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EMPIRICAL BAYES ESTIMATES OF RAYLEIGH DISTRIBUTION
WITH EWMEL AND LOGARITHMIC LOSS FUNCTIONS FOR
CENSORED SAMPLES

D. R. BAROTY AND M. N. PATEL®

ABSTRACT: In this paper, empirical Bayes estimates of reliighiperformances are
derived when the data are progressively Type lisossd from a Rayleigh distribution.
These estimates are derived under exponentiallyghtesi minimum expected loss
(EWMEL) and logarithmic loss functions, and comphraith the corresponding
maximum likelihood estimates in terms of absolugstand estimated risk. A real data
set is presented to illustrate the proposed edtmatmethod, and a Monte Carlo
simulation study is carried out to investigate #tweuracy of derived estimates. The study
shows that the empirical Bayesian estimation otfdpes the maximum likelihood

estimation.

1. INTRODUCTION

Rayleigh distribution is widely used to modeVents which occur in different
fields such as medicine, social and natural seiencommunication engineering, reliability
and life testing, and applied statistics. Lord IRegh [22] invented this distribution from
the amplitude of sound resulting from many impartswurces. Polovko [21] demonstrated
the importance of this distribution in communicatiengineering and electro vacuum
devices. Siddique [27] has used this distributien aaradio wave power distribution.
Bhattacharya and Tyagi [7] applied this distribotim some clinical studies dealing with

cancer patients.
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The probability density and cumulative distributitmctions of Rayleigh distribution
are given, respectively, by

f(x|6)=—=e 2, x>0, 6>0

6 (1.1)

and

X2

F(X|9):1—e_§. (12)

Moreover, the reliability and failure rate funct®are given, respectively, by

tZ

Rit)=e and/](t)zé, t>0 (1.3)

Many authors have developed statistical inferemoequures for Rayleigh distribution.
For example, among others, Howlader and Hossiahd&dved the Bayes estimates for
scale parameter and reliability function of the Ragh distribution in the case of Type Il
censored samples. Wu et al. [28] and Lee et a].ljaGe derived the maximum likelihood
and Bayes estimates of reliability performanceshef Rayleigh lifetime model under the
squared error loss function in the case of progreskype Il censoring.

The empirical Bayesian approach has become qugelg@oin the theory and practice of
statistics in the last three decades. This appraashfirst formulated by Robbins [24], and
has been used rather extensively by several authorexample, among others, Ali Mousa
[1] has obtained the empirical Bayes estimatesh®Burr type XII model based on Type II
censored data. Asgharzadeh and Valiohi [4] havdiesuthe problems of estimation and
prediction for the proportional hazards family ungeogressive Type Il censoring through
empirical Bayesian approach. Rezaeian and Asghelnzg8] have obtained the Bayes and
empirical Bayes estimates of scale parameter ofGamma distribution under balanced
loss functions. This approach has been describahsixely by many authors ([9], [17],
[19], [10]).

However, up to now, empirical Bayes estimates dialodity performances of the
Rayleigh model based on EWMEL and logarithmic |fssctions were not addressed
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under progressively Type Il censorirThe main aim of a paper is to obtain empirical
Bayes estimates of the scale parameter, relialbilitgtion, and failure rate function of the
Rayleigh model based on progressively Type Il cexds@samples, and to compare them
with the corresponding maximum likelihood estimateterms of bias and posterior risk.
The rest of the paper is organized as follows. écti®n 2, a progressive Type Il
censoring scheme without replacement is discussetimaximum likelihood estimates of
reliability performances for the Rayleigh model anthis censoring are stated. In Section
3, Bayesian estimation of reliability performanagsder EWMEL and logarithmic loss
functions is considered. In Section 4, empiricay&aestimates of reliability performances
are derived where the hyper-parameter is estimaid) maximum likelihood approach. In
Section 5, a real data provided by Lawness [15&nalyzed to illustrate the proposed
estimation method. Finally, in Section 6, a Mont&A@ simulation study is carried out to
compare the performance of empirical Bayes estignaiéh the corresponding maximum

likelihood estimates. The paper concludes in Sectio

2. PROGRESSIVE TYPE || CENSORING SCHEME

Censoring is used in life testing to save time andt. The most popular censoring
schemes, among the various types of censoring shased in lifetime analysis, are Type
| and Type Il censoring schemes. These types afarery cannot allow removal of units at
points other than the terminal point of an experimélowever, this allowance may be
desirable, as in the case of accidental breakatgsbfinits where the loss of units at points
other than the terminal point may be unavoidableis Teads us into the area of more
general censoring scheme called progressive Typeerikoring scheme. This censoring
scheme is also useful in many practical situatwhsre budget constraints are in place or
there is demand for rapid testing. Statistical nefiee problems for various lifetime
distributions under progressive Type |l censorimyéhbeen discussed by several authors
(2], [3], [11], [22], [20]). The interested reademay refer to the book by Balakrishnan and

Aggarwala ([6], Chapter 1) for additional discussiamn need for progressive censoring.
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A progressive Type Il censoring scheme without aepinent can be described as

follows. Consider an experiment in which n indepamtcand identical units are placed on a
life test at the beginning time, and the failurads of firstm (1s m< n) units are recorded.
That is, instead of continuing until all n unitsvbafailed, the life test is terminated at the
time of m" failure. At the time of each failure occurringgrio the termination point, one
or more surviving units are removed from the liéstf that isy, of the (n—l) surviving
units are withdrawn at the time of the first fagur, of the(n—2—r1) surviving units are

withdrawn at the time of the second failure, andoso Finally, at the time of then"
failure, the life test is terminated and all thenagningr,, (:n—m—frij surviving units
i=1

are withdrawn. Whem, =r, = ...=r, =0 andn=m, the progressive Type Il censoring
scheme reduces to complete sampling scheme; andh wher,= ...=r,,=0 and
r,, =N-m, this scheme reduces to conventional Type Il ceémgscheme.

