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EMPIRICAL  BAYES  ESTIMATES  OF  RAYLEIGH  DISTRIBUTION 

WITH  EWMEL  AND  LOGARITHMIC  LOSS  FUNCTIONS  FOR 
CENSORED  SAMPLES  

    
** 

D. R. BAROT (1)  AND M. N. PATEL(2) 

ABSTRACT:  In this paper, empirical Bayes estimates of reliability performances are 

derived when the data are progressively Type II censored from a Rayleigh distribution. 

These estimates are derived under exponentially weighted minimum expected loss 

(EWMEL) and logarithmic loss functions, and compared with the corresponding 

maximum likelihood estimates in terms of absolute bias and estimated risk.  A real data 

set is presented to illustrate the proposed estimation method, and a Monte Carlo 

simulation study is carried out to investigate the accuracy of derived estimates. The study 

shows that the empirical Bayesian estimation outperforms the maximum likelihood 

estimation. 

 

1. INTRODUCTION 

Rayleigh  distribution  is  widely  used  to  model  events  which occur  in  different  

fields  such as medicine, social and natural sciences, communication engineering, reliability 

and life testing,  and applied statistics. Lord Rayleigh [22] invented this distribution from 

the amplitude of sound resulting from many important sources. Polovko [21] demonstrated 

the importance of this distribution in communication engineering and electro vacuum 

devices. Siddique [27] has used this distribution as a radio wave power distribution. 

Bhattacharya and Tyagi [7] applied this distribution in some clinical studies dealing with 

cancer patients. 
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The probability density and cumulative distribution functions of Rayleigh distribution 

are given, respectively, by 
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Moreover, the reliability and failure rate functions are given, respectively, by 
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Many authors have developed statistical inference procedures for Rayleigh distribution. 

For example, among others, Howlader and Hossian [14] derived the Bayes estimates for 

scale parameter and reliability function of the Rayleigh distribution in the case of Type II 

censored samples. Wu et al. [28] and Lee et al. [16] have derived the maximum likelihood 

and Bayes estimates of reliability performances of the Rayleigh lifetime model under the 

squared error loss function in the case of progressive Type II censoring.  

The empirical Bayesian approach has become quite popular in the theory and practice of 

statistics in the last three decades. This approach was first formulated by Robbins [24], and 

has been used rather extensively by several authors. For example, among others, Ali Mousa 

[1] has obtained the empirical Bayes estimates for the Burr type XII model based on Type II 

censored data. Asgharzadeh and Valiohi [4] have studied the problems of estimation and 

prediction for the proportional hazards family under progressive Type II censoring through 

empirical Bayesian approach. Rezaeian and Asgharzadeh [23] have obtained the Bayes and 

empirical Bayes estimates of scale parameter of the Gamma distribution under balanced 

loss functions. This approach has been described extensively by many authors ([9], [17], 

[19], [10]). 

However, up to now, empirical Bayes estimates of reliability performances of the 

Rayleigh model  based on EWMEL and logarithmic loss functions were not addressed 
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under progressively Type II censoring. The main aim of a paper is to obtain empirical 

Bayes estimates of the scale parameter, reliability function, and failure rate function of the 

Rayleigh model based on progressively Type II censored samples, and to compare them 

with the corresponding maximum likelihood estimates in terms of bias and posterior risk. 

The rest of the paper is organized as follows. In Section 2, a progressive Type II 

censoring scheme without replacement is discussed, and maximum likelihood estimates of 

reliability performances for the Rayleigh model under this censoring are stated. In Section 

3, Bayesian estimation of reliability performances under EWMEL and logarithmic loss 

functions is considered. In Section 4, empirical Bayes estimates of reliability performances 

are derived where the hyper-parameter is estimated using maximum likelihood approach. In 

Section 5, a real data provided by Lawness [15] is analyzed to illustrate the proposed 

estimation method. Finally, in Section 6, a Monte-Carlo simulation study is carried out to 

compare the performance of empirical Bayes estimates with the corresponding maximum 

likelihood estimates. The paper concludes in Section 7. 

