ON Λ -GENERALIZED CLOSED SETS IN FUZZY TOPOLOGICAL SPACES

K. BALASUBRAMANIYAN (1), S. SRIRAM (2) AND O. RAVI (3)

ABSTRACT. In this paper, we introduce the concepts of Λ -generalized fuzzy closed sets(briefly, Λ gf-closed sets), Λ -gf-closed sets and gf- Λ -closed sets in fuzzy topological spaces. Also we study some properties and characterizations of Λ -generalized fuzzy closed sets.

1. Introduction

In 1986, Maki [11] introduced the notion of Λ -sets in topological spaces. A Λ -set is a set A which is equal to its kernel (=saturated set), i.e the intersection of all open supersets of A. Arenas et al. [1] introduced and investigated the notion of λ -closed sets by involving Λ -sets and closed sets. A subset A of a topological space (X, τ) is called λ -closed [1] if $A = L \cap D$, where L is a Λ -set and D is a closed set. The intersection of all λ -closed sets containing a subset A of X is called the λ -closure of A and is denoted by $cl_{\lambda}(A)$ [5]. The complement of a λ -closed set is called λ -open. Ganster and Reilly [7] introduced the notion of locally closed sets using open sets and closed sets. In 1970, Levine [10] introduced the notion of generalized closed sets(briefly, g-closed sets) in topological spaces as a generalization of closed sets. Since

²⁰⁰⁰ Mathematics Subject Classification. Mathematics Subject Classification: 54C10, 54C08, 54C05.

Key words and phrases. λ -closed set, fuzzy regular closed set, Λ -fuzzy set, λ -fuzzy closed set, Λ f-closed set, λ f-irresolute function.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan. Received: Mar. 8, 2013 Accepted: Nov. 24, 2013.

then, many concepts related to generalized closed sets were defined and investigated. Caldas et al. [4] introduced new classes of sets called Λ_g -closed sets and Λ_g -open sets in topological spaces. They also established several properties of such sets. It is proved that Λ_g -closed sets and Λ_g -open sets are weaker forms of closed sets and open sets, respectively and stronger forms of g-closed sets and g-open sets, respectively.

Since the generalization of the usual notion of a set into a fuzzy set by Zadeh in his classic paper [17] of 1965, many abstract structures were generalized using fuzzy sets. Fuzzy topological spaces were introduced by Chang [6]. Fuzzy continuous functions and fuzzy closed functions were introduced by Chang in [6]. Recently Balasubramanian and Sundaram [3] introduced and studied the concepts of generalized fuzzy closed sets and fuzzy $T_{1/2}$ -spaces in fuzzy topological spaces. Moreover, they studied the generalizations of fuzzy continuous functions.

In the present paper, we introduce the concepts of Λ -generalized fuzzy closed sets (briefly, Λ gf-closed sets), Λ -gf-closed sets and gf- Λ -closed sets in fuzzy topological spaces. Further, we study some properties and characterizations of Λ -generalized fuzzy closed sets. Suitable Examples are given at proper places to substantiate the results. In topological spaces, the symbols such as \subseteq , \cap and \cup are used. Correspondingly, \leq , \wedge and \vee symbols are used in fuzzy topological spaces.

2. Preliminaries

A map from a nonempty set X into the closed unit interval I = [0, 1] is a fuzzy subset of X. The constant fuzzy sets taking the values 0 and 1 on X are denoted by 0_X and 1_X respectively. The family of all fuzzy sets of X is denoted by I^X . Usually the fuzzy sets will be denoted by Greek letters such as μ , ρ , ν , λ , α , β , or English alphabets such as A, B, C, ...

Definition 2.1. [6] A family τ of fuzzy sets on X is called a fuzzy topology for X if (1) θ_X , $1_X \in \tau$, (2) $\mu \land \rho \in \tau$ whenever μ , $\rho \in \tau$ and (3) $\lor \{\mu_i : i \in \Delta\} \in \tau$ whenever each $\mu_i \in \tau(i \in \Delta)$.

Moreover, the pair (X, τ) is called a fuzzy topological space.

Every member of τ is called a fuzzy open set.

The complement of a fuzzy open set is called a fuzzy closed set.

The complement of a fuzzy set λ of X is $1-\lambda$ (or λ^1).

Definition 2.2. For a fuzzy set λ of (X, τ) , the closure $cl(\lambda)$ and the interior $int(\lambda)$ of λ are defined in [2] respectively, as

$$cl(\lambda) = \land \{\nu : \nu \ge \lambda, \nu^1 \in \tau\} \text{ and }$$

 $int(\lambda) = \lor \{\nu : \nu \le \lambda, \nu \in \tau\}.$

Definition 2.3. [2] Let (X, τ) be a fuzzy topological space. A fuzzy set μ of X is called

- (1) fuzzy regular open if $\mu = int(cl(\mu))$;
- (2) fuzzy regular closed if $\mu = cl(int(\mu))$;

It is easily seen that a fuzzy set μ is fuzzy regular open if and only if μ^1 is fuzzy regular closed.

