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CENTRAL IDEMPOTENT OF RINGS

MOHAMED-KHEIR AHMAD @ AND SUMYYAH AL-HIJJAWI®

ABSTRACT: In this paper, we find several necessary conditfonghe idempotents of a

ring R to be central (for example: #U ; =U e for every idempotergof R then the
idempotents of R are central, whekéy is the set of units inR).We present some
several properties of a ring whose idempotentscangral (for instance: If; [ Cthen
reg R=Scl; wherereg R is the set of regular elements i and S.Cl; is the set of

strongly clean element ilR).

1. INTRODUCTION
Idempotent elements in rings are important conctyas contribute deeply and widely
in Ring Theory. The central idempotents has dreaetitention of many researchers in Ring
Theory. For example as in [1], [2], and [6]. Inghpaper we discuss many necessary
conditions that make all idempotents of a ring @nThen we use central idempotents to
obtain many properties for rings which possessrakitempotents such as linking different

rings together. Although the proofs look straigiiifard, the results merit to be recorded.

2. DEFINITIONSAND BASIC PROPERTIES

We present in this section the notations and tloegsary definitions of terms used in
this paper.

Also, we give some known or simple results whighaseful in the next sections.
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Notation 1.1 Throughout this paper the following notatievib be adopted.

R: Associative ring with unity.

U : Group of units iR

If A is asubset dR, then A denote the seR\ A

P : Set of all periodic elements .

Cy: Center ofR.

Ty : Set of all torsion elements B.

I 5 : Set of all idempotent elementsgf

STy : Which is {XDR;X2 =1} the set of all simple
torsion elements dR.

Np : Set of all nilpotent elements B¥.

reg R: Which is{xOR;CyR; x=xyx} the set of
all regular elements dR.

Ny : Which is {XOR;X? =0 the set of all
simple nilpotent elements .

71—reg R: which is the set of alk-regular elements o
R.

SNp : Set of all strongly nilpotent elementslgf

cl : Which is{xOR;u0OU, &ell, ;x=u+¢
the set of all clean elementskgf

Z, : Set of all zero divisor dR.

Sclg: Which is{xOR;u0U,&eOl, ;x=ule=em}
the set of all strongly clean elementd=of

rad R: Prime radical oR.

Adl, : Which is {xOR; Cell, & r0Z,;x=e+r}
the set of all almost clean elementsRof

Jg i Jacobson radical &R.

¢ : The empty set.

Notes 1.2 We can see easily that:

1) SN;NUg =¢, soN, OU,.

2) 1,NN, ={0}, so 1, 0N, U{0} and N, O 1, U{0}.

3) 1.,NU,={1},s0l,0U,U{1} andU, O1,U{1}.

4) Ife01,, therl2e=1)" =1, so(2e-1)0ST, .

Definitions 1.3

* Aring R is said to be semi commutativeif=Ra [OalR.
* Aring R is said to be regular ringrdgg R= R.
« A right ideall of a ring R is right pure if for allaldl,Cbdl such that

a=ab.
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The ring R is called a fully right purtring if each proper right ideal oR is right

pure.

An elementaof a ring R is said to be a right (left) strongbgular if there
exists an elemertt of R such thaa = azb(a: baz). A ring R is said to be
a right (left) strongly regular ring if all its etents are right (left) a strongly
regular. Ris a strongly regular ring if it is both right ateft strongly regular.
A ring R is called a zero-insertive ring if for evesyb[OR with ab=0,
thenarb=0 0OrOR.

A duo- ring is a ring in which every one sided ideaa two sided ideal.
Aring R is said to be a clean ringif, = R.

Aring R is said to be a strongly clean rin&itl; = R.

Aring R is said to be an almost clean ringtl; = R.

A proper right idealP of Ris said to be a generalized right primary right
ideal if

for any two right ideald, Jof Rsuch thatJ 0P, we have eithet OP orCnN

such thatJ" O P.

* A ring Ris said to be a generalized right primary rightgriif {O} is a

generalized right primary right ideal.
A ring Ris said to be a fully generalized right primaryhtiging if each
proper right ideal oRis a generalized right primary right idealRn

Lemma 1.4 [7] If one of the following conditions is satisfiedgthl ; [ Cy:

1)
2)
3)
4)
5)
6)
7
8)

R Is a semi commutative ring.
N, ={0}.

ele =€'le Ueelly.
eR=Re [ell;.