2. PROGRESSIVE TYPE II CENSORING SCHEME 

Censoring is used in life testing to save time and cost. The most popular censoring 

schemes, among the various types of censoring schemes used in lifetime analysis, are Type 

I and Type II censoring schemes. These types of censoring cannot allow removal of units at 

points other than the terminal point of an experiment. However, this allowance may be 

desirable, as in the case of accidental breakage of test units where the loss of units at points 

other than the terminal point may be unavoidable. This leads us into the area of more 

general censoring scheme called progressive Type II censoring scheme. This censoring 

scheme is also useful in many practical situations where budget constraints are in place or 

there is demand for rapid testing. Statistical inference problems for various lifetime 

distributions under progressive Type II censoring have been discussed by several authors 

([2], [3], [11], [12], [20]). The interested readers may refer to the book by Balakrishnan and 

Aggarwala ([6], Chapter 1) for additional discussions on need for progressive censoring. 
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A progressive Type II censoring scheme without replacement can be described as 

follows. Consider an experiment in which n independent and identical units are placed on a 

life test at the beginning time, and the failure times of first ( )nmm <≤1   units are recorded. 

That is, instead of continuing until all n units have failed, the life test is terminated at the 

time of thm  failure. At the time of each failure occurring prior to the termination point, one 

or more surviving units are removed from the life test, that is, 1r  of  the ( )1−n  surviving 

units are withdrawn at the time of the first failure, 2r  of  the ( )12 rn −−  surviving units are 

withdrawn at the time of the second failure, and so on. Finally, at the time of the thm  

failure, the life test is terminated and all the remaining 




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 −−= ∑
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are withdrawn. When 0     ...  21 ==== mrrr  and mn = , the progressive Type II censoring 

scheme reduces to complete sampling scheme; and when 0     ...  121 ==== −mrrr  and 

mnrm −= , this scheme reduces to conventional Type II censoring scheme.   

Let ( ) ( ) ( )mxxx ≤≤≤   ...  21  be the failure times of completely observed units to fail; 

mrrr  , ... ,, 21  be the number of units withdrawn at these failure times; and 

( ) ( ) ( )( )mxxxx , ... ,, 21=  be the progressively Type II censored sample of the life test on units 

whose lifetimes have a Rayleigh distribution with the probability density function (1.1). The 

likelihood function based on x  is (see Balakrishnan and Aggarwala, [6]) 
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From (1.1), (1.2), and (2.1), the likelihood function L is found to be 
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The maximum likelihood estimates of the scale parameter θ, reliability function 

( )tR , and failure rate function ( )tλ  of the Rayleigh model based on x  (Refer 

Wu et al. [28]) are given, respectively, by 
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3. BAYES ESTIMATES OF RELIABILITY PERFORMANCES 

In this section, we consider Bayesian estimation of the scale parameter θ , reliability 

function ( )tR , and failure rate function ( )tλ  of  the Rayleigh model. Suppose that the 

unknown scale parameter θ  is the realization of a random variable, which has an inverted 

gamma prior with the probability density function 
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where b  is the unknown hyper-parameter chosen to reflect prior beliefs on θ . 

This prior distribution has advantages over many other distributions because of its 

analytical tractability, richness, and easy interpretability. The joint probability density 

function of θ  and  x  is given by 
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From Bayes’ theorem, the posterior probability distribution of θ  can be written 

as 
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In order to derive Bayes estimates, one must have to specify a loss function, which 

represents a penalty associated with each of the possible estimates. The loss function is a 

non - negative function of the distance between estimate and true value. To control the 

amount of variability, the most widely used loss function is a quadratic loss function in the 

form ( ) ( ) ,ˆ   ,ˆ 
2

1 φφφφ −= kL  where φ̂  is an estimate of φ . This loss function is symmetrical 

and gives equal importance to the losses due to overestimation and underestimation of equal 

magnitude. If k  is a function of φ , the loss function is termed as weighted quadratic loss 

function. 

 The EWMEL function can be obtained with the choice of ( ) 22
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c
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The Bayes estimate of φ  under an EWMEL function, denoted by BEφ̂ , is the value of φ̂  

that minimizes the posterior expectation of the loss function. It is 
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For 0=c , this loss function reduces to minimum expected loss (MEL) function 

with ( ) 2−= φφk , which was proposed by Tummala and Sathe [25]. 
 

Another loss function in popular use is a logarithmic loss function that places a small 

weight on estimates whose ratios to the true value are close to one, and proportionately 

more weight on estimates whose ratios to the true value are significantly different from one.  
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This loss function was introduced by Brown [8], and can be expressed as 
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The Bayes estimate of φ  under the logarithmic loss function, denoted by BLφ̂ , is 

the value of φ̂  that minimizes the posterior expectation of the loss function. It is 
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Shah and Patel [26] derived the Bayes estimates of reliability performances of 

the Rayleigh distribution under the EWMEL function based on multiply Type II 

censored data. Asgharzadeh and Valiollahi [3] obtained the empirical Bayes 

estimates of unknown parameter and reliability function of Burr distribution 

under absolute error and logarithmic loss functions based on progressively 

Type II censored data.  

