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BAER GAMMA RINGS WITH INVOLUTIONS

A.C. PAUL (1) AND MD. SABUR UDDIN (2)

Abstract. The concept of involution in Γ-rings is introduced and with the help

of involutions, we obtain some characterizations of Baer Γ-rings.

1. Introduction

As a generalization of rings, the concept of Γ-rings was first introduced by N.

Nobusawa [6]. After words Barnes [1] generalized the notion of Nobusawa’s Γ-rings

and gave a new definition of a Γ-ring. Now a days, Γ-rings means the Γ-rings in the

sense of Barnes [1] where other Γ-rings are known as N -rings i.e., gamma rings in

the sense of Nobusawa. Many Mathematicians worked on Γ-rings and obtained some

fruitful results that are a generalization of many classical ring theories. In the Book

” Rings with operators ” Kaplansky [3] worked on Baer rings and obtained various

results relating to involution and Baer rings. Paul and Sabur [9] worked on Lie and

Jordan structures in simple Γ-rings and generalized some results of classical rings

into Γ-rings. Paul and Sabur [10] also worked on Baer Gamma rings and obtained

some characterizations of this Γ-ring.

In this paper, we introduce the notion of an involution in Γ-rings and generalize
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some results of classical Baer rings into gamma Baer rings with the help of the new

concept of an involution. In [10], an example of a Baer gamma ring is given

2. Preliminaries

Definition 2.1. Gamma Ring: Let M and Γ be two additive abelian groups.

Suppose that there is a mapping from M ×Γ×M → M ( sending (x, α, y) into xαy)

such that

(i)(x + y)αz = xαz + yαz, x(α + β)z = xαz + xβz, xα(y + z) = xαy + xαz

(ii)(xαy)βz = xα(yβz), where x, y, z ∈ M and α, β ∈ Γ. Then M is called a Γ-ring

in the sense of Barnes [1].

Definition 2.2. Sub Γ-ring: Let M be a Γ-ring. A non-empty subset S of a Γ-ring

M is a sub Γ-ring of M if a, b ∈ S, then a− b ∈ S and aγb ∈ S, ∀γ ∈ Γ.

Definition 2.3. Ideal of Γ-rings: A subset A of the Γ-ring M is a left (right)

ideal of M if A is an additive subgroup of M and MΓA = {cαa : c ∈ M,α ∈ Γ, a ∈
A}(AΓM) is contained in A. If A is both a left and a right ideal of M , then we say

that A is an ideal or two-sided ideal of M . If A and B are both left (respectively

right or two-sided) ideals of M , then A + B = {a + b : a ∈ A, b ∈ B} is clearly a

left (respectively right or two-sided) ideal, called the sum of A and B. We can say

every finite sum of left (respectively right or two-sided) ideal of a Γ-ring is also a left

(respectively right or two-sided) ideal.

It is clear that the intersection of any number of left (respectively right or two-

sided) ideal of M is also a left (respectively right or two-sided) ideal of M . If A

is a left ideal of M , B is a right ideal of M and S is any non-empty subset of M ,

then the set, AΓS = {∑n
i=1 aiγsi : ai ∈ A, γ ∈ Γ, si ∈ S, n is a positive integer} is a

left ideal of M and SΓB is a right ideal of M . AΓB is a two-sided ideal of M . If

a ∈ M , then the principal ideal generated by a denoted by < a > is the intersection
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of all ideals containing a and is the set of all finite sum of elements of the form

na + xαa + aβy + uγaµv, where n is an integer, x, y, u, v are elements of M and

α, β, γ, µ are elements of Γ. This is the smallest ideal generated by a. Let a ∈ M .

The smallest left (right) ideal generated by a is called the principal left (right) ideal

< a | (| a >).

Definition 2.4. Unity element of a Γ-ring: Let M be a Γ-ring. M is called a

Γ-ring with unity if there exists an element e ∈ M such that aγe = eγa = a for all

a ∈ M and some γ ∈ Γ. We shall frequently denote e by 1 and when M is a Γ-ring

with unity, we shall often write 1 ∈ M . Note that not all Γ-rings have an unity.

When a Γ-ring has an unity, then the unity is unique.

