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COMPACTIFICATIONS AND F-SPECTRAL SPACES

CEREN SULTAN ELMALI ) AND TAMER UGUR @

ABSTRACT. If X is T3, it is showed that the Fan-Gottesman compactification of
X can be embedded into compactification (X*,k) of X obtaining by a combined
approach of nets and open filters. By F-spectral, we mean a topological space X
such that the Fan-Gottesman compactification of X is a spectral space. We give

necessary and sufficient conditions on X in order to get F-spectral.

1. INTRODUCTION

The first section of this paper contains some preliminaries about net, filters and
a process of obtaining a compactification (X* k) of an arbitrary topological space
X. In 2005, Hueytzen J. Wu and Wan-Hong Wu described a process of obtaining a
compactification of an arbitrary topological space by a combined approach of nets
and open filters. Besides they showed the relation among Wallman, Stone-Cech and
(X*, k) compactification under some conditions [12].

In the second section of our paper contains some information about Wallman and
Fan-Gottesman compactification. In 1938, Henry Wallman introduced compactifica-
tion of 7 spaces having a normal base [6],[9] which is also called Wallman compact-
ification [10]. In 1952, Ky Fan ve Noel Gottesman constructed a compactification,

also called Fan-Gottesman compactification, for a regular space with a normal base
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[6]. Their method is similar to Wallman compactification. In [5] it is investigated
relation between Fan-Gottesman and Wallman compactifications and showed that
Fan-Gottesman compactification of some interesting and specific spaces such as nor-
mal As and T} is Wallman-type compactification. At the end of this section, if studied
space is T3, we show that the Fan-Gottesman compactification of X can be embedded
into the compactification (X*, k). Also we examined the relation between Wallman
and Fan-Gottesman compactification via net and filters.

In the third section of this paper contains some preliminaries about Ty compactifi-
cation and spectral spaces. In 1993 Herrlich has constructed [7] with any Ty-space X,
a minimal compactification 3, X called the Ty-compactification of X. For T} space,
the extension (3, X coincides with the Wallman compactification vX of X. In 2004
Karim Belaid, Othman Echi and Riyadh Gargouri [1] have characterized topological
spaces X such that one point compactification of X is a spectral space. In 2006
Karim Belaid [2], gave some properties of H-spectral space which he means a topo-
logical space X such that its To-compactification is spectral. Also he gave necessary
and sufficient condition on the Ti-space X in order to get its Wallman compactifica-
tion spectral. At the end of this section, we define F-spectral spaces and investigate
necessary and sufficient condition in order that Fan -Gottesman compactification of

T3-space is spectral.

2. Nets, filters and (X*, k) compactification

Let A be a family of continuous functions on a topological space X. A net (z,) in
X will be called an A —net, if (f (x))) converges for each f in A. Then X is compact
if

(1) f(X) is contained in a compact subset Cy for each f in A, and

(2) Every A — net has a cluster point in X
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Let X be any arbitrary topological space, C* (X) = {f, : @ € A} the family of all

bounded real-valued continuous functions on X. For a C* (X) — net (z;), let
Fup ={U :Uisopenin X and (x;) residually in U}

It is clear that F(,,) is an open filter, and for any f, € C* (X),any e = 0, fi! ((0a —€,00 +¢€)) €
Fzy), Where 6, = lim (fo (2;)). It is called F(,,y the open filter on X induced by (z;) .

Definition 2.1. If F' is a filter on X, let Ay = {(x,F):x € F C F}. Then Ar is
directed by the relation (zq, F}) < (w9, Fy) if F» C Fi, so the map P : Ay — X
defined by P (z, F) = z is a net in X. It is called the net based on F.

Lemma 2.1. A filter F converges to x in X if the net based on F converges to x.

Corollary 2.1. Let Q be an open filter on X, (z;) is the net based on Q, and
I ={U:Uis open in X and (x;) is in U}
Then I = Q.

For each C* (X) — net (z;) in X, let ( > be the net based on the open filter
F(z,) induced by (x;). It is clear by Definition 2.1., Lemma 2.1. and corollary 2.1.
that:

(1) <w,({m> is uniquely determined by F(,) and F(,,) = F(s;), if < (@) ) = <w7({pj )>
(2) Fap =F L) = {G : G is open in X and <w,(f")> is residually in G}

(3) () s 2 € (X) = net and lim ( fo () = tim (fo (2)) for all f, in
C* (X)
(4) The following are equivalent:
a: (wﬁf”) converges to x,
b: (x;) converges to x

c: F(s;) converges to .
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In order to avoid the confusion between (wﬁf”) as a net in X and (ngi)> as a

point in a set, we will use (wﬁf")y to represent (wqui)> when it regarded as a point
in a set just as in [12] .