Let Xy <Xy < ... <X, be the failure times of completely observed undsfail;
rf,,..r, be the number of units withdrawn at these failutenes; and

X= (x(l),x(z) ,...,x(m)) be the progressively Type Il censored sample eflite test on units

whose lifetimes have a Rayleigh distribution whie probability density function (1.1). The

likelihood function based oK is (see Balakrishnan and Aggarwala, [6])

m

L(x|9)=A” (%, 16)2-F(x, 16)", 2.1)

where

A=n(n-1-r)(n-2-r,-r1,) ..... (n—m+1—§rij.

i=1
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From (1.1), (1.2), and (2.1), the likelihood fumctiL is found to be

A |__| X _Tzzi"(nz(l”i)
L(x|g)=—2 —e . (2.2)
The maximum likelihood estimates of the scale patentd, reliability function

R(t), and failure rate functiovl(t) of the Rayleigh model based &n(Refer
Wu et al. [28]) are given, respectively, by

~ Z:lx(zi) (1+ ri)
HMLE = I_T, (23)
e
R(t), e =€ 2%, (2.4)
A t
A e == (2.5)
HMLE

3. BAYESESTIMATESOF RELIABILITY PERFORMANCES

In this section, we consider Bayesian estimatiorthef scale parametét, reliability
function R(t), and failure rate functioni(t) of the Rayleigh model. Suppose that the

unknown scale parametéris the realization of a random variable, which hasinverted

gamma prior with the probability density function

1

g 1 e"ﬁ
ﬂ(glb):W’ b>0, (31)

whereb is the unknown hyper-parameter chosen to reflgot peliefs oné.
This prior distribution has advantages over manyeptdistributions because of its
analytical tractability, richness, and easy intetability. The joint probability density

function of & and x is given by

A - Xiy _w
9(x.6)=L(x|6) (6 |b) = o g2t
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where
W=>"x3 @+ ) + 1.
i=1
From Bayes’ theorem, the posterior probability ritisttion of & can be written

as

T (9 | l() = g(l(a 5) = werm __ —ﬁe—z(mm)-l.
[o(x6)de To+m)2

In order to derive Bayes estimates, one must havepécify a loss function, which

(3.2)

represents a penalty associated with each of thsilde estimates. The loss function is a
non - negative function of the distance betweemmesé and true value. To control the
amount of variability, the most widely used losadtion is a quadratic loss function in the
formL,; (() (p)z k(()—go)z, Where() is an estimate of. This loss function is symmetrical

and gives equal importance to the losses due testimation and underestimation of equal

magnitude. Ifk is a function ofg, the loss function is termed as weighted quadtats

function.
C

The EWMEL function can be obtained with the choit&()= g %e 2 .

The Bayes estimate @f under an EWMEL function, denoted l@E, is the value ofp
that minimizes the posterior expectation of thes lasction. It is
- _E"(k(@elx)
E 7 :
E” (k()1x)

For ¢c=0, this loss function reduces to minimum expectess I(MEL) function
with k((a) =@, which was proposed by Tummala and Sathe [25].
Another loss function in popular use is a logarithmess function that places a small

weight on estimates whose ratios to the true vaheeclose to one, and proportionately

more weight on estimates whose ratios to the talgevare significantly different from one.
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This loss function was introduced Brown [8], and can be expressed as
AN2
-~ -~ 2
L, (¢7,¢7): [In g} = (In @-1In ¢7) :

The Bayes estimate @f under the logarithmic loss function, denotedg}gy, is
the value of& that minimizes the posterior expectation of thesltunction. It is
. =explE” (Ing] X))

Shah and Patel [26] derived the Bayes estimateasliability performances of
the Rayleigh distribution under the EWMEL functiorsbd on multiply Type I
censored data. Asgharzadeh and Valiollahi [3] oletithe empirical Bayes
estimates of unknown parameter and reliability fiorc of Burr distribution
under absolute error and logarithmic loss functitmased on progressively

Type Il censored data.