 
3.1. BAYES ESTIMATES OF RELIABILITY PERFORMANCES  

UNDER THE EWMEL FUNCTION 

 
The Bayes estimate of scale parameter θ  under the EWMEL function is  
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Moreover, the Bayes estimates of reliability function ( )tR  and failure rate 

function ( )tλ  under the EWMEL function at mission time t  are, respectively,  
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3.2. BAYES ESTIMATES OF RELIABILITY PERFORMANCES UNDER 
THE LOGARITHMIC LOSS FUNCTION 

The Bayes estimate of  scale parameter θ  under the logarithmic loss function is 
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(Refer Gradshteyn and Ryzhik [13], pp. 893).   

Moreover, the Bayes estimates of reliability function ( )tR  and failure rate 

function ( )tλ  under the logarithmic loss function at mission time t  are, 

respectively, 
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4. EMPIRICAL BAYES ESTIMATES OF RELIABILITY 
PERFORMANCES 

The Bayes estimates obtained in previous Section are seen to depend on the 

hyper-parameter b  of prior distribution (3.1). As the hyper-parameter b  is 

unknown, we may use empirical Bayesian approach to get its estimate. In 

empirical Bayesian approach, we begin with the Bayes model 

( ) θ  |ix    ~  ( ) , , ... 2, ,1    , | mixf =θ  

                                   b  |θ    ~  ( )b|θπ . 

The marginal distribution of ( ) ( ) ( )( )mxxxx ,  ...  ,, 21= , say ( )bxm | ,  can be 

obtained by 
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Based on ( )bxm | , we can obtain an estimate b̂  of b . It is most common to 

take b̂  to be the maximum likelihood estimate of b , but it is not essential. 
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Using the approximation of )(ln bΓ  that works good even for small values of b  

(see Gradshteyn and Ryzhik, [13], pp. 888, 8.341(2)) in (4.3), we differentiate it 

with respect to b . Equalizing the obtained expression to zero, the likelihood 

equation is found to be   
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The equation (4.4) has no closed form solution. Therefore, an estimate b� for b is 

obtained by solving the equation via numerical method. According to Lehmann 

and Casella [17], the empirical Bayes estimates of reliability performance of the 

Rayleigh model can be obtained by substituting b̂  for b  in the Bayes estimates. 

By substituting b� for b in (3.3), (3.4) and (3.5), the empirical Bayes estimates of 
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Similarly, the empirical Bayes estimates of θ , ( )tR  and ( )tλ  under the 
logarithmic loss function can be obtained, respectively, as 
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5. NUMERICAL EXAMPLE (REAL DATA) 

In this section, a real data set reported in Lawless ([15], pp. 228) is analyzed to 

illustrate the proposed estimation method described in the preceding Section. 

Leiblein and Zelen [18] originally discussed this data set during the endurance 

test of 23 deep groove ball bearings. The failure times (in thousands of million 

revolutions) were: 

0.01788    0.02892    0.03300    0.04152    0.04212    0.04560    0.04848    

0.05184    0.05196    0.05412    0.05556    0.06780    0.06864    0.06864    

0.06888    0.08412    0.09312    0.09864    0.10512    0.10584    0.12792    

0.12804      0.17340 

We have checked the validity of the Rayleigh model based on the estimated 

value (moment estimate) of parameter 0525.0=θ , using the Kolmogorov-

Smirnov (KS) test. It is observed that the value of KS Statistic is 0.09463 with 

the corresponding tabulated value 0.275. This indicates that the Rayleigh model 

is adequate for the given data. For 0525.0=θ , the reliability ( )tR  and failure 

rate ( )tλ  (at t = 0.04 ) are respectively 0.74807 and 14.51247. 

As a numerical illustration, we have generated an artificial progressive Type II 

censored sample of size 12=m  and conventional Type II censored sample of 
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size 5=m  from the given data set. For these two cases, the failure times along 

with the applied censoring schemes are reported in Tables 1 and 3. The 

maximum likelihood estimates and empirical Bayes estimates under the 

EWMEL, MEL, and logarithmic loss functions were computed for both the 

censored samples and reported in Tables 2 and 4. 
 

