ThereforeR  is clean ring. 

Although the following Corollary might be found somewhere else, we add it to integrate 

our work. 

Corollary 3.6 Suppose RR CI ⊆ . If R is a −π regular ring, then R  is a clean ring. 

Proof: Let Ra ∈ . Then there exist Nn ∈  such that Rbabaa nnn ∈= ; . Let baf n=  then

RR CIf ⊆∈ .  So RCf ∈−1 . Let ( )1−+= fau n .Then: ( )[ ] ( )[ ]111 −+==−+⋅ fbffbfu .u , 

that is u is a unit.  

We have ( )fuan −+= 1  with ( ) RIf ∈−1  and RUu ∈  .Thus eua n += where u ∈UR and 

e∈IR , i.e., an is a clean element, we now repeat the same technique of the proof of 

proposition 3.4 to get a is clean element, and R  is a clean ring.  

 Proposition 3.7 The following conditions are equivalent: 

 1) R Is a regular ring and RR CI ⊆ . 
 2) R Is a fully right semi prime ring and semi commutative ring. 

Proof: 1⇒ 2 : Since R  is regular, each right ideal of R  is idempotent. This makes R a fully 

right semi prime[3]. On the other hand, let Rra ∈, , sinceR  is regular, abaaRb =∈∃ ; such 

that RR CIba ⊆∈ . So, ( ) ( ) RR CIbaarabrarabara ⊆∈′=== , . 
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In the same way, raar ′′= . So R is semi commutative. 

2 ⇒ 1 : Let Ra∈  , the aR  is a right ideal in R . Since R  is a fully semi prime ring, aR  

is an idempotent right ideal [3]. Since R  is semi commutative, RaaR = . Hence 

aRaaRaRaRa ⊆⋅=∈ . Thus araa = . This means that a is a regular element. Therefore R  

is a regular ring. 

On other hand, by Lemma 1.4, RR CI ⊆ . 

Corollary 3.8 If RR CI ⊆ , then the following conditions are equivalent: 

1) R  Is a regular ring. 

2) ( ) RaRaaRa ∈∀∈ 2
I . . 

Proof: 1⇒ 2 as follow if R is regular and RR CI ⊆ , R  is semi commutative (by Proposition 

3.7). So RaaR = , so aRRaaR =I . SinceR  is regular, we obtain( ) aRaR =2 and 

aRRaaR =2)( I . Since aRa ∈ .we have ( )2RaaRa I∈ .  

2⇒1: Let Ra ∈  then by 2), ( ) ( )( ) aRaRaaRaRRaaRRaaRaRa ⊆⋅⊆=∈ III
2 . 

So, Rb∈∃ such that abaa = . Hence a  is a regular element and R is a regular ring. 

Lemma 3.9 Suppose RR CI ⊆ . If R is a generalized right primary right ring, then }1,0{=RI  

Proof: Let RIe∈ . Since RR CI ⊆ , eR .(1-e)R = Re(1-e)R ⊆{0}. Since {0} is a generalized 

right primary right ideal, either }0{⊆∈eRe and hence 0=e or Nn∈∃ such that 

( )[ ] }0{1)1()1( ⊆−∈−− nn Reee , which yields 1=e . Thus }1,0{=RI . 

Corollary 3.10 Suppose RR CI ⊆  . If R  is a right prime ring, { }1,0=RI . 

Proof:  Every right prime ideal is a generalized right primary right ring.  
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Corollary 3.11 Suppose RR CI ⊆ . If R  is right prime (or R is a generalized right primary 

right ring) and right artinian ring, then R  is a local ring. 

Proof: It is a well known that if R  is artinian and { }1,0=RI , then R  is a local ring. 
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