3.1. BAYESESTIMATESOF RELIABILITY PERFORMANCES
UNDER THE EWMEL FUNCTION

The Bayes estimate of scale paraméemder the EWMEL function is

e (k(e)a1x) _ [ ¢ e 17 (6]x)d6
E” (k(e)ll() f 92 e_TZZ 77'*(6’|l()d6’

Oge =

fe 0% 2] -2(b+m)-3 de

r(b+m+1j crw
_ 2 2

M(b+m+1) (3:3)

Moreover, the Bayes estimates of reliability fuontiR(t) and failure rate

function A(t) under the EWMEL function at mission tinheare, respectively,
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(_SC)S f e(ZS;;;)t e—% 9—2(b+m)—1 de

s (st w
(_ C) e 26° e 262 9—2(b+m)—l de

N

[
22
S

ii(—c)[ 2s+1)t ] f 292 ok g

s=0 p=0 25+p sl p'

o @ [_ A 5
ZZ( C) (S+l)t fe 262 2bsm+p)1 49

s0 p=0 2° sl p'

Z”:Z”:(—c)s [(23+1)t2]p Mb+m+p)

_ s0 =0 ZSS!p!WP

) ! 3.4
ii(—C)s As+1)t?[° r(b+m-+p) (3.4)
0 p=0 2S sl |f)|Wp

and

& -
o _ENaEA Lo 7 (e1)ee
= T [

cH

4
[ e (olx)de

feze2 b+m2$lld5

|
M8 ﬁMS

fezez b+m2321d9

1]
1
o
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ti(—c/ztz)sr(m m-2s-1) 2?2

R SI \Nb+m—25—l
) i( c/2?) [ (b+m-2s- 2 2me
pore S' \Nb+m—23—
Zti(—cwzl&z)s M(b+m-2s-1)
=5 d . (3.5)
Wi(—cw2 /8t°f r(b+m-2s-2)
s

I
o

S

3.2. BAYESESTIMATES OF RELIABILITY PERFORMANCES UNDER
THE LOGARITHMIC LOSS FUNCTION

The Bayes estimate of scale paraméeamder the logarithmic loss function is

b, =explE” (N6 )|

B Vvb+m _lz (p+m)-
—ex{mflnﬁe” e 2 ld0:|

- exp{_—zl{ln(ﬂbv-; m)j 'g{m iﬁ - In(1+ m—;ﬂ(ﬂ}} (3.6)

(Refer Gradshteyn and Ryzhik [13], pp. 893).

Moreover, the Bayes estimates of reliability fuontiR(t) and failure rate

function A(t) under the logarithmic loss function at mission dim are,

respectively,

|i(t)Bl_ = eXplEﬁ (In R(t)ll()J

b+m t2 -
=exXp| T f e 20 gbrmiigg

e v (3.7)
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and

j(t)BL = explE’f (ln /](t) | l()]

— Wb _ " 262 p - 2(b+m)-1
_exp{mfﬂnt 2Ing) e # @ dég

:eXp{Int+In[ (b+m)j m[b+m+k (1+b+;+km (3.8)

4. EMPIRICAL BAYESESTIMATESOF RELIABILITY
PERFORMANCES

The Bayes estimates obtained in previous Sectiensaen to depend on the
hyper-parameteb of prior distribution (3.1). As the hyper-paranrete is
unknown, we may use empirical Bayesian approaclgetoits estimate. In

empirical Bayesian approach, we begin with the Bayedel

xyl8 ~ f(x|6), i=12..m

6|b ~ m6|b).
The marginal distribution OB:(x(l),x(z),...,x(m)), say m(x|b), can be
obtained by

m(x|b)= [ L(x|6) (8 b)dé. (4.1)

It follows, from (2.2), (3.1), and (4.1), that thearginal distribution ofX is

m

Al I %, Al_ll ,)I'(b+m)2m
m(l(|b blf 292 2(brm)} 4 g =
r(b)2

I (o) W™ (4-2)

Based om‘(z(lb), we can obtain an estimateof b. It is most common to

takeB to be the maximum likelihood estimatelof but it is not essential.
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The natural logarithm of (4.2) is
Inm(x|b)=InA+In [1%0 +InT(b+ m)+min2-Inr(b)-(b+m)Inw. (4.3)
1=1
Using the approximation dfh I (b) that works good even for small valuestof
(see Gradshteyn and Ryzhik, [13], pp. 888, 8.331(2}4.3), we differentiate it

with respect td. Equalizing the obtained expression to zero, tkelihood

equation is found to be

{In(b+m)—m}—[lnb—%}—lnwza

. (b+ mJ m
i.e.n + =0.
bw ) 2b(b+m)

(4.4)

The equation (4.4) has no closed form solutionra@tuee, an estimate for b is
obtained by solving the equation via numerical radttAccording to Lehmann
and Casella [17], the empirical Bayes estimataglability performance of the
Rayleigh model can be obtained by substituﬁwg)r b in the Bayes estimates.
By substitutingb for b in (3.3), (3.4) and (3.5), the empirical Bayestimates of
o, R(t) and A(t) under the EWMEL function can be obtained, respebtj as

r(6+m+1j,/C+W
0 o L 2 AY 2

== T med @
ii(—c)s[(252l)t2]pr(6+m+p)
R(U)gse == 2202 s!zpp!pr , (4.6)
SE e
A Zti(—cwzl&z)s F§(6+m—25—1)
A) o =—= (4.7)

WSZ';;(—CWZ /8t rS!(6+ m-2s-2)




158 D. R. BAROT AND M. N. PATEL

Similarly, the empirical Bayes estimateséf R(t) and A(t) under the
logarithmic loss function can be obtained, respetti as