Definition 2.5. Nilpotent element: Let M be a Γ-ring. An element x of M is

called nilpotent if for some γ ∈ Γ, there exists a positive integer n = n(γ) such that

(xγ)nx = (xγxγ...γxγ)x = 0.

Definition 2.6. Nil ideal: An ideal A of a Γ-ring M is a nil ideal if every element

of A is nilpotent that is, for all x ∈ A and some γ ∈ Γ, (xγ)nx = (xγxγ...γxγ)x = 0,

where n depends on the particular element x of A.

Definition 2.7. Nilpotent ideal: An ideal A of a Γ-ring M is called nilpotent if

(Aγ)nA = (AγAγ...γAγ)A = 0, where nis the least positive integer.

Definition 2.8. Annihilator of a subset of a Γ-ring: Let M be a Γ-ring. Let

S be a subset of M . Then the left annihilator l(S) of S is defined by L(S) = {m ∈
M : mγS = 0 for every γ ∈ Γ}, whereas the right annihilator r(S) is defined by

R(S) = {m ∈ M : Sγm = 0 for every γ ∈ Γ}.

Definition 2.9. Idempotent element: Let M be a Γ-ring. An element e of M is

called idempotent if eγe = e 6= 0 for some γ ∈ Γ.
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Definition 2.10. Centre of a Γ-ring: Let M be Γ-ring. The centre of M , written

as Z, is the set of those elements in M that commute with every element in M , that

is, Z = {m ∈ M : mγx = xγm for all x ∈ M and γ ∈ Γ}.

Definition 2.11. ΓM-homomorphism: Let M be a Γ-ring. Let A and B be the

left ideals of M . A ΓM -homomorphism is a function φ : A → B such that

(i)φ(x + y) = φ(x) + φ(y) for all x, y ∈ A

(ii)(mγx) = mγ(x) for all x ∈ A,m ∈ M and γ ∈ Γ.

In case, A and B are right ideals, then (i) and (ii) become

(i)′ φ(x + y) = φ(x) + φ(y) for all x, y ∈ A

(ii)′ φ(xγm) = φ(x)γm for all x ∈ A,m ∈ M and γ ∈ Γ.

Definition 2.12. ΓM-isomorphism: Let M be a Γ-ring. Let A and B be two left

ideals of M . Let φ : A → B be a ΓM -homomorphism from A into B. We call φ , a

ΓM -isomorphism, if φ is one-one and onto. We say that A and B are ΓM -isomorphic

and we write A ∼= B.

Definition 2.13. Baer Γ-ring: A Γ-ring M is called a Baer Γ-ring if the right

annihilator of every non-empty subset of M is generated by an idempotent element

of M .

3. Baer Gamma Rings with Involutions

Definition 3.1. Let M be a Γ-ring. A mapping I : M → M is called an involution

if (i)I(a + b) = I(a) + I(b), (ii)I(ab) = I(b)αI(a) and (iii)I2(a) = a, for all a, b ∈
M,α ∈ Γ.

Example 3.1. Let R be an associative ring with 1 having an involution * . Let

M = M1.2(R) and Γ = {

 n1.1

n2.1


 : n1, n2 ∈ Z }. Then M is a Γ-ring. Define

I : M → M by I((a, b)) = (a∗, b∗). Then it is clear that I is an involution on M .
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We know that if e is the idempotent elements of a Γ-ring M , then MΓe and eΓM

are respectively left ideal and right ideal of M , which is shown in [7].

Theorem 3.1. Let e and f be idempotents in a Γ-ring M . The following are equiv-

alent (1) eΓM, fΓM are ΓM-isomorphism

(2) MΓe,MΓf are ΓM-isomorphism

(3) There exist elements x ∈ eΓMΓf, y ∈ fΓMΓe with xαy = e, yαx = f, α ∈ Γ .

Proof. Since condition (3) is left-right symmetric it will suffice to identify (2) and

(3). (3) implies (2). Map MΓe to MΓf by right multiplication by x, MΓf to MΓe

by right multiplication by y. The product both ways to clearly the identity. (2)

implies (3). Let φ be the map from MΓe to MΓf and set EMAFK.BIB.Zelφ(e) = x.