R is a strongly regular ring.

R is a zero- insertive ring.

R is a duo-ring.

R is a local ring.

Proof: We give the proof of 3) because this proof will mcseveral times in the article.

Letx=e+ea—-eae& y=e+ae—eae, thenx,yUl .
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Thus,

ex=xe—=e(e+ea—eae) = (e+ea—eae)e > ea=eae...(1)
ey=ye—=e(e+aeca—ecae) =(e+ae—eae)e > ae=eae...(2)

From (1) & (2) we conclude thate=ea [OalR. Thereford; [ Cs.

Corollary 1.5
a) If R is a semi prime ring and the elementsdf, are right semi commutative [ i.e.,
RalaR0O aJSNg ], thenl; OC;.

b) If R is a fully right pure ring, them I Cg.

Proof:

a) Let aISNg, then RaaR and hencaRaa’R={0}. Since[0}is a semi prime
ideal, we gea {0} . ThusSN,, ={0}. By (2) of Lemma 1.4, O C,.

b) Letad SNy, thenaRis a right ideal oRand allaR. SinceaRis a right pure ideal,
there exists an elemdmbfaR such thad=ab, butbdaR impliesb=ar;r0OR.
Soa=a’r =0r=0.

Thussn, ={0}. By Lemma 1.4l , O Cy.

Lemmal.6 If R is aregular ring, then the following conditions &quivalent:
1) I, 0Cg.
2) N, ={0}.
3) N, ={0}.

Proof: The proof is very easy.

Lemma 1.7 LetR be a right strongly regular ring. ThenJ C,. Moreover, ifa=a’pb for
some R, thena=ba?, ab = ba, an& is a strongly regular ring.

Proof: It is clear thasN, ={0} and hencé, O C, (by Lemma 1.4).

Let alJR such tham=a% .Then (a—aba)’ =0 . Hence(a—aba)0SN, ={0}, which
impliesa=aba. It follows thatab andba belong tol, 0C,. So,a=aba=ba’, which
yields ab =ba’b =ba.
Lemma 1.8 LetallR. The following conditions are equivalent:

1) There existb 0 Rsuch that =a’bandab =ba.
2) The elemendis a strongly clean element.
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Proof: 1 = 2: By hypotheses we hara=aba. Let c=bab then we can easily see
that a = aca, ¢ =cac, andac = ca. Soa=a’c=ca’andc=c’a=ac’.

Thus, (1-ac+a)(l-ac+c)=(1-ac+c)(1-ac+a)=1 which means than =(1-ac+a)
is a unit. Denote the idempoté§tby€.

We have, a=ac-ac+ta=ac—-(ac) +a’c=acl-ac+a)=(1-ac+a)ac  or,
a=eu=ue. This means thaais strongly clean.

2 = 1: Letabe a strongly clean element Bfthen there existJU andelllsuch
thata=eu=ue. Soa’ =uel@u=ueu, and henca’u™ =u™a’*=ue=eu=a. Letb=u™.
Thena=a’hb andab=au™ =e=u"a=ba.

Lemma 1.9 If U, O SN, thenl 0 C,.

Proof: It is enough to proof thaji_R [0 J;to conclude thaR is a local ring,(proposition 1,
of [8])sol , ={01}. Let 0# allU, then, by hypotheses (1SN, soa?=0anda #0. Let
sOR and putx=as thenax=al@as=a’s=0 so x is not right invertible, sxOU,
thereforex JU, 0 SN, . Hencex? =0 , this implie1-x)(1+x)=1, i.e., 1-as=1-x is
right invertible for allsof R. This means thaa[J[proposition 3, of [8]].ThusR is a
local ring. So,l, ={04 O C,.

Remark 1.10 In Lemma 1.9, we can udé, instead oBNj.

3. NECESSARY CONDITIONSON RINGS THAT IMPLY |, O C.

We find in this section several necessary conastion order for the set of all
idempotents of a ring R be included in the centrd&o

Lemmaz2llLet AOR andeUl. IfelA=Ale, thenea=ae HalA.
Proof: Let ald Aande | ;.TheneaOel A= Ale so there exists@A such thatela=a'[e.