5 = expl M 20rm ) T 1 1
eEBL_exp{z{ln( W J §{6+m+k In[1+6+m+kﬂ}} (4.8)

. _(b+m)?
Rt)y = v, (4.9)

M), = exp {Int +In [Ab\;—m)}i {;—In(h;ﬂ} (4.10)

ko | b+m+k b+m+k

5. NUMERICAL EXAMPLE (REAL DATA)

In this section, a real data set reported in Lasv(§k5], pp. 228) is analyzed to
illustrate the proposed estimation method describethe preceding Section.
Leiblein and Zelen [18] originally discussed thetal set during the endurance
test of 23 deep groove ball bearings. The failume$ (in thousands of million
revolutions) were:

0.01788 0.02892 0.03300 0.04152 0.0421Q2.04560 0.04848
0.05184 0.05196 0.05412 0.05556 0.06780.06864 0.06864
0.06888 0.08412 0.09312 0.09864 0.1051@.10584 0.12792
0.12804 0.17340

We have checked the validity of the Rayleigh mdoketed on the estimated
value (moment estimate) of parametér 0.0525, using the Kolmogorov-
Smirnov (KS) test. It is observed that the valu&8f Statistic is 0.09463 with
the corresponding tabulated value 0.275. This atd& that the Rayleigh model

is adequate for the given data. Fbr 0.0525 the reliability R(t) and failure
rate A(t) (att=0.04) are respectively 0.74807 and 14312

As a numerical illustration, we have generated rdificgal progressive Type Il

censored sample of size=12 and conventional Type Il censored sample of
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sizem=5 from the given data set. Fthese two cases, the failure times along
with the applied censoring schemes are reportedahles 1 and 3. The
maximum likelihood estimates and empirical Bayesineges under the
EWMEL, MEL, and logarithmic loss functions were quumed for both the

censored samples and reported in Tables 2 and 4.

Table 1. Progressively Type Il censored sample

i 1 2 3 4 5 6
X() | 0.01788 | 0.02892 | 0.03300 | 0.04560 | 0.05184 | 0.05196

r 0 1 2 0 2 0
i 7 8 9 10 11 12
X() | 0.05556 | 0.06864 | 0.09312 | 0.10512 | 0.10584 | 0.12792

I; 3 0 0 1 0 2

Table 2. Maximum likelihood and empirical Bayes estimates of o, R(t)

and /1(t) for progressively Type Il Censored sample

b ‘ MLE EWMEL function MEL function | thimic L Functi
arameter ogarithmic Loss Function
c=-05| c=05 c=0 g
g 0.07252 0.05389 0.08684 0.07227 0.07237
R(t) 0.85889 0.85789 0.85814 0.85802 0.85859
/1('[) 7.60550 7.49753 7.49883 7.49818 7.63694

Table 3. Conventional Type Il censored sample

i 1 2 3 4 5
X() | 001788 | 0.02892 | 0.03300 | 0.04152 | 0.04212

I 0 0 0 0 18
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Table 4. Maximum likelihood and empirical Bayes estimates of &, R(t) and /1('[)
for conventional Type Il censored sample

b ‘ MLE EWMEL function MEL function | ithmic L Functi
arameter ogarithmic Loss Function
c=-05 | c=05 c=0 9
1) 0.06138 0.04407 0.07453 0.06122 0.06128
R(t) 0.80869 0.80751 0.80792 0.80772 0.80852
/1(t) 10.61662 10.49767 10.49838 10.49803 10.64937

From Tables 2 and 4, it is observed that (i) Thepienal Bayes estimate of scale
parameterd under the EWMEL function is sensitive to the vahfeshape parameter
whereas of reliability functiorR(t)and failure rate function’l(t) are not. (i) When the

negative (positive) value of shape parameteéends to zero from the left (right) side, the
empirical Bayes estimate of scale paraméteéhe EWMEL function get very closer to its
maximum likelihood estimate. (iii) The empirical B estimate of scale parameter under

the EWMEL function get very closer to the corresiog maximum likelihood estimates.

6. SMULATION STUDY

In this section, an extensive Monte Carlo simulatgiudy is conducted to
compare the performance of proposed Bayes estimithsthe maximum

likelihood estimates in terms of absolute bias estimated risk for different
sample sizes, effective sample sizes, shape paamelues, and censoring

schemes with five withdrawal patterns.
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The maximum likelihood and empirical Bayes estimmaitreliability
performances are computed according to the follgwieps:

1. For the given value of prior paramete=50, we have generated
6=0.09216from (3.1) and then by using this generated vaiti@,
R(t)=0.91012 and A(t)=4.70907 (at t = 004) are obtained from
(1.3).

2. For a particular sample size (n), effective sampiee (m), and
censoring schemc_ez(rl ,rz,...,rm), we have generated a progressive
Type Il censored sample&l:(ul,u2 ,...,Um) from the uniform
distribution, and thenx=(xy, Xy .....Xm) from the Rayleigh
distribution according to the algorithm given in |Baishnan and
Sandhu [5], wherex;, = —26?2In(1—Ui), i=123...,m.

3. For different values ot, we have computed the maximum likelihood
and empirical Bayes estimates 6f, R(t), and)l(t) (att = 004) using
the results outlined in Sections 2 and 4.

