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COMPACTIFICATIONS AND F-SPECTRAL SPACES

CEREN SULTAN ELMALI (1) AND TAMER UGUR (2)

Abstract. If X is T3, it is showed that the Fan-Gottesman compactification of

X can be embedded into compactification (X∗, k) of X obtaining by a combined

approach of nets and open filters. By F-spectral, we mean a topological space X

such that the Fan-Gottesman compactification of X is a spectral space. We give

necessary and sufficient conditions on X in order to get F-spectral.

1. Introduction

The first section of this paper contains some preliminaries about net, filters and

a process of obtaining a compactification (X∗, k) of an arbitrary topological space

X. In 2005, Hueytzen J. Wu and Wan-Hong Wu described a process of obtaining a

compactification of an arbitrary topological space by a combined approach of nets

and open filters. Besides they showed the relation among Wallman, Stone-Cech and

(X∗, k) compactification under some conditions [12].

In the second section of our paper contains some information about Wallman and

Fan-Gottesman compactification. In 1938, Henry Wallman introduced compactifica-

tion of T1 spaces having a normal base [6],[9] which is also called Wallman compact-

ification [10]. In 1952, Ky Fan ve Noel Gottesman constructed a compactification,

also called Fan-Gottesman compactification, for a regular space with a normal base
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[6]. Their method is similar to Wallman compactification. In [5] it is investigated

relation between Fan-Gottesman and Wallman compactifications and showed that

Fan-Gottesman compactification of some interesting and specific spaces such as nor-

mal A2 and T4 is Wallman-type compactification. At the end of this section, if studied

space is T3, we show that the Fan-Gottesman compactification of X can be embedded

into the compactification (X∗, k). Also we examined the relation between Wallman

and Fan-Gottesman compactification via net and filters.

In the third section of this paper contains some preliminaries about T0 compactifi-

cation and spectral spaces. In 1993 Herrlich has constructed [7] with any T0-space X,

a minimal compactification βwX called the T0-compactification of X. For T1 space,

the extension βwX coincides with the Wallman compactification γX of X. In 2004

Karim Belaid, Othman Echi and Riyadh Gargouri [1] have characterized topological

spaces X such that one point compactification of X is a spectral space. In 2006

Karim Belaid [2], gave some properties of H-spectral space which he means a topo-

logical space X such that its T0-compactification is spectral. Also he gave necessary

and sufficient condition on the T1-space X in order to get its Wallman compactifica-

tion spectral. At the end of this section, we define F-spectral spaces and investigate

necessary and sufficient condition in order that Fan -Gottesman compactification of

T3-space is spectral.

2. Nets, filters and (X∗, k) compactification

Let A be a family of continuous functions on a topological space X. A net (xλ) in

X will be called an A−net, if (f (xλ)) converges for each f in A. Then X is compact

if

(1) f (X) is contained in a compact subset Cf for each f in A, and

(2) Every A− net has a cluster point in X
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Let X be any arbitrary topological space, C∗ (X) = {fα : α ∈ Λ} the family of all

bounded real-valued continuous functions on X. For a C∗ (X)− net (xi), let

F(xi) = {U : U is open in X and (xi) residually in U}

It is clear that F(xi) is an open filter, and for any fα ∈ C∗ (X), any ε Â 0, f−1
α ((δα − ε, δα + ε)) ∈

F(xi), where δα = lim (fα (xi)). It is called F(xi) the open filter on X induced by (xi) .

Definition 2.1. If F is a filter on X, let ΛF = {(x, F ) : x ∈ F ⊂ F}. Then ΛF is

directed by the relation (x1, F1) ≤ (x2, F2) if F2 ⊂ F1, so the map P : ΛF → X

defined by P (x, F ) = x is a net in X. It is called the net based on F .

Lemma 2.1. A filter F converges to x in X if the net based on F converges to x.

Corollary 2.1. Let Q be an open filter on X, (xi) is the net based on Q, and

I = {U : U is open in X and (xi) is in U}

Then I = Q.