Let YV = {(wq(fl)y : (z;) is a C* (X) — net that does not converge in X} and it
is noted that (wﬁf”) is the net based on Fi,,). X* = X UY, the disjoint union of X

and Y. For each open set U C X, define U* C X* to be the set
Ur=UU {(wff))* ; (wffi))* €Y and (wffi)) is residually in U}

It is clear that if U C V| then U* C V*. It is seen that § = {U* : U is open in X} is
a base for a topology on X*.

Let k: X — X* be defined by k () = . Then k is a continuous function from X
into X*. Moreover k (X) is dense in X* and (X*, k) is compactification of X.

Let us cite [11],[12] for detailed information about this section.

3. Wallman and Fan Gottesman compactification

The Wallman compactification is defined in [11] as follows.

Let X be a T5 space and v X be the collection of all closed ultrafilters on X. For
each closed set D C X, define D C yX tobetheset D ={F e€~+X:D € F}. Let
(= {D . D is closed subset of X } be the base for the closed sets of the topology on
vX, and let h : X — X be defined by h (z) = F,, the closed ultrafilter converging
to x in X. Then (yX,h) is the Wallman compactification of X.

Now we investigate how Wallman compactification is obtained via normal base.

Let ( is a class of closed sets in X. If it satisfies following three conditions, 3 is
called normal base.

1) B is closed under finite intersection and unions.
2) If = is not contained in the closed set A, there is a set B €
such that re BC X — A



COMPACTIFICATIONS AND F-SPECTRAL SPACES 19

3)If Ay N Ay =0, for V Ay, Ay € 3, there exist sets A, A, € 3
such that Ay, Cc X —A,, A, C X —A,,A,UA, =X

Let X be a T) space having a normal base and 3 be a normal base in X. It is
considered K space whose element is denoted by letter as a’,b,.. consist of finite

number of F} in X such that

FNEBNEBN..NE,#£0

and maximal with respect to above property. Let 7(F) = {a' € K: F €d'}. It is
defined topology of K with a family of sets 6 = {7 (F) : F' € 3} a base of closed set.
K is a compact space and compactification of X. This compactification is called
Wallman compactification [6],[9],[10]. In order to avoid the confusion it is denoted
by vX.

There is very little difference between Fan-Gottesman and Wallman compactifi-
cation, # forming Wallman compactification is a normal base for closed sets but (3
forming Fan-Gottesman compactification is a normal base for open sets. It shall not
be forgotten that both of these satisfy conditions of normal base.

It is considered that X is a regular space having a base for open set 3 which
satisfies above three properties of normal base. But Ky Fan and Noel Gottesman
used for any A € § and any open set G of X such that cl,A C G, there exist a B € 3
such that cl,A C B C cl,B C G, where closure of A in X will be denoted clx A,
instead of if Ay N Ay = 0, forV Ay, Ay € 3, there exist sets A, A, € [ such that

AACX A, AACX—-A,, A UA, =X.

A chain family on ( is a non-empty family of sets of 3 such that

Clel N CleQ N Cleg n...N Cl)(An 7é @
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for any finite number of sets A; of the family. Every chain family on [ is contained in
at least one maximal chain family on 3 by Zorn’s lemma. Maximal chain families on
0 will be denoted by letters as a*, b, ... and also the set of all maximal chain families
on 3 will be denoted by FX. FX is a compact, hausdorff spaces and compactification
of regular spaces X. This compactification is called Fan-Gottesman compactification
6].

We know the relation between Wallman and Fan-Gottesman compactifications of
some specific spaces from [5]. Therefore, we can obtain the Fan-Gottesman compacti-

fication by defining the base via nets and filters like the Wallman compactification.

Definition 3.1. Let X be a T3 space and kX the subcollection of all open ultrafilters
on X. For each open set O C X, define O®* C kX to be the set

O':{GG/@X:OCCZXOCV, VisopeninXandVG@}

Let @ is the {O® : O is open subset of X'} set.It is clear that ® is the base for open sets
of topology on kX. kX is a compact space and the Fan-Gottesman compactifications

of X. In order to avoid the confusion it is denoted by x.X.