Table 1. Progressively Type II censored sample 
 

i  1 2 3 4 5 6 

( )ix
 

0.01788 0.02892 0.03300 0.04560 0.05184 0.05196 

ir
 

0 1 2 0 2 0 

i  7 8 9 10 11 12 

( )ix
 

0.05556 0.06864 0.09312 0.10512 0.10584 0.12792 

ir
 

3 0 0 1 0 2 

 

Table 2. Maximum likelihood and empirical Bayes estimates of θ , ( )tR   

and ( )tλ   for progressively Type II Censored  sample 
 
 

Parameter MLE 
EWMEL function MEL function 

logarithmic Loss Function 5.0 −=c  5.0=c  0=c  

θ  0.07252 0.05389 0.08684 0.07227 0.07237 

( )tR  0.85889 0.85789 0.85814 0.85802 0.85859 

( )tλ  7.60550 7.49753 7.49883 7.49818 7.63694 

 

Table 3.  Conventional Type II censored sample 
 

i  1 2 3 4 5 

( )ix
 

0.01788 0.02892 0.03300 0.04152 0.04212 

ir
 

0 0 0 0 18 
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Table 4. Maximum likelihood and empirical Bayes estimates of θ , ( )tR  and ( )tλ  

for conventional Type II censored sample 
 

Parameter MLE 
EWMEL function MEL function 

logarithmic Loss Function 5.0 −=c  5.0=c  0=c  
θ  0.06138 0.04407 0.07453 0.06122 0.06128 

( )tR
 

0.80869 0.80751 0.80792 0.80772 0.80852 

( )tλ
 

10.61662 10.49767 10.49838 10.49803 10.64937 

 

From Tables 2 and 4, it is observed that (i) The empirical Bayes estimate of scale 

parameter θ  under the EWMEL function is sensitive to the value of shape parameter c  

whereas of reliability function ( )tR and failure rate function ( )tλ  are not. (ii) When the 

negative (positive) value of shape parameter c  tends to zero from the left (right) side, the 

empirical Bayes estimate of scale parameter θ  the EWMEL function get very closer to its 

maximum likelihood estimate. (iii) The empirical Bayes estimate of scale parameter under 

the EWMEL function get very closer to the corresponding maximum likelihood estimates. 

6. SIMULATION STUDY 

In this section, an extensive Monte Carlo simulation study is conducted to 

compare the performance of proposed Bayes estimates with the maximum 

likelihood estimates in terms of absolute bias and estimated risk for different 

sample sizes, effective sample sizes, shape parameter values, and censoring 

schemes with five withdrawal patterns. 
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The maximum likelihood and empirical Bayes estimates of reliability 
performances are computed according to the following steps: 

1. For the given value of prior parameter 50=b , we have generated 
09216.0=θ  from (3.1) and then by using this generated value of θ , 

( ) 91012.0=tR  and ( ) 70907.4=tλ  (at 04.0=t ) are obtained from 
(1.3). 

2. For a particular sample size (n), effective sample size (m), and 
censoring scheme ( )mrrrr , ... ,, 21= , we have generated a progressive 

Type II censored sample ( )mUUUU  , ... ,, 21=  from the uniform 

distribution, and then ( ) ( ) ( )( )mxxxx , ... ,, 21=   from the Rayleigh 

distribution according to the algorithm given in Balakrishnan and 

Sandhu [5], where ( ) miUx ii  , ... ,3,2,1  ,1ln2 2
)( =−−= θ . 

3. For different values of c , we have computed the maximum likelihood 
and empirical Bayes estimates  of  θ , ( )tR , and ( )tλ  (at 04.0=t ) using 
the results outlined in Sections 2 and 4.  

As one data set does not help to clarify the performance of an estimate, the 

average estimates, absolute biases, and estimated risks of maximum likelihood 

and empirical Bayes estimates were computed on the basis of 1000 simulated 

data sets according to the following formulae: 

Average estimate = 
1000

ˆ 
1000

1
∑

=i
iq
, 

Absolute bias of an estimate = ,  estimate Average q−  

Estimated risk =
( )
1000

ˆ
1000

1

2
∑

=
−

i
i qq

. 

Here, q̂  is an estimate of q . All the calculations have been done through 

computer software Microsoft Visual Studio 2008.  
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Table 5 represents the different cases of sample sizes, effective sample sizes, 

and censoring schemes. The maximum likelihood and empirical Bayes 

estimates of reliability performances, and the corresponding estimated risks are 

reported, respectively, in Tables 6 - 8. 