Then since φ is a ΓM -homomorphism map we have φ(a) = φ(aαe) = aαφ(e) = aαx

for any in a ∈ MΓe and α ∈ Γ i.e., φ is a right multiplication by x. In particular

x = φ(e) = eαx and x ∈ eΓMΓf . Similarly the map from MΓfΓ to MΓe is right

multiplication by an element y ∈ fΓMΓe. Evidently xαy = e, yαx = f, α ∈ Γ. ¤

Definition 3.2. Idempotents e, f in a Γ-ring M are equivalent, written e ∼ f if

they satisfy (and hence all) of the conditions in theorem 3.3. Note that a Baer Γ-ring

is finite if and only whenever e ∼ 1, then e = 1.

Definition 3.3. An element of a Γ-ring M with involution I is called self-adjoint

if I(x) = I. A projection is a self-adjoint idempotent. A subset S is self-adjoint if

x ∈ S implies I(x) ∈ S. A Baer Γ-ring with involution I is a Γ-ring with involution

I such that for any subset S, R(S) = eΓM with e a projection.

By applying the involution we get that in a Baer Γ-ring with involution I the

left annihilator of any subset is like wise generated by a projection. In particular,

a Baer Γ-ring with involution I is a Baer Γ-ring. The projection of e generating

eΓM is unique. For if eΓM = fΓM with e and f projections, we find e = fαe, α ∈
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Γ, f = eαf = I(eαf) = I(f)αI(e) = fαe = I(fαe) = I(e) = e. Because of this

uniqueness, we can call e the right-annihilating projection of the subset S of M .

Even more useful is g = 1 − e which we shall call the right projection of S. Then

sαg = sα(1 − e) = sα1 − sαe = s for all s ∈ S and α ∈ Γ is the smallest such

projection. If f is an idempotent in a Baer Γ-ring with involution I and e is its right

projection, we readily see that e ∼ f .

Theorem 3.2. Let e and f be idempotents in a Baer Γ-ring with involution I, f ∈
eΓMΓe. Let g and h be the right projections of e and f . Then e− f ∼ g − h.

Proof. Noting that g ≥ h, eγg = e, gγe = g, fγh = f, hγf = f, γ ∈ Γ , we verify

directly that e− eγh and g− gγf implement an equivalence of e− g and f − h. ¤

Definition 3.4. For projection e, f in a Γ-ring with involution I write e ≤ f in

casee = eγf, γ ∈ Γ (which is equivalent to e = fγe ). One readily sees that this

relation makes the projections into a partially ordered set.

Theorem 3.3. The projections in a Baer Γ-ring with involution I form a complete

lattice.

Proof. Given a family {ei} of projections, let e be their right projection. One readily

sees that e is the least upper bound (LUB) of ei’s. Dually, there is a greatest lower

bound (GLB). Hence the theorem is proved. ¤

Definition 3.5. Let M be a Baer Γ-ring with involution I. B is a sub Γ-ring of M .

We say that B is a Baer sub Γ-ring with involution I of M if

(1) B is a self adjoint sub Γ-ring (2) If S ⊂ B and e is the right annihilating projection

of S(inM), then e ∈ B .

If B is a Baer sub Γ-ring with involution I, then B is itself obviously a Baer Γ-ring

with involution I. Its unity element is the same as that of M (take the annihilator of
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0). The lattice of projections in B is a complete sub lattice of that of M . If M is a

Baer Γ-ring with involution I and e is a projection in M , the projections of eΓMΓe

are the projections of f ∈ M with f ≤ e. It follows easily that eΓMΓe is a Baer

Γ-ring with involution I and that a family of projections in eΓMΓe has the same

LUB whatever computed in eΓMΓe or in M .

Theorem 3.4. Let M be a Baer Γ-ring with involution I and S be a self-adjoint

subset of M . Let T be the commuting Γ-ring of S. Then T is a Baer sub Γ-ring with

involution I of M .