For each C∗ (X) − net (xi) in X, let
(
w

(xi)
n

)
be the net based on the open filter

F(xi) induced by (xi). It is clear by Definition 2.1., Lemma 2.1. and corollary 2.1.

that:

(1)
(
w

(xi)
n

)
is uniquely determined by F(xi) and F(xi) = F(xj), if

(
w

(xi)
n

)
=

(
w

(xj)
n

)

(2) F(xi) = F�
w

(xi)
n

� =
{

G : G is open in X and
(
w

(xi)
n

)
is residually in G

}

(3)
(
w

(xi)
n

)
is a C∗ (X) − net and lim

(
fα

(
w

(xi)
n

))
= lim (fα (xi)) for all fα in

C∗ (X)

(4) The following are equivalent:

a:
(
w

(xi)
n

)
converges to x,

b: (xi) converges to x

c: F(xi) converges to x.
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In order to avoid the confusion between
(
w

(xi)
n

)
as a net in X and

(
w

(xi)
n

)
as a

point in a set, we will use
(
w

(xi)
n

)∗
to represent

(
w

(xi)
n

)
when it regarded as a point

in a set just as in [12] .

Let Y =
{(

w
(xi)
n

)∗
: (xi) is a C∗ (X)− net that does not converge in X

}
and it

is noted that
(
w

(xi)
n

)
is the net based on F(xi). X∗ = X ∪ Y , the disjoint union of X

and Y . For each open set U ⊂ X, define U∗ ⊂ X∗ to be the set

U∗ = U ∪
{(

w(xi)
n

)∗
:
(
w(xi)

n

)∗ ∈ Y and
(
w(xi)

n

)
is residually in U

}

It is clear that if U ⊂ V, then U∗ ⊂ V ∗. It is seen that β = {U∗ : U is open in X} is

a base for a topology on X∗.

Let k : X → X∗ be defined by k (x) = x. Then k is a continuous function from X

into X∗. Moreover k (X) is dense in X∗ and (X∗, k) is compactification of X.

Let us cite [11],[12] for detailed information about this section.

3. Wallman and Fan Gottesman compactification

The Wallman compactification is defined in [11] as follows.

Let X be a T2 space and γX be the collection of all closed ultrafilters on X. For

each closed set D ⊂ X, define D� ⊂ γX to be the set D� = {F ∈ γX : D ∈ F}. Let

ζ =
{
D� : D is closed subset of X

}
be the base for the closed sets of the topology on

γX, and let h : X → γX be defined by h (x) = Fx, the closed ultrafilter converging

to x in X. Then (γX, h) is the Wallman compactification of X.

Now we investigate how Wallman compactification is obtained via normal base.

Let β is a class of closed sets in X. If it satisfies following three conditions, β is

called normal base.

1) β is closed under finite intersection and unions.

2) If x is not contained in the closed set A, there is a set B ∈ β

such that x ∈ B ⊂ X − A
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3) If A1 ∩ A2 = ∅, for ∀ A1, A2 ∈ β, there exist sets Am,An ∈ β

such that A1 ⊂ X − An, A2 ⊂ X − Am, An ∪ Am = X

Let X be a T1 space having a normal base and β be a normal base in X. It is

considered K space whose element is denoted by letter as a′, b′, .. consist of finite

number of Fi in X such that

F1 ∩ F2 ∩ F3 ∩ ... ∩ Fn 6= ∅

and maximal with respect to above property. Let τ (F ) = {a′ ∈ K : F ∈ a′}. It is

defined topology of K with a family of sets δ = {τ (F ) : F ∈ β} a base of closed set.

K is a compact space and compactification of X. This compactification is called

Wallman compactification [6],[9],[10]. In order to avoid the confusion it is denoted

by γX.

There is very little difference between Fan-Gottesman and Wallman compactifi-

cation, β forming Wallman compactification is a normal base for closed sets but β

forming Fan-Gottesman compactification is a normal base for open sets. It shall not

be forgotten that both of these satisfy conditions of normal base.

It is considered that X is a regular space having a base for open set β which

satisfies above three properties of normal base. But Ky Fan and Noel Gottesman

used for any A ∈ β and any open set G of X such that clxA ⊂ G, there exist a B ∈ β

such that clxA ⊂ B ⊂ clxB ⊂ G, where closure of A in X will be denoted clXA,

instead of if A1 ∩ A2 = ∅, for ∀ A1, A2 ∈ β, there exist sets Am,An ∈ β such that

A1 ⊂ X − An, A2 ⊂ X − Am, An ∪ Am = X.

A chain family on β is a non-empty family of sets of β such that

clXA1 ∩ clXA2 ∩ clXA3 ∩ ... ∩ clXAn 6= ∅
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for any finite number of sets Ai of the family. Every chain family on β is contained in

at least one maximal chain family on β by Zorn’s lemma. Maximal chain families on

β will be denoted by letters as a∗, b∗, ... and also the set of all maximal chain families

on β will be denoted by FX. FX is a compact, hausdorff spaces and compactification

of regular spaces X. This compactification is called Fan-Gottesman compactification

[6].