Table 5. Progressively Type II Censoring Schemes (C.S.) applied in the simulation study  
 

n m C.S. No. ( )mrrrr , ... ,, 21=
 

20 

16 

[1] 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 

[2] 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

[3] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2 

[4] 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

[5] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4 

8 

[6] 3, 3, 0, 0, 0, 0, 3, 3 

[7] 4, 4, 4, 0, 0, 0, 0, 0 

[8] 0, 0, 0, 0, 0, 4, 4, 4 

[9] 12, 0, 0, 0, 0, 0, 0, 0 

[10] 0, 0, 0, 0, 0, 0, 0, 12 

50 
 

16 

[11] 9, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 9 

[12] 17, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

[13] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 17  

[14] 34, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

[15] 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 34 

8 

[16] 11, 10, 0, 0, 0, 0, 10, 11 

[17] 14, 14, 14, 0, 0, 0, 0, 0 

[18] 0, 0, 0, 0, 0, 14, 14, 14 

[19] 42, 0, 0, 0, 0, 0, 0, 0 

[20] 0, 0, 0, 0, 0, 0, 0, 42 

100 
 

16 

[21] 21, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 21 

[22] 21, 21, 21, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

[23] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  21, 21, 21, 21 

[24] 84, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

[25] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 84 

8 

[26] 23, 23, 0, 0, 0, 0, 23, 23 

[27] 23, 23, 23, 23, 0, 0, 0, 0 

[28] 0, 0, 0, 0,  23, 23, 23, 23 

[29] 92, 0, 0, 0, 0, 0, 0, 0 

[30] 0, 0, 0, 0, 0, 0, 0, 92 
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Table 6.  Maximum likelihood and empirical Bayes estimate of scale 
parameter θ  and their estimated risk 

\ 
 
 

C.S. 
No. 

MLE 
EWMEL function  MEL function logarithmic loss 

function 1.0 −=c  1.0 =c  0=c  

MLθ̂  )ˆ( MLER θ
 

EBEθ̂  )ˆ( EBEER θ
 

EBGθ̂  )ˆ( EBEER θ
 

EBGθ̂  )ˆ( EBEER θ
 

EBLθ̂  )ˆ( EBLER θ
 

[1] 0.13471 0.00202 0.12930 0.00158 0.13769 0.00228 0.13356 0.00192 0.13410 0.00197 

[2] 0.14836 0.00324 0.14259 0.00262 0.15119 0.00357 0.14695 0.00308 0.14763 0.00316 

[3] 0.12195 0.00111 0.11689 0.00082 0.12503 0.00130 0.12103 0.00105 0.12145 0.00107 

[4] 0.14858 0.00327 0.14280 0.00264 0.15142 0.00359 0.14716 0.00311 0.14785 0.00318 

[5] 0.12084 0.00104 0.11581 0.00076 0.12393 0.00102 0.11994 0.00098 0.12035 0.00101 

[6] 0.09931 0.00038 0.09434 0.00027 0.10271 0.00047 0.09862 0.00035 0.09893 0.00037 

[7] 0.12469 0.00142 0.11852 0.00102 0.12831 0.00167 0.12351 0.00133 0.12409 0.00138 

[8] 0.09419 0.00028 0.08947 0.00021 0.09749 0.00035 0.09356 0.00026 0.09385 0.00027 

[9] 0.13101 0.00182 0.12454 0.00133 0.12968 0.00171 0.13463 0.00212 0.13034 0.00176 

[10] 0.09247 0.00025 0.08783 0.00020 0.09573 0.00031 0.09187 0.00024 0.09214 0.00024 

[11] 0.10053 0.00022 0.09613 0.00021 0.10362 0.00029 0.09994 0.00021 0.10020 0.00022 

[12] 0.14768 0.00318 0.14192 0.00257 0.15052 0.00350 0.14629 0.00303 0.14696 0.00310 

[13] 0.09602 0.00015 0.09178 0.00012 0.09908 0.00019 0.09550 0.00014 0.09572 0.00015 

[14] 0.14814 0.00322 0.14237 0.00261 0.15098 0.00355 0.14673 0.00306 0.14741 0.00314 

[15] 0.09577 0.00015 0.09153 0.00012 0.09882 0.00019 0.09525 0.00014 0.09547 0.00014 

[16] 0.08948 0.00021 0.08500 0.00018 0.09269 0.00026 0.08892 0.00020 0.08917 0.00021 

[17] 0.11876 0.00110 0.11286 0.00078 0.12235 0.00131 0.11770 0.00103 0.11821 0.00106 

[18] 0.08751 0.00012 0.08312 0.00010 0.09067 0.00012 0.08697 0.00013 0.08721 0.00011 

[19] 0.12926 0.00170 0.12287 0.00124 0.12288 0.00158 0.12797 0.00159 0.12861 0.00165 

[20] 0.08696 0.00012 0.08260 0.00011 0.09010 0.00011 0.08643 0.00012 0.08667 0.00012 