Soeae=a'ee=ae=ea...(1
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Also, ae[lAe=eA so there exista"JA such thatae=ea” which implies
eae=eea" =ea" = ae...(2)
From (1) & (2) we conclude thaie = ea.
Corollary 2.2 a) If ell; =1;le OeOlg, thenl, OCyg.
b) LeA=1,\Cy. IfelA=Ale Oell,, thenl, OC,.
Proof: a)Letell,=1;le Oell;.BylLemma?2.l egle =€'le OeeOly.

So, by 3) of Lemma 1.4, O C;.
b) Lete € be elements df,. If € OC, then€l€ =€'[e jf gOC, thend DA.

Sincee[A= Ale, by Lemma 2.18l€ =€ (e Therefore, by 3) of Lemma 1.4,
I, OCs.
The following Lemma is a generalization of Theorgmf [6].

Lemma 2.3 a) If the elements o8N, commute with the elementsigf, thenl ; O Cy.
b) If the element ofSN, commute with the elements d8T, in a ring R in
which 2x=0=x=0, then!r U Cr

Proof: a) Let OR and®U!r, Then(re—ere) SN By hypotheses,
(re-—ere)e=e(re—ere)=0=re=ere...(1)
Also, er —ered SN,. Similarly, e(re—ere)=(re-ereJe=0=er =ere...(2)

From (1) & (2) we obtaier =re [Ur R, or equivalently; [ C;.

b) Let€U!r. Ther(2e-1)0ST, By hypotheses, for eactof V= we have
s(2e-1)=(2e-1)s= 2se=2es= 2(se-e5)=0= se-es=0=>es=se.
By (a) of this Lemma, we géf [ Cs.

Corollary 2.4 It results from Lemma 2.3, that

1) If Ris a ring in whichST; O C ( in particular,ST; ={1} whenR is a torsion free
ring) and2x=0= x=0, thenl ; 0 C;.

2) If Ris a ring in whichSN, O Cy (in particular, SN, = {O}when Ris a reduced ring)
thenl ; O C;.



Corollary 2.5
a) Ife[SN; =SNile Oellg, thenl, OC;.
b) If eSN, = N,.e Dell,, thenl , O Cq

c) If el
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=1.e Deldl,, thenl , O Cg.

d) LetA=SN;\C;. IfelA=Ale Oellg, thenl, OC;.

Proof: a) By Lemma 2.1, we havwels =sle, for all SHSN; and alled 1. So by Lemma

2.3 we havel ; 0 Cy.

b) AssumeeSN, = SN.e for everye[| .. By Lemma 2.1e(k=x@ OxOSN,.

Sincel , \{0} 0 SN, We haveele =€'le e € 0l,. By Lemma 1.2/, 0 C,.

c) Assumee EI Ba for everyel, . By Lemma 2.1 ex=x[& DXDE

SinceN, \{0} O I, ,we haveels=sle OsOSN, , By part (a) of this Corollary,

|, 0Cs.

The proof of d) is similar to the proof of b) of @dary 2.2.

Remark 2.6 In Corollary 2.5 , we can usé;in place ofSN;.

Proposition 2.7

a)
b)
c)

d)

e)

f)

Proof: a) elU,

IfelUy=Ugle Uellg, thenl, OCg.
lfell,=U.@ OeOlg, thenl, OCy.

If the groupU is commutative in a rin@R in which2x=0= x=0, then
Iz OCk.

If the elements ofST, commutes with itself in a ringR in which
4x=0=x=0, thenl ; O C.

LetA=U \C;. IfelA=Ale Uellg, thenl; OC;.

LetB=U,\C,. IfelB=Ble Oellg, thenl, OCy.

=U.[e implies, by Lemma 2.1elu=ule OulUg.

LetsOSN, thens’ =0, so(l-s)1+s)=1, i.e.,(1-s)0U, thuse(l-s)=(1-s)e, or

es=se [OsOSN; andell, therefore, by Lemma 2.3 , we hadyell C;;.

b) Apply the fact that ; O U_R along with part (a) of Corollary 2.2.
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c) Let edl, and sOSN, then (s—1) and (2e-1) belong toU,. The equation
(2e-1)1(s-1)=(s-1)1(2e-1) implies 2(es— se) =0, which gives in turn that[s = sle
therefore, by Lemma 2.3 , we halg Cy.
d) Lete,e' Ol , then(2e—1) and(2€ -1) belong toST,,.
Thus, (2e-1)((2¢' -1)=(2¢' -1)((2e-1)= 4(ec -€e)=0=ec =€e LeeUl,.
By 3) of Lemma 1.4, OC;.
The proofs of e) and f) are similar to the proobpbf Corollary 2.2.
Remark 2.8 It follows from the above proposition that f 0 C, thenCell, anduU,
such thaeu # ue. This means thaR is not a strongly clean ring. So ffis strongly clean
thenl; O Cy.