Proof. Since S is self-adjoint, the sub Γ-ring T is also self-adjoint. Given V ⊂ T ,

write R(V ) = eΓM (this is the annihilator in M of course). We must show that e

lies in T . Thus given , we have to prove eγs = sγe, γ ∈ Γ. Given s ∈ S, we have

sγv = vγs and vγe = 0, then vγ(1 − e)γsγe = vγsγe − vγeγsγe = vγsγe − 0 =

vγsγe = sγvγe = sγ0 = 0. Since v is arbitrary in V, (1 − e)γsγe ∈ eΓM . Hence

(1−e)γsγe = 0. Thus sγe = eγsγe. Apply involution I, we have I(sve) = I(eγsγe).

This implies that I(e)γI(s) = I(e)γI(s)γI(e). So eγs = eγsγe. Hence sγe =

eγs. ¤

Corollary 3.1. The center of a Baer Γ-ring with involution I is a Baer sub Γ-ring

with involution I.

Theorem 3.5. In a Baer Γ-ring M with involution I.xαI(x) = 0 implies x = 0, x ∈
M,α ∈ Γ.

Proof. Let e be the right annihilating projection of x. Then xαe = 0. Now I(xαe) =

I(0) = 0. This implies that I(e)αI(x) = 0. So eαI(x) = 0. Since xαI(x) = 0,

we have I(x) ∈ eΓM, I(x) = eαI(x) = 0. Now x = I2(x) = I(I(x)) = I(0) = 0 It

follows that a Baer Γ-ring with involution I has no nil left or right ideals. For let A be

a nil right ideal in a Baer Γ-ring with involution I. If x ∈ A, then y = xαI(x) ∈ A. If



8 A.C. PAUL AND MD. SABUR UDDIN

(yα)ny is the smallest power of y that is 0, let z = (yα)n−1y. Then zαI(z) = zαz = 0

whence z = 0 by theorem 3.12. Hence x = 0 . The argument for a nil left ideal is

analogous. ¤

A fortiori, a Baer Γ-ring with involution I has no nilpotent ideals. We turn now

to the consideration of equivalence of projection in a Baer Γ-ring with involution I.

Theorem 3.6. Let M be a Baer Γ-ring with involution I, an element of M such

that xαI(x) is a projection of e for α ∈ Γ. Then I(x)αx is also a projection of f .

We have x ∈ eΓMΓf, I(x) ∈ fΓMΓe and thus e ∼ f .

Proof. Set y = eαx− x.Then

yαI(y) = (eαx− x)αI(eαx− x)

= ((e− 1)αx)αI(eαx− x)

= ((e− 1)αx)α(I(x)αI(e)− I(x))

= ((e− 1)αx)α(I(x)αe− I(x))

= (e− 1)αxαI(x)α(e− 1)

= (e− 1)αeα(e− 1)

= (eαe− 1αe)α(e− 1)

= (e− e)α(e− 1)

= 0α(e− 1)

= 0α(e− 1)

= 0

By Theorem 3.12, y = 0. So eαx − x = 0. Thus eαx = x. If f = I(x)αx then

I(f) = I(I(x)αx) = I(x)αI2(x) = I(x)αx = f and fαf = I(x)αxαI(x)αx =
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I(x)αeαx = I(x)αx = f . Now fαI(x) = I(x)αxαI(x) = I(x)αe = I(x). Thus

xαI(x)αx = eαx = x, I(x) ∈ fΓMΓe. Hence e ∼ f . ¤

Definition 3.6. An element x in a Γ-ring M with involution I is called a partial

isometry if xαI(x) and I(x)αx, α ∈ Γ are projections.

Definition 3.7. In a Γ-ring M with involution I, projections e, f are called I-

equivalent, written e ∼I f , if there exists a partial isometry x ∈ eΓMΓf with

xαI(x) = e, I(x)αx = f .

It is easy verified that ∼I is an equivalence relation and that e ∼I f implies e ∼ f .

Note that if M is a Baer Γ-ring with involution I the condition x ∈ eΓMΓf in the

definition of I-equivalence is redundant (Theorem 3.13). We now wish to make some

comparisons between Baer Γ-rings and Baer Γ-rings with involution I. We begin

by exhibiting a condition that can convert a Baer Γ-ring into a Baer Γ-ring with

involution I.

Theorem 3.7. Let M be a Γ-ring with involution I and suppose that for every x

in M, 1 + I(x)αx, α ∈ Γ is invertible in M . Then for any idempotent f in M there

exists a projection e such that fΓM = eΓM .