We know the relation between Wallman and Fan-Gottesman compactifications of

some specific spaces from [5]. Therefore, we can obtain the Fan-Gottesman compacti-

fication by defining the base via nets and filters like the Wallman compactification.

Definition 3.1. Let X be a T3 space and κX the subcollection of all open ultrafilters

on X. For each open set O ⊂ X, define O• ⊂ κX to be the set

O• =
{

Ĝ ∈ κX : O ⊂ clXO ⊂ V, V is open in X and V ∈ Ĝ
}

Let Φ is the {O• : O is open subset of X} set.It is clear that Φ is the base for open sets

of topology on κX. κX is a compact space and the Fan-Gottesman compactifications

of X. In order to avoid the confusion it is denoted by κX.

On the other hand, for each closed set D ⊂ X, we define D• ⊂ κX by

D• =
{

Ĝ ∈ κX : G ⊆ D for some G in Ĝ
}

The following properties of κX are useful

(1) If U ⊂ X is open, then κX − U• = (κX − U)•

(2) If D ⊂ X is closed, then κX −D• = (κX −D)•

(3) If U1 and U2 are open in X, then (U1 ∩ U2)
• = U•

1 ∩ U•
2

and (U1 ∪ U2)
• = U•

1 ∪ U•
2

Theorem 3.1. The Fan-Gottesman compactification κX of X can be embedded into

the compactification (X∗, k) of X, if X is T3.



COMPACTIFICATIONS AND F-SPECTRAL SPACES 21

Proof. We must define a map from κX to (X∗, k) and show that the map is an

embeding.

Firstly, let (X∗, k) be compactification of X defined as section1.

Let ϕ : κX → (X∗, k) be defined by setting that ϕ
(
Ĝx

)
= x, if Ĝx is the open

ultrafilters converging to x in X; ϕ
(
Ĝ

)
=

(
w

(Ĝ)
n

)∗
and

(
w

(Ĝ)
n

)
is the net based

on Ĝ, moreover

(
w

(Ĝ)
n

)
is the ultranet in X, if Ĝ is open ultrafilter that does not

converge in X. That is;

ϕ =





x , if Ĝx is the open ultrafilters converging to x in X(
w

(Ĝ)
n

)∗
, if Ĝ is open ultrafilter that does not converge in X

From conclusion of Lemma 2.1.,

(
w

(Ĝ)
n

)
is a C∗ (X) − net that does not converge

in X. Since

(
w

(Ĝ)
n

)
is the net based on Ĝ thus by corollary 2.1. , the open filter

Ĝ�
w

(Ĝ)
n

� induced by

(
w

(Ĝ)
n

)
is exactly Ĝ. Hence

(
w

(Ĝ)
n

)
is in Y defined as section

2.Since X is a T3 , X is a Hausdorff then for ∀ x 6= y there exist open neighborhoods

Ux of x and Uy of y such that Ux ∩ Uy = ∅. Gx converging to x and Gy converging

to y imply that Ux ⊃ A for some A ∈ Gx and Uy ⊃ B for some B ∈ Gy. If Gx = Gy

then A and B are both in Gx and A ∩ B 6= ∅. Hence Ux ∩ Uy ⊃ A ∩ B 6= ∅. This

contradicts the fact that Ux ∩ Uy = ∅. So Gx = Gy implying x = y. Therefore both

Ĝ and

(
w

(Ĝ)
n

)
are uniquely determined by a given open ultrafilter Ĝ that does not

converge in X. Thus ϕ is well-defined.

Secondly, we show that ϕ is a injective map.

1) If Ĝx and Ĝy are two open ultra filters converging to x and y, respectively,

and Ĝx 6= Ĝy. Then ϕ
(
Ĝx

)
= x and ϕ

(
Ĝy

)
= y. Then, there exist U0 ∈ Ĝx and

V0 ∈ Ĝy such that U0 ∩ V0 = ∅. Since Ĝx converges to x and Ĝy converges to y, so

x ∈ U for all U ∈ Ĝx and y ∈ V for all V ∈ Ĝy. Thus U0∩V0 = ∅ implies that x 6= y.
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2) If Ĝ1, Ĝ2 are two open ultra filters that don’t converge in X and Ĝ1 6= Ĝ2, then

ϕ
(
Ĝ1

)
=

(
w

(Ĝ1)
n

)∗
and ϕ

(
Ĝ2

)
=

(
w

(Ĝ2)
n

)∗
. Since Ĝ1, Ĝ2 are two different open

ultra filters, the nets

(
w

(Ĝ1)
i

)
and

(
w

(Ĝ2)
n

)
based on Ĝ1 and Ĝ2, respectively, are

different. That is

(
w

(Ĝ1)
i

)
6=

(
w

(Ĝ2)
n

)
. Hence

(
w

(Ĝ1)
i

)∗
6=

(
w

(Ĝ2)
n

)∗
in Y .