As one data set does not help to clarify the peréorce of an estimate, the
average estimates, absolute biases, and estimsksdof maximum likelihood
and empirical Bayes estimates were computed ormakses of 1000 simulated

data sets according to the following formulae:

1000 R
Z g
Average estimate 222 |
100C
Absolute bias of an estimate|&verageestimate- ],
1000 R 5
>.(6-a)
Estimated risk 22
100C

Here, g is an estimate ofj. All the calculations have been done through

computer software Microsoft Visual Studio 2008.
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Table 5 represents the different cases of sampés seffective sample sizes,
and censoring schemes. The maximum likelihood antpircal Bayes
estimates of reliability performances, and the egponding estimated risks are

reported, respectively, in Tables 6 - 8.

Table 5. Progressively Type Il Censoring Schemes (C.S.) applied in the simulation study

n m | C.S.No. r=(rr,,...r,)
[1 1,1,00,0,0,0,0,0,0,0,0,0,0,1,1
2 2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0
16 3] 0,0,0,0,000,0,0,0,0,0,0,0,2,2
[4] 4,0,0,00,00,0,0,0,0,0,0,0,0,0
20 [5] 0,0,0,0,000,0,00,0,0,0,0,0,4
[6] 3,3,0,0,0,0 3,3
[7] 4,4,4,0,0,0,0,0
8 8l 0,0,0,0,04,4,4
[9] 12,0,0,0,0,0,0,0
[10] 0,0,0,0,0,0,0,12
[11] 9,8,0,0,000,00,0,0,0,0,0,8,9
[12] 17,17,0,0,0,0,0,0,0,0,0,0,0, 0, 0, 0
16 [13] 0,0,0,0,000,0,0,0,0,0,0,0, 17, 17
[14] 34,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
50 [15] 0,0,0,0,000,0,0,0,0,0,0,0,0, 34
[16] 11, 10,0, 0, 0, 0, 10, 11
[17] 14, 14,14,0,0,0,0,0
8 [18] 0,0,0,0,0,14, 14, 14
[19] 42,0,0,0,0,0,0,0
[20] 0,0,0,0,0,0,0, 42
[21] 21,21,0,0,0,0,0,0,0,0,0,0,0,0, 21, 21
[22] 21,21,21,21,0,0,0,0,0,0,0,0,0,0,0,0
16 [23] 0,0,0,0,000,0,0,0,0,0, 21,21, 21,21
[24] 84,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
100 [25] 0,0,0,0,00,0,0,0,0,0,0,0,0,0, 84
[26] 23,23,0,0,0,0, 23,23
[27] 23,23,23,23,0,0,0,0
8 [28] 0,0,0,0, 23,23, 23,23
[29] 92,0,0,0,0,0,0,0
[30] 0,0,0,0,0,0,0,92
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Table 6. Maximum likelihood and empirical Bayes estimate of scale