On the other hand, for each closed set D C X, we define D* C kX by
D'z{éeﬁX:GngorsomeGin@}

The following properties of kX are useful
(1) If U C X is open, then kX —U® = (kX —U)*
(2) If D C X is closed, then kX — D* = (kX — D)*
(3) If Uy and Uy are open in X, then (U; NU,)* = U NU;
and (U; UUL)* =U UUS

Theorem 3.1. The Fan-Gottesman compactification kX of X can be embedded into
the compactification (X*, k) of X, if X is T;.
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Proof. We must define a map from X to (X*, k) and show that the map is an
embeding.
Firstly, let (X*, k) be compactification of X defined as sectionl.

Let ¢ : kX — (X* k) be defined by setting that ¢ (G’x> = gz, if G, is the open
ultrafilters converging to = in X; ¢ (G) = <w£G>) and (wSLG)) is the net based
on G, moreover (wT(LG) is the ultranet in X, if G is open ultrafilter that does not

converge in X. That is;

x ,if G is the open ultrafilters converging to z in X

Y= N\ .
(wng)) , if GG is open ultrafilter that does not converge in X

(@)

From conclusion of Lemma 2.1., (wn ) is a C* (X) — net that does not converge

()

in X. Since (wn ) is the net based on G thus by corollary 2.1. , the open filter

G (@ induced by (w,(LG)> is exactly G. Hence (wSLG)) is in Y defined as section
2.Since X is a T3 , X is a Hausdorff then for V x # y there exist open neighborhoods
U, of z and U, of y such that U, N U, = 0. G, converging to = and G, converging
to y imply that U, D A for some A € G, and U, D B for some B € G,. If G, =G|,
then A and B are both in G, and AN B # (. Hence U, NU, D AN B # (. This
contradicts the fact that U, N U, = 0. So G, = G, implying = = y. Therefore both
G and (ng)) are uniquely determined by a given open ultrafilter G that does not
converge in X. Thus ¢ is well-defined.

Secondly, we show that ¢ is a injective map.

1) If G, and @y are two open ultra filters converging to = and y, respectively,
and G’m # Gy. Then ¢ (Gx> =z and ¢ <G’y> = y. Then, there exist U, € Gw and
W € @y such that Uy N Vy = 0. Since G, converges to  and Gy converges to y, so
zeUforalU e Gyandy e Viorall V e Gy. Thus UyNVy = 0 implies that x # y.
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2) If él, @2 are two open ultra filters that don’t converge in X and G’l #+ GQ, then

%) <é1> = (wgal)> and ¢ <G2> = (wT(LGQ)) . Since G’l, Gg are two different open
(G1) (Gz2)

ultra filters, the nets (w» and <wn ) based on Gy and G’Q, respectively, are

1

different. That is (w(G>> # (w£G>> Hence <wfé1))* # (wﬁéQ))*in Y.

3) If G, is an open ultra filters converging to x in X and Gisa open ultra filters that
does not converge in X, then G, # G. Since % (éx> =recX,p (G‘) = (wZ(G)> * ey
and X NY =10, so0 ¢ (é’x> # ¢ <G’> . Therefore, ¢ is one to one.

Thirdly, ¢ and ¢! are continuous.Let U* be open set in 3 defined as section 2;
ie,U*=UU {(wﬁf‘)y : (w,(fi)>* €Y and (wﬁf”")) is residually in U} then
e 1 (U*) = {@x tx € U} U {é : (w,(LG)> is residually in U}. If G, converges to x
in U, then there is an open set H € G, such that H C U . This implies that
(X —U) ¢ Gyiie, G, e kX —(X —U)°If <wT(LG>) is eventually in U, since (w,(lc))
is the net based on G, the corollary 2.1. implies that U is in G, thus G is eventually
Usi.e., there exists an G in G such that G C U. This implies again that (X — U) ¢
G, and therefore G, € kX — (X —U)*. Thus ¢ ' (U*) € kX — (X —U)". For
kX — (X —=U)" C ¢ ' (U"), let G be a open ultrafilter in kKX — (X — U)*, then
(X —U) ¢ G. This implies that there exists an Gy € G such that Gy N (X — U) = §;
i.e., Gy C U. Hence,

a) If G converges to a point x in X; i.e., G = G,. Then 7 is in G for all G in G,
and thus 2 € Gy C U. This implies that G = G, is in =1 (U*)

b) If G does not converge in X,Gy C U implies that G is eventually in U,
ie, U € G. So, the net (wSLG)> based on G is eventually in U; i.e., G is in
e 1 (U*). Thus ¢ ' (U*) = kX — (X —U)® is open in kX. Hence ¢ is continu-
ous.Since ¢ (U* Ny (kX)) = 1 ({U ) N (9 (kX)) = (kX — (X = U)*)NKrX =
kX — (X —=U)*, thus ¢ (kX — (X = U)*) = U* N ¢ (kX) is an open in ¢ (kX) for
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any open set KX — (X — U)® in xX. Hence, ¢! is continuous on ¢ (kX) . Therefore,