Proposition 2.9

a) IfelregR=regRle [ellg, thenl; OC;.

b) Ifel(n-regR)=(n-regR)le Oellly, thenl; OC;.

c) LetA=regR\C;. IfelA=Ale [ellg, thenl; OC;.

d) LetB=(n-regR)\C;.IfelB=Ble UOell ,thenl,OC;.

Proof: a) Assume elregR=regRle for every e of 4 By Lemma 2.1,
elx=xle OxOregR. Since ; OregR, we haveele =€ [e for all eand € of | ;, By 3)
of Lemma 1.4,1; O Cg .

b) This follows from the fact thategR ] 7-regRand Lemma 2.1.

The proofs of c) and d) are similar to the proobpfn Corollary 2.2.
Proposition 2.10
a) Ifelcly =clzyle OeOlg, thenl; OC;.

b) Ifel(Scl,)=(Sclz)le Delly, thenl, O Cg.
c) LetA=cl;\C;. IfelA=Ale Oellg, thenl; OCg.
d) LetB=(Scl )\Cy. IfelB=Ble Oellg, thenl, O Cy.
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Proof: a) Assumeelcl, =cl.efor e ell,. By Lemma 2.1elx=xle Ox0Ocly.
Sincel ; Ocl,, we haveel€ =€'[e for all eand €' ofl, . By Lemma 1.4], OC;.

b) This follows from the fact th&.cl; O cl;, and Lemma 2.1.

The proofs of ¢) and d) are similar to the proobpin Corollary 2.2.
Proposition 2.11

a) IfelP; =Py le DOellg, thenl, OC;.
b) If e[ST, =ST;le Oellgin aring Rin which2x=0= x=0, thenl; O Cy.
c) If elT, =Tyle Deldl in aring Rin which2x=0= x=0, thenl , O C,.
d) Ifed, =Jqe Oellg, thenl, OCg.
e) Ifelfad R=rad R[é Oell, thenl, 0 C,.

Proof: a) Supposes[P; = P;[e , Oell,. By Lemma 2.1elx=xle OxOP;.

Sincel ; O P;, we haveele' =€'[e for all eand € in | . By 3) of Lemma 1.4], O C;.

b) SupposeelST; =ST;le. This implies ,by Lemma 2.lex=xe [OxOST;. Let
€ 0lg, then2e 1) ST, we haveel(2¢' -1)=(2¢' -1)[e. Therefore2(ee' —€'¢)=0, i.e.,
ele' =€'[e Ue €0l. Thusl; OCxfollows from 3) of Lemma 1.4.

c) This follows from the fact tha$T, O T, .

d) We know thatl , 0 J,U{0} [In fact0# el I, = (1-e)01, = (1-e)0U, = e0J,.
This follows from proposition.5of [8]. chglju_R :J_R® which impliesele' =€'[e for all €
and€ inl;. By 3) of Lemma 1.4, OC;.

e) We havel , O rad RU{0}[In fact let0# el l,. If edradR. By Proposition 1 of

[8], eSNg. SoelNg, which impliese=0, which is a contradiction, seJrad R].

Now, erad R=rad Re impliesele =€ [e, for all eand € inl,. By 3) of Lemma 1.4,
|, OCq.
Remark 2.12: e[J;=Jzle [ell, does not implyi OC,, as shown in the next

example.
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Example 2.13 In the ringM ., () =R, we haveJ; ={0} . SoelJ, =J;[e Oellg, but

|, OCg becausee= OlgandelCyg.

NIFRPN| -
NIRPN| -

Similarly, the same example shows tleatad R=rad Rle e[l does not imply
I, OCg.
proposition 2.14

1) If eZy=2Zye forall edly, thenl, OCy.
2) If eZ,=Zqe Dellg, then, OC,.
3) If the elements oZ, commute with themselves, then Cy,.

4) If the elements on_R commute with themselves in a ring R in which
2x=0=x=0.Thenl, OC;.