[21] 0.09476 0.00014 0.09057 0.00012 0.09780 0.00017 0.09426 0.00013 0.09447 0.00014 

[22] 0.14504 0.00293 0.13936 0.00235 0.14792 0.00324 0.14370 0.00279 0.14435 0.00286 

[23] 0.09282 0.00012 0.08870 0.00011 0.09584 0.00015 0.09234 0.00011 0.09254 0.00012 

[24] 0.14814 0.00321 0.14137 0.00259 0.15097 0.00355 0.14473 0.00301 0.14541 0.00304 

[25] 0.09243 0.00012 0.08832 0.00011 0.09544 0.00014 0.09195 0.00011 0.09215 0.00011 

[26] 0.08688 0.00011 0.08252 0.00009 0.09002 0.00012 0.08636 0.00011 0.08659 0.00011 

[27] 0.10858 0.00066 0.10317 0.00046 0.11210 0.00080 0.10773 0.00061 0.10813 0.00063 
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[28] 0.08595 0.00011 0.08163 0.00009 0.08907 0.00011 0.08543 0.00009 0.08566 0.00009 

[29] 0.12846 0.00165 0.12210 0.00120 0.12214 0.00132 0.12719 0.00155 0.12781 0.00160 

[30] 0.08547 0.00011 0.08118 0.00010 0.08858 0.00010 0.08496 0.00009 0.08519 0.00009 

 

 
Table 7.  Maximum likelihood and empirical Bayes estimates of reliability  

function ( )tR  and their estimated risk 
 

C.S
. 

No. 

MLE 
EWMEL function MEL function logarithmic loss 

function 1.0 −=c  1.0 =c  0=c  

( )MLtR̂  ( )( )MLtRER ˆ  ( )EBEtR̂  ( )( )EBEtRER ˆ  ( )EBEtR̂  ( )( )EBEtRER ˆ  ( )EBEtR̂  ( )( )EBEtRER ˆ

 
( )EBLtR̂  ( )( )EBLtRER ˆ

 

[1] 0.95523 0.00215 0.95468 0.00210 0.95469 0.00210 0.95468 0.00210 0.95475 0.00211 

[2] 0.96384 0.00291 0.96334 0.00286 0.96335 0.00286 0.96335 0.00286 0.96340 0.00286 

[3] 0.94526 0.00143 0.94466 0.00139 0.94467 0.00139 0.94467 0.00139 0.94475 0.00140 

[4] 0.96396 0.00292 0.96346 0.00287 0.96347 0.00287 0.96346 0.00287 0.96351 0.00288 

[5] 0.94427 0.00137 0.94366 0.00133 0.94368 0.00133 0.94367 0.00133 0.94376 0.00134 

[6] 0.88963 0.00070 0.88887 0.00068 0.88889 0.00068 0.88889 0.00068 0.88904 0.00068 

[7] 0.94435 0.00163 0.94365 0.00158 0.94366 0.00158 0.94365 0.00158 0.94376 0.00159 

[8] 0.86773 0.00060 0.86697 0.00059 0.86700 0.00059 0.86699 0.00059 0.86714 0.00059 

[9] 0.95164 0.00196 0.95096 0.00190 0.95097 0.00190 0.95097 0.00190 0.95106 0.00191 

[10] 0.85979 0.00058 0.85903 0.00057 0.85905 0.00057 0.85904 0.00057 0.85920 0.00057 

[11] 0.91625 0.00046 0.91556 0.00045 0.91558 0.00045 0.91557 0.00045 0.91570 0.00045 

[12] 0.96343 0.00287 0.96293 0.00282 0.96293 0.00282 0.96293 0.00282 0.96299 0.00283 

[13] 0.90692 0.00040 0.90621 0.00039 0.90624 0.00039 0.90622 0.00039 0.90637 0.00039 

[14] 0.96371 0.00291 0.96321 0.00285 0.96322 0.00285 0.96321 0.00285 0.96326 0.00285 

[15] 0.90649 0.00039 0.90578 0.00039 0.90581 0.00039 0.90580 0.00039 0.90595 0.00039 

[16] 0.84599 0.00041 0.84524 0.00041 0.84527 0.00041 0.84525 0.00041 0.84542 0.00041 

[17] 0.93609 0.00135 0.93537 0.00131 0.93539 0.00131 0.93538 0.00131 0.93549 0.00132 

[18] 0.83598 0.00035 0.83523 0.00035 0.83526 0.00035 0.83525 0.00035 0.83541 0.00035 

[19] 0.95015 0.00187 0.94946 0.00182 0.94947 0.00182 0.94947 0.00182 0.94956 0.00182 