¢ is an embedding of kX into X* O

Theorem 3.2. The Wallman compactification (vX,h) of X can be embedded into
the Fan-Gottesman compactification of X, if X is Ts.

Proof. 1t is defined a map from vX into kX to proof the theorem. It is considered
base defined by closed ultrafilter as a normal base. Let ¥ : vX — kX be defined by
setting that ¥ (F,) = @x such that x contained in G’x, if I, is the closed ultrafilter
converging to x in X. ¥ (F) = <w,(1F)>*, (wéF)>is the net based on open filter G, if

F'is the closed ultrafilter that does not converging in X.

p G, ,if F, is the closed ultrafilter converging to = in X
N (wle)> ) , if F'is the closed ultrafilter that does not converging in X

It must be shown that 9 is an embedding between vX and xX.If F, and F, are
two closed ultra filters converging to = and y, respectively, and F, # F, . Then
V(F,) = G, and U (F,) = @y. Then G, =+ éy. If Fy,Fy are two closed ultra
filters that don’t converge in X and Fy # Fj, then ¥ (F}) = <wT(ZF1)>* and 0 (Fy) =
(w,(ng))*. Since Fh, Fy are two different open ultra filters, the nets (ngl))* and
(w,(lFQ))* based on F; and F5 , respectively, are different. Then (w§F1)> #+ (wleZ)).
Hence <w§F1)>* # (ngQ))*in Y. If F, is a closed ultrafilters converging to z in
X and F is a closed ultrafilters that does not converge in X, then F, # F. Since
¢ (F,) = G,, x contained in G, ¢ (F) = (wZ(F)>*, so ¢ (Fy) # ¢ (F). Therefore, ¥

1s one to one.

Let U® be open set in [3; i.e.,

U':{éemX:UchXUcv, VisopenmXandvEé}
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then 91 (U®) = {F,:z € U} U {F : (ng)> is evetually in U}. If F, converges to
x in U then, there is an F'in F), such that ' C U. If (wﬁlF)) is eventually in U, since
(wg ) is the net based on open filter G induced by F', F'is eventually in U. Hence,
if F, converges to x in X, it is clearly seen that F, = F. If F, does not converges
to z in X, then U € G. So, the net (wZ(F)> based on G is eventually in U,F is in
Y1 (U®). Thus 9= (U®*) =X — (X — U) is an open in vX. Hence 9 is continuous.
Since 9~ (U* N9 (X)) = 9~ (U*) N9~ (9 (X)) = (7X (X -U) ) X =
X - (X-U) 9 (fyX — (X -0) ) = U*N3J(yX) is open in 9 (yX) for any open
set ¥ X — (X —U) in yX. Hence, 97! is continuous on 9 (yX). Therefore ¥ is an
embedding of vX into kX. O

4. Ty-compactification and H-spectral space

Let R be a commutative ring with identity. Spectrum or prime spectrum of R,
denoted Spec (R), is the set of prime ideals of R. The topology on Spec (R) defined by
closed set Z (I) = {C € Spec(R) : I C C} for ideals I of R is called Zariski topology
on Spec (R).

By definition, the closure in the Zariski topology of the singleton set {P} in
Spec (R) consist of all prime ideals of R contain P. In particular, a point P in
Spec (R) is closed in the Zariski topology if and only if the prime ideal P is not
contained in any other prime ideals of R, i.e., if and only if P is a maximal ideal [3].

A topological space is called spectral if it is homeomorphic to the prime spectrum
or a ring equipped with Zariski topology. M. Hochster [8] has characterized spectral
spaces as follows:

A space X is spectral if and only if the following axioms hold:

(1) Every nonempty irreducible closed subset of X is the closure of a unique

point (that is, sober)
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(2) X is compact;
(3) The compact open sets form a basis of X;

(4) The family of compact open sets of X is closed under finite intersections.