3) If Ĝx is an open ultra filters converging to x in X and Ĝ is a open ultra filters that

does not converge in X, then Ĝx 6= Ĝ. Since ϕ
(
Ĝx

)
= x ∈ X, ϕ

(
Ĝ

)
=

(
w

(Ĝ)
i

)∗
∈ Y

and X ∩ Y = ∅, so ϕ
(
Ĝx

)
6= ϕ

(
Ĝ

)
. Therefore, ϕ is one to one.

Thirdly, ϕ and ϕ−1 are continuous.Let U∗ be open set in β defined as section 2;

i.e., U∗ = U ∪
{(

w
(xi)
n

)∗
:
(
w

(xi)
n

)∗
∈ Y and

(
w

(xi)
n

)
is residually in U

}
then

ϕ−1 (U∗) =
{

Ĝx : x ∈ U
}
∪

{
Ĝ :

(
w

(Ĝ)
n

)
is residually in U

}
. If Ĝx converges to x

in U , then there is an open set H ∈ Ĝx such that H ⊂ U . This implies that

(X − U) /∈ Ĝx; i.e., Ĝx ∈ κX−(X − U)•.If
(

w
(Ĝ)
n

)
is eventually in U , since

(
w

(Ĝ)
n

)

is the net based on Ĝ, the corollary 2.1. implies that U is in Ĝ, thus Ĝ is eventually

U ;i.e., there exists an G in Ĝ such that G ⊂ U . This implies again that (X − U) /∈
Ĝx and therefore Ĝx ∈ κX − (X − U)• . Thus ϕ−1 (U∗) ⊂ κX − (X − U)• . For

κX − (X − U)• ⊂ ϕ−1 (U∗) , let Ĝ be a open ultrafilter in κX − (X − U)• , then

(X − U) /∈ Ĝ. This implies that there exists an G0 ∈ Ĝ such that G0 ∩ (X − U) = ∅;
i.e., G0 ⊂ U. Hence,

a) If Ĝ converges to a point x in X; i.e., Ĝ = Ĝx. Then x is in G for all G in Ĝx

and thus x ∈ G0 ⊂ U. This implies that Ĝ = Ĝx is in ϕ−1 (U∗)

b) If Ĝ does not converge in X, G0 ⊂ U implies that Ĝ is eventually in U,

i.e., U ∈ Ĝ. So, the net

(
w

(Ĝ)
n

)
based on Ĝ is eventually in U ; i.e., Ĝ is in

ϕ−1 (U∗) . Thus ϕ−1 (U∗) = κX − (X − U)• is open in κX. Hence ϕ is continu-

ous.Since ϕ−1 (U∗ ∩ ϕ (κX)) = ϕ−1 (U∗) ∩ ϕ−1 (ϕ (κX)) = (κX − (X − U)•) ∩ κX =

κX − (X − U)• , thus ϕ (κX − (X − U)•) = U∗ ∩ ϕ (κX) is an open in ϕ (κX) for
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any open set κX − (X − U)• in κX. Hence, ϕ−1 is continuous on ϕ (κX) . Therefore,

ϕ is an embedding of κX into X∗ ¤

Theorem 3.2. The Wallman compactification (γX, h) of X can be embedded into

the Fan-Gottesman compactification of X, if X is T3.

Proof. It is defined a map from γX into κX to proof the theorem. It is considered

base defined by closed ultrafilter as a normal base. Let ϑ : γX → κX be defined by

setting that ϑ (Fx) = Ĝx such that x contained in Ĝx, if Fx is the closed ultrafilter

converging to x in X. ϑ (F ) =
(
w

(F )
n

)∗
,
(
w

(F )
n

)
is the net based on open filter Ĝ, if

F is the closed ultrafilter that does not converging in X.