[20] 0.83354 0.00035 0.83279 0.00035 0.83281 0.00035 0.83280 0.00035 0.83297 0.00035 

[21] 0.90187 0.00038 0.90115 0.00038 0.90118 0.00038 0.90116 0.00038 0.90132 0.00038 

[22] 0.96187 0.00273 0.96136 0.00268 0.96137 0.00268 0.96137 0.00268 0.96142 0.00268 

[23] 0.89555 0.00038 0.89484 0.00038 0.89486 0.00038 0.89485 0.00038 0.89501 0.00038 
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[24] 0.96368 0.00290 0.96318 0.00281 0.96319 0.00281 0.96319 0.00281 0.96314 0.00281 

[25] 0.89485 0.00038 0.89412 0.00038 0.89415 0.00038 0.89413 0.00038 0.89429 0.00038 

[26] 0.83341 0.00031 0.83265 0.00031 0.83268 0.00031 0.83267 0.00031 0.83284 0.00031 

[27] 0.91697 0.00096 0.91622 0.00093 0.91624 0.00093 0.91623 0.00093 0.91637 0.00093 

[28] 0.82736 0.00031 0.82662 0.00031 0.82665 0.00031 0.82663 0.00031 0.82680 0.00031 

[29] 0.94845 0.00183 0.94776 0.00178 0.94776 0.00178 0.94777 0.00178 0.94786 0.00178 

[30] 0.82505 0.00031 0.82430 0.00031 0.82433 0.00031 0.82431 0.00031 0.82448 0.00031 

 

 

Table  8.  Maximum likelihood and empirical Bayes estimates of failure  

rate function ( )tλ  and their estimated risks 
 

C.S. 
No. 

MLE 
EWMEL function MEL function logarithmic loss 

Function 1.0 −=c  1.0 =c  0=c  

( )MLtλ̂  
( )( )MLtER λ̂
 

( )EBEtλ̂  
( )( )EBEtER λ̂  ( )EBEtλ̂  

( )( )EBEtER λ̂
 

( )EBEtλ̂  
( )( )EBEtER λ̂
 

( )EBLtλ̂  ( )( )EBLtER λ̂  

[1] 2.29327 6.16460 2.21555 6.53985 2.21806 6.52639 2.21681 6.53311 2.31320 6.07123 

[2] 1.84206 8.29350 1.76946 8.71323 1.77286 8.69294 1.77116 8.70306 1.85999 8.19177 

[3] 2.82035 4.13596 2.73764 4.44650 2.73945 4.43838 2.73855 4.44243 2.84227 4.05720 

[4] 1.83599 8.32570 1.76348 8.74591 1.76689 8.72550 1.76518 8.73568 1.85389 8.22391 

[5] 2.87306 4.25871 2.78991 4.26642 2.79166 4.25871 2.79078 4.26256 2.89516 3.88602 

[6] 3.93842 2.06444 3.83836 2.18939 3.83955 2.18587 3.83896 2.18763 3.96539 2.03743 

[7] 2.75345 4.68848 2.65591 5.06926 2.65846 5.05659 2.65719 5.06291 2.77805 4.59823 

[8] 4.09846 1.80480 3.99952 1.87942 4.00054 1.87694 4.00003 1.87818 4.12538 1.79092 

[9] 2.48476 5.61601 2.38861 6.04559 2.39011 6.03763 2.39161 6.02971 2.50852 5.51499 

[10] 4.15094 1.74596 4.05246 1.80310 4.05343 1.80091 4.05294 1.80200 4.17781 1.73672 

[11] 4.05745 1.37742 3.96673 1.48969 3.96765 1.48764 3.96719 1.48867 4.08273 1.35047 

[12] 1.86344 8.18699 1.79059 8.60476 1.79394 8.58482 1.79227 8.59477 1.88147 8.08560 

[13] 4.40401 1.19429 4.31178 1.24173 4.31256 1.24048 4.31217 1.24111 4.42996 1.18545 

[14] 1.84902 8.25872 1.77633 8.67781 1.77972 8.65764 1.77803 8.66770 1.86697 8.15710 

[15] 4.42745 1.19434 4.33512 1.23746 4.33589 1.23626 4.33550 1.23686 4.45344 1.18672 

[16] 4.25102 1.28932 4.15331 1.31411 4.15419 1.31240 4.15375 1.31325 4.27782 1.28874 

[17] 3.03276 3.90225 2.93404 4.22933 2.93621 4.21934 2.93512 4.22432 3.05812 3.82461 