parameter O and their estimated risk

163

MLE EWMEL function MEL function Iogarithmic loss
cs. c=-01 c=01 c=0 function
Y T8 TERGY| 6y | ERGur)| Bun | EROumd)| Bue | ERGmo)| B | ERGm)
[1] 0.13471 | 0.00202 | 0.12930 0.00158 0.13769 0.00228 0.13356 | 0.00192 | 0.13410 | 0.00197
2] 0.14836 | 0.00324 | 0.14259 0.00262 0.15119 0.00357 0.14695 | 0.00308 | 0.14763 | 0.00316
[3] 0.12195 | 0.00111 | 0.11689 0.00082 0.12503 0.00130 0.12103 | 0.00105 | 0.12145 | 0.00107
[4] 0.14858 | 0.00327 | 0.14280 0.00264 0.15142 0.00359 0.14716 | 0.00311 | 0.14785 | 0.00318
[5] 0.12084 | 0.00104 | 0.11581 0.00076 0.12393 0.00102 0.11994 | 0.00098 | 0.12035 | 0.00101
[6] 0.09931 | 0.00038 | 0.09434 0.00027 0.10271 0.00047 0.09862 | 0.00035 | 0.09893 | 0.00037
[7] 0.12469 | 0.00142 | 0.11852 0.00102 0.12831 0.00167 0.12351 | 0.00133 | 0.12409 | 0.00138
[8] 0.09419 | 0.00028 | 0.08947 0.00021 0.09749 0.00035 0.09356 | 0.00026 | 0.09385 | 0.00027
[9] 0.13101 | 0.00182 | 0.12454 0.00133 0.12968 0.00171 0.13463 | 0.00212 | 0.13034 | 0.00176
[10] 0.09247 | 0.00025 | 0.08783 0.00020 0.09573 0.00031 0.09187 | 0.00024 | 0.09214 | 0.00024
[11] 0.10053 | 0.00022 | 0.09613 0.00021 0.10362 0.00029 0.09994 | 0.00021 | 0.10020 | 0.00022
[12] 0.14768 | 0.00318 | 0.14192 0.00257 0.15052 0.00350 0.14629 | 0.00303 | 0.14696 | 0.00310
[13] 0.09602 | 0.00015 | 0.09178 0.00012 0.09908 0.00019 0.09550 | 0.00014 | 0.09572 | 0.00015
[14] 0.14814 | 0.00322 | 0.14237 0.00261 0.15098 0.00355 0.14673 | 0.00306 | 0.14741 | 0.00314
[15] 0.09577 | 0.00015 | 0.09153 0.00012 0.09882 0.00019 0.09525 | 0.00014 | 0.09547 | 0.00014
[16] 0.08948 | 0.00021 | 0.08500 0.00018 0.09269 0.00026 0.08892 | 0.00020 | 0.08917 | 0.00021
[17] 0.11876 | 0.00110 | 0.11286 0.00078 0.12235 0.00131 0.11770 | 0.00103 | 0.11821 | 0.00106
[18] 0.08751 | 0.00012 | 0.08312 0.00010 0.09067 0.00012 0.08697 | 0.00013 | 0.08721 | 0.00011
[19] 0.12926 | 0.00170 | 0.12287 0.00124 0.12288 0.00158 0.12797 | 0.00159 | 0.12861 | 0.00165
[20] 0.08696 | 0.00012 | 0.08260 0.00011 0.09010 0.00011 0.08643 | 0.00012 | 0.08667 | 0.00012
[21] 0.09476 | 0.00014 | 0.09057 0.00012 0.09780 0.00017 0.09426 | 0.00013 | 0.09447 | 0.00014
[22] 0.14504 | 0.00293 | 0.13936 0.00235 0.14792 0.00324 0.14370 | 0.00279 | 0.14435 | 0.00286
[23] 0.09282 | 0.00012 | 0.08870 0.00011 0.09584 0.00015 0.09234 | 0.00011 | 0.09254 | 0.00012
[24] 0.14814 | 0.00321 | 0.14137 0.00259 0.15097 0.00355 0.14473 | 0.00301 | 0.14541 | 0.00304
[25] 0.09243 | 0.00012 | 0.08832 0.00011 0.09544 0.00014 0.09195 | 0.00011 | 0.09215 | 0.00011
[26] 0.08688 | 0.00011 | 0.08252 0.00009 0.09002 0.00012 0.08636 | 0.00011 | 0.08659 | 0.00011
[27] 0.10858 | 0.00066 | 0.10317 0.00046 0.11210 0.00080 0.10773 | 0.00061 | 0.10813 | 0.00063
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[28] 0.08595 | 0.00011 | 0.08163 0.00009 0.08907 0.00011 0.08543 | 0.00009 | 0.08566 | 0.00009
[29] 0.12846 | 0.00165 | 0.12210 0.00120 0.12214 0.00132 0.12719 | 0.00155 | 0.12781 | 0.00160
[30] 0.08547 | 0.00011 | 0.08118 0.00010 0.08858 0.00010 0.08496 | 0.00009 | 0.08519 | 0.00009
Table 7. Maximum likelihood and empirical Bayes estimates of reliability
function R(t) and their estimated risk
MLE EWMEL function MEL function Iogarithmic loss