ϑ =





Ĝx , if Fx is the closed ultrafilter converging to x in X(
w

(F )
n

)∗
, if F is the closed ultrafilter that does not converging in X

It must be shown that ϑ is an embedding between γX and κX.If Fx and Fy are

two closed ultra filters converging to x and y, respectively, and Fx 6= Fy . Then

ϑ (Fx) = Ĝx and ϑ (Fy) = Ĝy. Then Ĝx 6= Ĝy. If F1, F2 are two closed ultra

filters that don’t converge in X and F1 6= F2, then ϑ (F1) =
(
w

(F1)
n

)∗
and ϑ (F2) =(

w
(F2)
n

)∗
. Since F1, F2 are two different open ultra filters, the nets

(
w

(F1)
i

)∗
and(

w
(F2)
n

)∗
based on F1 and F2 , respectively, are different. Then

(
w

(F1)
i

)
6=

(
w

(F2)
n

)
.

Hence
(
w

(F1)
i

)∗
6=

(
w

(F2)
n

)∗
in Y . If Fx is a closed ultrafilters converging to x in

X and F is a closed ultrafilters that does not converge in X, then Fx 6= F. Since

ϕ (Fx) = Ĝx, x contained in Ĝx, ϕ (F ) =
(
w

(F )
i

)∗
, so ϕ (Fx) 6= ϕ (F ) . Therefore, ϑ

is one to one.

Let U• be open set in β; i.e.,

U• =
{

Ĝ ∈ κX : U ⊂ clXU ⊂ V, V is open in X and V ∈ Ĝ
}
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then ϑ−1 (U•) = {Fx : x ∈ U} ∪
{

F :
(
w

(F )
n

)
is evetually in U

}
. If Fx converges to

x in U then, there is an F in Fx such that F ⊂ U . If
(
w

(F )
n

)
is eventually in U , since

(
wF

n

)
is the net based on open filter Ĝ induced by F , F is eventually in U . Hence,

if Fx converges to x in X, it is clearly seen that Fx = F . If Fx does not converges

to x in X, then U ∈ Ĝ. So, the net
(
w

(F )
i

)
based on G is eventually in U ,F is in

ϑ−1 (U•). Thus ϑ−1 (U•) = γX− (X − U)� is an open in γX. Hence ϑ is continuous.

Since ϑ−1 (U• ∩ ϑ (γX)) = ϑ−1 (U•) ∩ ϑ−1 (ϑ (γX)) =
(
γX − (X − U)�

)
∩ γX =

γX − (X − U)� ϑ
(
γX − (X − U)�

)
= U• ∩ ϑ (γX) is open in ϑ (γX) for any open

set γX − (X − U)� in γX. Hence, ϑ−1 is continuous on ϑ (γX). Therefore ϑ is an

embedding of γX into κX. ¤

4. T0-compactification and H-spectral space

Let R be a commutative ring with identity. Spectrum or prime spectrum of R,

denoted Spec (R), is the set of prime ideals of R. The topology on Spec (R) defined by

closed set Z (I) = {C ∈ Spec (R) : I ⊆ C} for ideals I of R is called Zariski topology

on Spec (R).

By definition, the closure in the Zariski topology of the singleton set {P} in

Spec (R) consist of all prime ideals of R contain P . In particular, a point P in

Spec (R) is closed in the Zariski topology if and only if the prime ideal P is not

contained in any other prime ideals of R, i.e., if and only if P is a maximal ideal [3].

A topological space is called spectral if it is homeomorphic to the prime spectrum

or a ring equipped with Zariski topology. M. Hochster [8] has characterized spectral

spaces as follows:

A space X is spectral if and only if the following axioms hold:

(1) Every nonempty irreducible closed subset of X is the closure of a unique

point (that is, sober)
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(2) X is compact;

(3) The compact open sets form a basis of X;

(4) The family of compact open sets of X is closed under finite intersections.

H. Herrlich has introduced the following construction [7]

Let X be a T0-space. Consider the set Γ (X) of all filters F on X that satisfy the

following two conditions:

(1) F does not converge in X.

(2) Every finite open cover of X contains some member of F

Let Ω (X) is the set of minimal elements of Γ (X) and define:

a: X∗
w = X ∪ Ω (X) .

b: A∗
w = A ∪ {F : F ∈ Ω (X) and A ∈ F}

βw = {A∗
w : A open in X} is a base for a topology τ ∗w on X∗

w. (X∗
w, τ ∗w) is compact

and called T0-compactification of X and denoted by βwX.

Also, the following properties hold:

(1) If βwX is sober, then X is sober.

(2) If βwX is spectral, then X is sober.