5) If the elements of“r commute with the elements (ZTR in a ring R in
winch 2x=0= x=0, thenl; O Cy.
Proof: 1) If Dell,. eZ;=Z.e. Thenez=ze for all z 0Zr. Since Ny 0 Z,, then

es=se UsOS andlell . Sol, OC; follows from Lemma 2.3

2) If eZ,=Z.e Oell,, we haveex=xe for all xOZ, . SinceYrHZr |

eu=ue UulUg.

So I, O C,follows from proposition 2.7.

3) Lete, €01, . Thene € 0Z;. Soe€ =€.e. By Lemma 1.4); 0C;.

4) LeteDlq, SOSN, .Then(2e-1) and(1-s)0Z, .Now, (2e-1)(1-s)=(1-s)(2e-1)
= 2(es-se)=0=es=se. By Lemma 2.3/, 0 C, .

5)  Since SNy;0Z, and (2e-1)0Z, Oedl, , we  have
(2e-1)s=s(2e-1) OsOSNg, Dell, .Now,2(es-se)=0 or es=se. By Lemma 2.3
|, 0Cy.
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Corollary 2.15 1) If elAcl; = Acl;[e, foralleI;, thenl; OC;.
2) If the elements ofAcl; commute with themselves, then Cy.
Proof: 1) Letr DZ_R. Thenr +10Acl;. Now, elAcl; = Acly =>ex=xe [OxUOAcl,(by
Lemma 2.1)
= e(r +1)=(r +1)e= er =re. So, by Proposition 2.14, 0 C,.
2)It is clear that, O cl, O Acly, so if e,€ Ol , then by hypothesese' =€'e, so, by 3)
of Lemma 1.4l OC,.
Proposition 2.16 If R is a strongly clean ring, theR is a clean ring antli, OC; .
However, the converse is not true
Proof: LetallR. SinceR is strongly clean, there exigfll; and udU; such that
a=eu=ue. Lete =1-e, u,=a-e¢ theneOl, and ul(u'le—el):(u‘le—el)u =1. So
u, U, and we havea=¢ +u,, i.e., a is a clean element. Thu® is a clean ring.

The result; O C; follows from the fact that every strongly cleangiis a strongly
regular ring ( as we will see in Corollary 3.2).

The converse is not true becaugdsZcommutative clean ring but it is not regular,its
is not strongly clean.

Proposition 2.17 If R a fully generalized right primary right ring comaig a non-
idempotent maximal right idea¥ , thenl ; ={0,1} O C;.

Proof: We will prove thaM is the unique maximal right ideal Biwhich meansRis a local

ring. Therefore|; ={01} . Suppose there is another maximal right idéabf R. Then

M;M is a proper right ideal, and so it is a generaliggtit primary right ideal. Since
MM OM,;M, we have eitheM, OM,M OM,and henceM, =M ,M or CnOON such

thatM" O M,M O M,. SinceM,is a semi prime right ideal (being a maximal rigleal),

we getM OM,. HenceM =M, becauséM is a maximal right ideal, but this contradicts

the fact thatM, #M . ThusM, =M,;M .
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Next, M? =MM =MM,M =MM, =M . This contradicts thaM is not idempotent.

ConsequentlyM is a uniqgue maximal right ideal.

4. RingsWith 1,0C,

This section presents several properties of ringsse idempotents are central.
Lemma 3.1 [7] If I, O Cg, thenR is a regular ring if and only iR is a strongly regular
ring.

Corollary 3.21f | ; 0 Cg, then the following conditions are equivalent:

1R is a regular ring.

2)R is a strongly regular ring.

3)R is a strongly clean ring
Proof: Follows directly from Lemma 1.7, Lemma 1.8, and lbean3.1.

Proposition 3.31f I ; O Cy, thenregR=Scly,.
Proof: Let allS.cl,, thenCuOU and el | ,such thas = ue, soae=ue’* =ue=a.
Thusu™'a=e=>au"a=ae=a= alregR. HenceScl, OregR...(1)
On the other hand, letOregR, thenCbOR such thata =aba.Letc =bab, then
a=aca and c=cac .Since ac,ca are inl,0C,, we havea=a’c=ca’ and
c=c’a=ac’, whereac=ca’c=ca.
Now, (1+a-ac)(l+c-ac)=1=(1+c-ac)(l+a-ac). Letu=1+a-ac ande=ac,
thenuOU,,el1, and we havea =ue =eu. SoallSicl,. HenceregR[ Slcl,...(2) .
By (1) and (2) we haveegR = Slcl;.
It is mentioned in [9] without proof that every flic ring is clean ring