cs c=-01 c=01 c=0 function

o A | D) | Re | E0n) | ROm | ) | ROw | FR)| pg | B0
[1] 0.95523 0.00215 0.95468 0.00210 0.95469 0.00210 0.95468 | 0.00210 | 0.95475 | 0.00211
[2] 0.96384 0.00291 0.96334 0.00286 0.96335 0.00286 0.96335 | 0.00286 | 0.96340 | 0.00286
[3] 0.94526 0.00143 0.94466 0.00139 0.94467 0.00139 0.94467 | 0.00139 | 0.94475 | 0.00140
[4] 0.96396 0.00292 0.96346 0.00287 0.96347 0.00287 0.96346 | 0.00287 | 0.96351 | 0.00288
[5] 0.94427 0.00137 0.94366 0.00133 0.94368 0.00133 0.94367 | 0.00133 | 0.94376 | 0.00134
[6] 0.88963 0.00070 0.88887 0.00068 0.88889 0.00068 0.88889 | 0.00068 | 0.88904 | 0.00068
[7] 0.94435 0.00163 0.94365 0.00158 0.94366 0.00158 0.94365 | 0.00158 | 0.94376 | 0.00159
[8] 0.86773 0.00060 0.86697 0.00059 0.86700 0.00059 0.86699 | 0.00059 | 0.86714 | 0.00059
[9] 0.95164 0.00196 0.95096 0.00190 0.95097 0.00190 0.95097 | 0.00190 | 0.95106 | 0.00191
[10] | 0.85979 0.00058 0.85903 0.00057 0.85905 0.00057 0.85904 | 0.00057 | 0.85920 | 0.00057
[11] | 0.91625 0.00046 0.91556 0.00045 0.91558 0.00045 0.91557 | 0.00045 | 0.91570 | 0.00045
[12] | 0.96343 0.00287 0.96293 0.00282 0.96293 0.00282 0.96293 | 0.00282 | 0.96299 | 0.00283
[13] | 0.90692 0.00040 0.90621 0.00039 0.90624 0.00039 0.90622 | 0.00039 | 0.90637 | 0.00039
[14] | 0.96371 0.00291 0.96321 0.00285 0.96322 0.00285 0.96321 | 0.00285 | 0.96326 | 0.00285
[15] | 0.90649 0.00039 0.90578 0.00039 0.90581 0.00039 0.90580 | 0.00039 | 0.90595 | 0.00039
[16] | 0.84599 0.00041 0.84524 0.00041 0.84527 0.00041 0.84525 | 0.00041 | 0.84542 | 0.00041
[17] | 0.93609 0.00135 0.93537 0.00131 0.93539 0.00131 0.93538 | 0.00131 | 0.93549 | 0.00132
[18] | 0.83598 0.00035 0.83523 0.00035 0.83526 0.00035 0.83525 | 0.00035 | 0.83541 | 0.00035
[19] | 0.95015 0.00187 0.94946 0.00182 0.94947 0.00182 0.94947 | 0.00182 | 0.94956 | 0.00182
[20] | 0.83354 0.00035 0.83279 0.00035 0.83281 0.00035 0.83280 | 0.00035 | 0.83297 | 0.00035
[21] | 0.90187 0.00038 0.90115 0.00038 0.90118 0.00038 0.90116 | 0.00038 | 0.90132 | 0.00038
[22] | 0.96187 0.00273 0.96136 0.00268 0.96137 0.00268 0.96137 | 0.00268 | 0.96142 | 0.00268
[23] | 0.89555 0.00038 0.89484 0.00038 0.89486 0.00038 0.89485 | 0.00038 | 0.89501 | 0.00038
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[24] | 0.96368 0.00290 0.96318 0.00281 0.96319 0.00281 0.96319 | 0.00281 | 0.96314 | 0.00281
[25] | 0.89485 0.00038 0.89412 0.00038 0.89415 0.00038 0.89413 | 0.00038 | 0.89429 | 0.00038
[26] | 0.83341 0.00031 0.83265 0.00031 0.83268 0.00031 0.83267 | 0.00031 | 0.83284 | 0.00031
[27] | 0.91697 0.00096 0.91622 0.00093 0.91624 0.00093 0.91623 | 0.00093 | 0.91637 | 0.00093
[28] | 0.82736 0.00031 0.82662 0.00031 0.82665 0.00031 0.82663 | 0.00031 | 0.82680 | 0.00031
[29] | 0.94845 0.00183 0.94776 0.00178 0.94776 0.00178 0.94777 | 0.00178 | 0.94786 | 0.00178
[30] | 0.82505 0.00031 0.82430 0.00031 0.82433 0.00031 0.82431 | 0.00031 | 0.82448 | 0.00031
Table 8. Maximum likelihood and empirical Bayes estimates of failure
rate function /1(t) and their estimated risks
VILE EWMEL function MEL function Iogarithm'ic loss
cs. c=-01 c=01 c=0 Function
e | O s | o) | A0 | B0 GoL | B0 GoL | el
[1] 2.29327 | 6.16460 | 2.21555 6.53985 2.21806 | 6.52639 | 2.21681 | 6.53311 | 2.31320 6.07123
[2] 1.84206 | 8.29350 | 1.76946 8.71323 1.77286 | 8.69294 | 1.77116 | 8.70306 | 1.85999 8.19177
[3] 2.82035 | 4.13596 | 2.73764 4.44650 2.73945 | 4.43838 | 2.73855 | 4.44243 | 2.84227 4.05720
[4] 1.83599 | 8.32570 | 1.76348 8.74591 1.76689 | 8.72550 | 1.76518 | 8.73568 | 1.85389 8.22391
[5] 2.87306 | 4.25871 | 2.78991 4.26642 2.79166 | 4.25871 | 2.79078 | 4.26256 | 2.89516 3.88602
[6] 3.93842 | 2.06444 | 3.83836 2.18939 3.83955 | 2.18587 | 3.83896 | 2.18763 | 3.96539 2.03743
[7] 2.75345 | 4.68848 | 2.65591 5.06926 2.65846 | 5.05659 | 2.65719 | 5.06291 | 2.77805 4.59823
[8] 4.09846 | 1.80480 | 3.99952 1.87942 4.00054 | 1.87694 | 4.00003 | 1.87818 | 4.12538 1.79092
[9] 2.48476 | 5.61601 | 2.38861 6.04559 2.39011 | 6.03763 | 2.39161 | 6.02971 | 2.50852 5.51499
[10] | 4.15094 | 1.74596 | 4.05246 1.80310 4.05343 | 1.80091 | 4.05294 | 1.80200 | 4.17781 1.73672
[11] | 4.05745 | 1.37742 | 3.96673 1.48969 3.96765 | 1.48764 | 3.96719 | 1.48867 | 4.08273 1.35047
[12] | 1.86344 | 8.18699 | 1.79059 8.60476 1.79394 | 8.58482 | 1.79227 | 8.59477 | 1.88147 8.08560
[13] | 4.40401 | 1.19429 | 4.31178 1.24173 4.31256 | 1.24048 | 4.31217 | 1.24111 | 4.42996 1.18545
[14] | 1.84902 | 8.25872 | 1.77633 8.67781 1.77972 | 8.65764 | 1.77803 | 8.66770 | 1.86697 8.15710
[15] | 4.42745 | 1.19434 | 4.33512 1.23746 4.33589 | 1.23626 | 4.33550 | 1.23686 | 4.45344 1.18672
[16] | 4.25102 | 1.28932 | 4.15331 1.31411 4.15419 | 1.31240 | 4.15375 | 1.31325 | 4.27782 1.28874
[17] | 3.03276 | 3.90225 | 2.93404 4.22933 2.93621 | 4.21934 | 2.93512 | 4.22432 | 3.05812 3.82461
[18] | 4.40779 | 1.17586 | 4.41073 1.17999 441156 | 1.17856 | 4.41114 | 1.17927 | 4.43449 1.17284
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[19] | 2.56422 | 5.36773 | 2.46760 5.78344 2.47047 | 5.76853 | 2.46904 | 5.77597 | 2.58824 5.26977
[20] | 4.43259 | 1.18689 | 4.43565 1.18381 443646 | 1.18247 | 4.43605 | 1.18314 | 4.45928 1.18384
[21] | 4.46256 | 1.15505 | 4.37033 1.18847 437109 | 1.18739 | 4.37071 | 1.18793 | 4.48855 1.15013
[22] | 1.94472 | 7.78232 | 1.87089 8.19276 1.87406 | 8.17420 | 1.87248 | 8.18346 | 1.96312 7.68218
[23] | 4.59040 | 1.15295 | 4.49789 1.15920 449859 | 1.15840 | 4.49824 | 1.15880 | 4.61657 1.15270
[24] | 1.85015 | 8.25548 | 1.77746 8.67437 1.78085 | 8.65417 | 1.77916 | 8.66424 | 1.86811 8.15392
[25] | 4.62959 | 1.17121 | 4.53691 1.17007 453760 | 1.16932 | 4.53726 | 1.16970 | 4.65583 1.17607
[26] | 4.54005 | 1.09250 | 4.44308 1.08784 444389 | 1.08651 | 4.44349 | 1.08718 | 4.56676 1.09988
[27] | 3.53445 | 2.80216 | 3.43428 3.02499 3.43588 | 3.01886 | 3.43508 | 3.02192 | 3.56090 2.75020
[28] | 4.64298 | 1.07319 | 4.54656 1.06206 454735 | 1.06083 | 4.54695 | 1.06144 | 4.66957 1.08228
[29] | 2.58748 | 5.25399 | 2.49082 5.66474 2.49393 | 5.44853 | 2.49223 | 5.65746 | 2.61156 5.15708
[30] | 4.66097 | 1.08325 | 4.56468 1.06634 456546 | 1.06517 | 4.56507 | 1.06575 | 4.68754 1.09393