(3) If βwX is normal, then X is normal

(4) If X is normal, then for each distinct elements H and G of βwX there exist

two disjoint open sets U and V of X such that H ∈ U∗
w and G ∈ V ∗

w .

(5) If X is normal sober space, then βwX is sober.

Definition 4.1. A subset N of a space X is called nearly closed in X, if there exist

a finite subset δx of δ and neighborhood Vx of x with (Vx ∩N) ⊆ ⋃
δxi∈δx

δxi
for every

open cover δ of N and every point x of X

The specialization order of a topological space X is defined by x ≤ y if and only if

y ∈ {x}. We denoted by (x ↑) = {y ∈ X : x ≤ y} and (↓ x) = {y ∈ X : y ≤ x}.
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Proposition 4.1. Let X be a T0-space such that (↓ x) ∩ (↓ F ) = ∅ for each x ∈ X

and each F /∈ (x ↑) ∩ Ω (X) . If X is H-spectral space, then the following properties

hold:

(1) If C is compact open set of βwX, then C ∩X is nearly closed set of X.

(2) The nearly closed and open sets form a basis of X.

(3) If U, V are two open sets such that U ∪ V = X. Then there exists an open

nearly closed set N of X such that N ⊆ U and N ∪ V = X

Remark 1. If X is T1-space, then (↓ x)∩(↓ F ) = ∅ for each x ∈ X and each F /∈ (x ↑) .

Let us cite [2, 6] for detailed information about this topic

Karim Belaid at al. [1] have characterized A-spectral spaces (that is; one point

compactificaiton of X is spectral space) and he give some properties of H-spectral

spaces (that is; T0-compactification of X is spectral space) and defined W-spectral

spaces (that is; Wallman compactificaiton of X is spectral space) and characterized

of W-spectral spaces [2].

Definition 4.2. Let X be a T3 space. If its Fan-Gottesman compactification is

spectral, it is called F-spectral space [4].

Theorem 4.1. Let X be a T3 space. Then X is an F -spectral if and only if there

exists a clopen set U such that G ⊆ U and H ∩ U = ∅ for each disjoint open set G

and H of X.

Proof. (⇒)If G ∩ H = ∅ , then (X −G) ∪ (X −H) = X. By 4.1. Proposition

and Remark, there is an open nearly closed set K such that K ⊆ (X −G) and

K ∪ (X −G) = X. Therefore G ⊆ (X −K) and G ∩ (X −K) = ∅. On the other

hand κX and X are Hausdorff, we get that (X −K) is clopen.
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(⇐)Let γ = {U∗ : U clopen set of X}. Let V be an open set of X and x ∈ V ∗. If

x ∈ V , then {x} is closed. Because X be a T3 space, X be a T1 and regular. Hence

there exists a clopen set U such that {x} ⊆ U ⊆ V . Thus U∗ is clopen neighborhood

of x such that U∗ ⊆ V ∗x = < ∈ V ∗ ∩ Ω (X), where Ω (X) is the set of minimal

elements of all filters on X. For ℘ ∈ κX − U∗, there exist G ∈ < and H ∈ ℘ such

that G ∩ H = ∅. Thus there exists a clopen set U℘ of X such that G ⊆ U and

G ∈ (X − U℘). Hence {(X − U℘)∗ : ℘ ∈ κX − V ∗} is an open cover of κX − V ∗.

Since κX − V ∗ is compact, there is a finite collection {(X − U℘)∗ : ℘ ∈ I} such that

κX−V ∗ =
⋃ {

κX − U∗
℘ : ℘ ∈ I

}
. Let U< =

⋂ {U℘ : ℘ ∈ I}. It is immediate that U∗
<

is a clopen neighborhood of < such that U∗
< ⊂ V ∗. Therefore, γ is bases of κX. Since

each element of γ is clopen, γ is basis of compact sets closed under finite intersection.

Every nonempty irreducible close subset of κX is closure of unique point (that is

sober). Thus κX is spectral. ¤

Conclusion 4.1. Let X be a T3 space. If X is an F-spectral, then X is a W-spectral.

Proof. Since X is a T3 space. The Wallman compactification (γX, h) of X can be

embedded into the Fan-Gottesman compactification of X from Theorem 2.1. On the

other hand, for each disjoint open set G and H of X, there exists a clopen set U such

that G ⊆ U and H ∩ U = ∅, since X is an F-spectral. Then X is a W-spectral from

definition of relative topology and 2.4 Theorem in [2]. ¤
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