We will add the conditiorl ; 0 C;and give easy proof for this result.
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Proposition 3.4 Supposé, 0C,. IfR periodic ring, theilR is a clean ring.
Proof: LetallR. Since a is periodic, there anenON with m>n such thaa™ =a", we
havea"™" OI,. Let n(m-n)=s anda® =e0l, 0 Cg, thene=(2e-1)+(1-€)=u, +e,.
ie, a®=u +e , whereu, =(2e-1)0U, ande =(1-e)0I,. Thusa®is a clean
element.
Now, a° -€’ = (a—el)(as‘l +ea”’+...+ea+ el).Putx:aS‘1 +ga’’ +...+ga+e.
Thenla-g)x=a°-¢€’ =a°-g =u,. Thereforei*(a—¢g )x=1.
In the same way(a—¢ )u;* =1. ThusXis invertible and™ = (a-¢ Ju;* =u;*(a-e),
From the equation(a—e )x = u, it follows thata—e =u, x™* =u,andu, OU.
Hencea=u, +¢, i.e., a is a clean element. Therefdtds clean ring.

Although the following Corollary might be found semhere else, we add it to integrate

our work.

Corollary 3.6 Supposk; 0 Cy. If Ris an-regular ring, therR is a clean ring.
Proof: Let aldR. Then there exishON such that" =a"ba";b0R. Letf =a"b then
fOl, O0Cg. Sof —~10C,. Letu=a"+(f -1).Thenul[bf +(f -1)]=1=[bf +(f -1)].u ,
that isuis a unit.
We havea" =u+(1- f) with (1- )01, anduU, .Thusa” =u+ewhere uJUg and
ellg , i.e., d is a clean element, we now repeat the same teohnid the proof of

proposition 3.4 to ge4is clean element, anB is a clean ring.
Proposition 3.7 The following conditions are equivalent:

1) R Is a regular ring ard O Cy.
2) R Is a fully right semi prime ring and semi qomotative ring.
Proof: 1= 2 : SinceR is regular, each right ideal &t is idempotent. This makd3a fully

right semi prime[3]. On the other hand,det OR, sinceR is regularCb0R; a=abasuch
thatbadl, OC,. Soar =a(ba)r =ar(ba)=r'a, ball, OCs.
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In the same way,a=ar". So Ris semi commutative.

2= 1:LetallR , theaR is aright ideal inR. SinceR is a fully semi prime ringaR
is an idempotent right ideal [3]. SincB is semi commutativeaR=Ra . Hence
alaR=aR[aR 0 aRa. Thusa=ara. This means that a is a regular element. Theréfore
is a regular ring.

On other hand, by Lemma 1.4, OC;.

Corollary 3.81f I ; O C, then the following conditions are equivalent:
1) R Is aregular ring.
2) aO(@RNRa)’ DalR..
Proof: 1= 2 as follow if Ris regular andl; 0 C;, R is semi commutative (by Proposition
3.7). SoaR=Ra, soaRNRa=aR . SinceR is regular, we obtaifaR)’ =aR and
(aRNRa)? =aR. SinceallaR.we haveal(aRN Ra)’

2=1: LetaR then by 2),a0(RaNaR)’ = (RaNaR)(RaNaR) ] aR[Ra [l aRa.

So, CbOR such thad =aba. Hencea is a regular element aridis a regular ring.
Lemma 3.9 Supposé U C;. If Ris a generalized right primary right ring, tHen={ 0,1}
Proof: Let edl,. Since; OCg, eR .(1-e)R = Re(1-e)R{0}. Since {0} is a generalized
right primary right ideal, eithee(1eR [0{0} and hencee=0orCn[IN such that

1-e)@-e)"O[1-e)R]" O{0}, which yieldse=1. Thus |, ={0,1} .
Corollary 3.10 Supposé, O C,, . If R is a right prime ring) , ={0,1} .
Proof: Every right prime ideal is a generalized right pxipright ring.
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Corollary 3.11 Supposd, OC;. If F right prime (orRis a generalized right primary
right ring) and right artinian ring, theR is a local ring.

Proof: It is a well known that ifR is artinian and , ={0,1}, thenR is a local ring.
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