[18] 4.40779 1.17586 4.41073 1.17999 4.41156 1.17856 4.41114 1.17927 4.43449 1.17284 
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[19] 2.56422 5.36773 2.46760 5.78344 2.47047 5.76853 2.46904 5.77597 2.58824 5.26977 

[20] 4.43259 1.18689 4.43565 1.18381 4.43646 1.18247 4.43605 1.18314 4.45928 1.18384 

[21] 4.46256 1.15505 4.37033 1.18847 4.37109 1.18739 4.37071 1.18793 4.48855 1.15013 

[22] 1.94472 7.78232 1.87089 8.19276 1.87406 8.17420 1.87248 8.18346 1.96312 7.68218 

[23] 4.59040 1.15295 4.49789 1.15920 4.49859 1.15840 4.49824 1.15880 4.61657 1.15270 

[24] 1.85015 8.25548 1.77746 8.67437 1.78085 8.65417 1.77916 8.66424 1.86811 8.15392 

[25] 4.62959 1.17121 4.53691 1.17007 4.53760 1.16932 4.53726 1.16970 4.65583 1.17607 

[26] 4.54005 1.09250 4.44308 1.08784 4.44389 1.08651 4.44349 1.08718 4.56676 1.09988 

[27] 3.53445 2.80216 3.43428 3.02499 3.43588 3.01886 3.43508 3.02192 3.56090 2.75020 

[28] 4.64298 1.07319 4.54656 1.06206 4.54735 1.06083 4.54695 1.06144 4.66957 1.08228 

[29] 2.58748 5.25399 2.49082 5.66474 2.49393 5.44853 2.49223 5.65746 2.61156 5.15708 

[30] 4.66097 1.08325 4.56468 1.06634 4.56546 1.06517 4.56507 1.06575 4.68754 1.09393 

 

6.1. SIMULATION RESULTS 

From the results of the Monte Carlo simulation study presented in Tables 6 - 8, 

the following points can be drawn: 

1. For the fixed sample size n, as the effective sample size m decreases, 
estimated risks of the maximum likelihood and empirical Bayes 
estimates of reliability performances decreases, i.e., the performance of 
the estimates becomes better with decreasing effective sample sizes in 
terms of estimated risk. 

2. For the fixed effective sample size m, as the sample size n increases, 
estimated risks of the maximum likelihood and empirical Bayes 
estimates of reliability performances decreases, i.e., the performance of 
the estimates becomes better with increasing sample sizes in terms of 
estimated risk. 

3. The estimated risks of empirical Bayes estimates are smaller than that of 
corresponding maximum likelihood estimates in all the considered 
cases. This means that the performance of the empirical Bayes estimates 
is better than their corresponding maximum likelihood estimates in 
terms of estimated risk. 

4. The maximum likelihood and empirical Bayes estimates of reliability 
performances have the smallest estimated risk for the conventional Type 
II censoring scheme in most of the considered cases, i.e., this censoring 
scheme is the most efficient one compared to other schemes. 
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5. The performance of the maximum likelihood and empirical 
Bayes estimates (under MEL and logarithmic loss functions) of 
parameter θ are very similar in nature in terms of absolute bias. 

6. The empirical Bayes estimates of θ  under EWMEL function are 
sensitive to the value of shape parameter c , whereas of ( )tR  and ( )tλ  
are not. 

7. For the fixed sample size n, as the effective sample size m decreases, the 
absolute biases of maximum likelihood and empirical Bayes estimates 
of λ(t) decreases. Furthermore, for the fixed effective sample size m, as 
the fixed sample size n increases, the absolute bias of maximum 
likelihood and empirical Bayes estimates of λ(t) decreases. 

8. Different values of the hyper-parameter b and mission time t  have been 
examined, and almost the same conclusions stated above are observed. 
 

7. CONCLUSION 

Progressive Type II censoring has received considerable attention in life testing and 

reliability studies since the last few years, due to the availability of high-speed computing 

resources. Under this censoring scheme, the Bayes and empirical Bayes estimates of the 

reliability performances of the Rayleigh model are obtained in the closed form with respect 

to EWMEL and logarithmic loss functions. A real data set has been analyzed for an 

illustrative purpose. The simulation study is carried out to examine and compare the 

performance of Maximum likelihood and empirical Bayes estimates in terms of bias and 

estimated risk for different sample sizes, effective sample sizes, and progressive censoring 

schemes with five withdrawal patterns. 

The simulation results show that the proposed empirical Bayes estimates perform better 

than their corresponding maximum likelihood estimates for all the considered cases. 

Moreover, the estimated risks of the estimates get smaller with decreasing ratio m/n.  
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