Proof. Let x = I(f)− f . Then I(x) = I(I(f)− f) = f − I(f). Therefore I(x)αx =

(f − I(f))α(I(f)− f). So 1+ I(x)αx = 1+(f − I(f))α(I(f)− f). Since 1+ I(x)αx

is invertible in M, 1 + (f − f − I(f)α(I(f) − (f) is invertible in M . Take z =

1+(f −1(f))α(I(f)−f). Then, z is invertible, say t = z−1. Also we have, z = I(z),
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then t = I(t). Therefore

fαz = fα(1− f − I(f) + fαI(f) + I(f)αf)

= fα1− fαf − fαI(f) + fαfαI(f) + fαI(f)αf

= f − f − fαI(f) + fαI(f) + fαI(f)αf

= fαI(f)αf

Similarly zαf = fαI(f)αf . It follows that t commutes with f . We have also

seen that t commutes with I(f). Now we choose e = fαI(f)αt. Then I(e) =

I(fαI(f)αt) = I(t)αI2(f)αI(f) = tαfαI(f) = fαtαI(f) = fαI(f)αt = e. Also

eαe = fαI(f)αtαfαI(f)αt

= tαfαI(f)αfαI(f)αt

= tα(fαI(f)αf)αI(f)αt

= tαzαfαI(f)αt

= (tαz)α(fαI(f)αt)

= 1αe = e

Thus e is a projection. Evidently fαe = e whence eΓM ⊂ fΓM . Again

eαf = fαI(f)αfαt

= fαzαt

= fα(zαt)

= fα1 = f

Therefore fΓM ⊂ eΓM . Hence fΓM = eΓM . ¤

Corollary 3.2. Let M be a Baer Γ-ring with an involution I and suppose that

1 + I(x)αx, α ∈ Γ is invertible for every x in M . Then M is a Baer Γ-ring with

involution I.
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Next we give a condition which identifies the two versions of equivalence.

Theorem 3.8. Let M be a Γ-ring with involution I. Assume that for any y ∈ M

there exists a self-adjoint z ∈ M which commutes with everything that commutes

with I(y)αy and satisfies zαz = I(y)αy, α ∈ Γ. Then equivalent projections in M

are I-equivalent.

Proof. Let the projections e, f be equivalent via x, y, x ∈ eΓMΓf, y ∈ fΓMΓf, xαy =

e, yαx = f , Choose z (relative to y) are permitted by the hypothesis. We have

xαI(x)αI(y)αy = xαI(yαx)αy = xαI(f)αy = xαy = e Since e is self-adjoint, e =

I(e). Then e = I(e) = I(xαI(x)αI(y)αy) = I(y)αI2(y)αI2(x)αI(x) = I(y)αyαxαI(x)

Therefore xαI(x)αI(y)αy) = I(y)αyαxαI(x). Thus xαI(x) commutes with yαI(y)

and hence also with z. Now we have I(y)αyαe = I(y)αy. Then I(I(y)αyαe) =

I(I(y)αy). So, I(e)αI(y)αI2(y) = I(y)αI2(y). Thus eαI(y)αy = I(y)α(y). Hence

eαI(y)αy = I(y)α(y)αe. Thus eαz = zαe. The element w = eαzαx ∈ eΓMΓf

implements the desired I-equivalence of e and f . Now

I(w)αw = I(eαzαx)α(eαzαx)

= I(x)αI(z)αI(e)αeαzαx

= I(x)αzαeαeαzαx

= I(x)αzαeαzαx

= I(x)αzαzαeαx

= I(x)αzαzαx

= I(x)αI(y)αyαx

= I(yαx)α(yαx)

= I(f)αf = f.
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Again we have

wαI(w) = eαzαxαI(eαzαx)

= eαzαxαI(x)αI(z)αI(e)

= eαzαxαI(x)αzαe

= eα(xαI(x))αZαzαe

= eαxαI(x)αZαzαe

= xαI(x)αI(y)αyαe

= xαI(yαx)αyαe

= xαI(f)αy

= xαfαy

= xαy = e.

Hence e and f are I-equivalent. ¤
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