H. Herrlich has introduced the following construction [7]
Let X be a Ty-space. Consider the set I' (X) of all filters F' on X that satisfy the

following two conditions:

(1) F does not converge in X.

(2) Every finite open cover of X contains some member of F
Let © (X) is the set of minimal elements of " (X') and define:
a: X =XUQ((X).
b: Al = AU{F:FeQ(X) and A€ F}

Bw = {AL : Aopen in X} is a base for a topology 7 on X. (X7, 7)) is compact

and called Ty-compactification of X and denoted by (3,X.

Also, the following properties hold:

1) If 5,X is sober, then X is sober.

2) If 6,X is spectral, then X is sober.
3) If 3,X is normal, then X is normal

4) If X is normal, then for each distinct elements H and G of 3,X there exist

(1)
(2)
(3)
(4)

two disjoint open sets U and V' of X such that H € U} and G € V;.

(5) If X is normal sober space, then 3,X is sober.

Definition 4.1. A subset N of a space X is called nearly closed in X, if there exist
a finite subset d, of § and neighborhood V. of x with (V, " N) C (s, ;. 0z, for every

open cover ¢ of N and every point x of X

The specialization order of a topological space X is defined by x < y if and only if
y e {z}. Wedenotedby (z 1) ={yeX:z<yland (| z)={ye X :y <z}
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Proposition 4.1. Let X be a Ty-space such that (| )N (| F) =10 for each x € X
and each F & (x 1) N Q(X). If X is H-spectral space, then the following properties
hold:

(1) If C is compact open set of (3, X, then C'N X is nearly closed set of X.

(2) The nearly closed and open sets form a basis of X.

(3) If U,Vare two open sets such that U UV = X. Then there exists an open
nearly closed set N of X such that N CU and NUV =X

Remark 1. If X is Ty-space, then (| )N (] F') = @ foreachz € X andeach F ¢ (z 7).

Let us cite [2, 6] for detailed information about this topic

Karim Belaid at al. [1] have characterized A-spectral spaces (that is; one point
compactificaiton of X is spectral space) and he give some properties of H-spectral
spaces (that is; Tp-compactification of X is spectral space) and defined W-spectral
spaces (that is; Wallman compactificaiton of X is spectral space) and characterized

of W-spectral spaces [2].

Definition 4.2. Let X be a T3 space. If its Fan-Gottesman compactification is

spectral, it is called F-spectral space [4].

Theorem 4.1. Let X be a T3 space. Then X is an F-spectral if and only if there
exists a clopen set U such that G C U and HNU = 0 for each disjoint open set G
and H of X.

Proof. (=)Ilf GNH = { , then (X —G)U (X — H) = X. By 4.1. Proposition
and Remark, there is an open nearly closed set K such that K C (X — G) and
KU (X —G) = X. Therefore G C (X — K) and GN (X — K) = (. On the other
hand kX and X are Hausdorff, we get that (X — K) is clopen.
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(«<)Let v = {U* : U clopen set of X}. Let V be an open set of X and = € V*. If
x € V, then {z} is closed. Because X be a T3 space, X be a T; and regular. Hence
there exists a clopen set U such that {x} C U C V. Thus U* is clopen neighborhood
of z such that U* C V*z = R € V* N Q(X), where Q(X) is the set of minimal
elements of all filters on X. For p € kX — U*, there exist G € R and H € p such
that G N H = (. Thus there exists a clopen set U, of X such that G C U and
G € (X -U,). Hence {(X —U,)":p€rX —V*} is an open cover of kX — V*.
Since kX — V* is compact, there is a finite collection {(X — U,)" : p € I'} such that
kX —V*=U{rX U} :pel}. Let Uy =N{U,: p € I'}. It is immediate that Uy
is a clopen neighborhood of # such that Us; C V*. Therefore, v is bases of kX . Since
each element of v is clopen, « is basis of compact sets closed under finite intersection.
Every nonempty irreducible close subset of kX is closure of unique point (that is

sober). Thus kX is spectral. 0

Conclusion 4.1. Let X be a Ty space. If X is an F-spectral, then X is a W-spectral.

Proof. Since X is a T3 space. The Wallman compactification (vX,h) of X can be
embedded into the Fan-Gottesman compactification of X from Theorem 2.1. On the
other hand, for each disjoint open set G and H of X, there exists a clopen set U such
that G C U and H NU = (), since X is an F-spectral. Then X is a W-spectral from

definition of relative topology and 2.4 Theorem in [2]. O
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