6.1. SMULATION RESULTS

From the results of the Monte Carlo simulation gtpdesented in Tables 6 - 8,

the following points can be drawn:

1. For the fixed sample size n, as the effective sanspde m decreases,

estimated risks of the maximum likelihood and eiopir Bayes
estimates of reliability performances decreases, the performance of
the estimates becomes better with decreasing e#esample sizes in
terms of estimated risk.

For the fixed effective sample size m, as the sansje n increases,
estimated risks of the maximum likelihood and eiopir Bayes

estimates of reliability performances decreases, the performance of
the estimates becomes better with increasing sasipés in terms of
estimated risk.

The estimated risks of empirical Bayes estimatesaraller than that of
corresponding maximum likelihood estimates in dlé tconsidered
cases. This means that the performance of the mapBayes estimates
is better than their corresponding maximum liketidloestimates in
terms of estimated risk.

The maximum likelihood and empirical Bayes estimabé reliability
performances have the smallest estimated riskhfoconventional Type
Il censoring scheme in most of the considered ¢asesthis censoring
scheme is the most efficient one compared to attieemes.
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5. The performance of the maximum likelihood and erogir
Bayes estimates (under MEL and logarithmic loss cfions) of
parametep are very similar in nature in terms of absolutesbi

6. The empirical Bayes estimates 6f under EWMEL function are
sensitive to the value of shape paramétewhereas oR(t) and Alt)
are not.

7. For the fixed sample size n, as the effective sarsjizie m decreases, the
absolute biases of maximum likelihood and empiriBayes estimates
of A(t) decreases. Furthermore, for the fixed effecample size m, as
the fixed sample size n increases, the absolute bfamaximum
likelihood and empirical Bayes estimates\() decreases.

8. Different values of the hyper-parameter b and raissimet have been
examined, and almost the same conclusions statea a&ve observed.

7. CONCLUSION

Progressive Type Il censoring has received corsiderattention in life testing and
reliability studies since the last few years, dodhte availability of high-speed computing
resources. Under this censoring scheme, the Baygsmpirical Bayes estimates of the
reliability performances of the Rayleigh model al#ained in the closed form with respect
to EWMEL and logarithmic loss functions. A real @aset has been analyzed for an
illustrative purpose. The simulation study is cadriout to examine and compare the
performance of Maximum likelihood and empirical Bayestimates in terms of bias and
estimated risk for different sample sizes, effextbample sizes, and progressive censoring
schemes with five withdrawal patterns.

The simulation results show that the proposed aogbiBayes estimates perform better
than their corresponding maximum likelihood estiesatfor all the considered cases.

Moreover, the estimated risks of the estimatesigetller with decreasing ratio m/n.
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