Definition 2.4. [3] A fuzzy set μ of a fuzzy topological space (X, τ) is called generalized fuzzy closed (briefly, gf-closed) if $cl(\mu) \leq \lambda$ whenever $\mu \leq \lambda$ and $\lambda \in \tau$.

Definition 2.5. [14] A fuzzy set μ of a fuzzy topological space (X, τ) is called a fuzzy LC set if $\mu = \alpha \wedge \beta$ where α is a fuzzy open and β is a fuzzy closed.

Definition 2.6. [3] A fuzzy topological space (X, τ) is called fuzzy $T_{1/2}$ space if every gf-closed set is fuzzy closed.

Definition 2.7. Let μ be a fuzzy set of a fuzzy topological space (X, τ) . Then μ is said to be

- (1) fuzzy semiopen if and only if $\mu \leq cl(int(\mu))$ [2];
- (2) fuzzy semiclosed if and only if μ^1 is a fuzzy semiopen set of X [2];
- (3) fuzzy preopen if and only if $\mu \leq int(cl(\mu))$ [15];
- (4) fuzzy preclosed if and only if μ^1 is a fuzzy preopen set of X [15].

Definition 2.8. Let μ be a fuzzy set of a fuzzy topological space (X, τ) . Then

- (1) $pint(\mu) = \forall \{\lambda \mid \lambda \leq \mu, \lambda \text{ is a fuzzy preopen set of } X\}$, is called the fuzzy preinterior of μ [8];
- (2) $pcl(\mu) = \wedge \{\lambda \mid \lambda \geq \mu, \lambda \text{ is a fuzzy preclosed set of } X\}$, is called the fuzzy preclosure of μ [8];
- (3) $sint(\mu) = \bigvee \{\lambda \mid \lambda \leq \mu, \lambda \text{ is a fuzzy semiopen set of } X\}$, is called the fuzzy semiinterior of μ [16];
- (4) $scl(\mu) = \wedge \{\lambda \mid \lambda \geq \mu, \lambda \text{ is a fuzzy semiclosed set of } X\}$, is called the fuzzy semiclosure of μ [16].

Theorem 2.9. Let μ be a fuzzy set in a fuzzy topological space (X, τ) . Then

- (1) $pint(\mu) \leq \mu \wedge int(cl(\mu))$ [8];
- (2) $pcl(\mu) \ge \mu \lor cl(int(\mu))$ [8];
- (3) $sint(\mu) = \mu \wedge cl(int(\mu))$ [9];
- (4) $scl(\mu) = \mu \vee int(cl(\mu))$ [9].

The following Lemma and two definitions are introduced in [6].

Definition 2.10. Let $f: X \to Y$ be a function from a set X into a set Y, μ be a fuzzy subset in X and ρ be a fuzzy subset in Y. Then the Zadeh's functions $f(\mu)$ and $f^{-1}(\rho)$ are defined by

(1) $f(\mu)$ is a fuzzy subset of Y where

$$f(\mu) = \begin{cases} \sup \mu(z) & \text{if } f^{-1}(y) \neq \emptyset \\ z \in f^{-1}(y) & \\ 0 & \text{otherwise} \end{cases}$$

$$for each \ u \in Y$$

- (2) $f^{-1}(\rho)$ is a fuzzy subset of X where $f^{-1}(\rho)(x) = \rho(f(x))$ for each $x \in X$.
- (3) $(f^{-1}(\rho))^1 = f^{-1}(\rho^1)$.

Lemma 2.11. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a function. Then for fuzzy sets μ and ρ of X and Y respectively, the following statements hold:

- (1) $ff^{-1}(\rho) \leq \rho$;
- (2) $f^{-1}f(\mu) \ge \mu$;
- (3) $f(\mu^1) \ge (f(\mu))^1$;
- (4) $f^{-1}(\rho^1) = (f^{-1}(\rho))^1$;
- (5) if f is injective, then $f^{-1}(f(\mu)) = \mu$;
- (6) if f is surjective, then $ff^{-1}(\rho) = \rho$;
- (7) if f is bijective, then $f(\mu^1) = (f(\mu))^1$.

Definition 2.12. A function $f:(X, \tau) \rightarrow (Y, \sigma)$ is called

- (1) fuzzy continuous if the inverse image of each fuzzy open set of Y is fuzzy open in X,
- (2) fuzzy closed if the image of each fuzzy closed set of X is fuzzy closed in Y.

Definition 2.13. [13] Let (X, τ) be a fuzzy topological space. A fuzzy point x_{α} $(0 < \alpha \le 1)$ is a fuzzy set of X defined as follows:

$$x_{\alpha}(y) = \begin{cases} \alpha & \text{if } y = x; \\ 0 & \text{otherwise.} \end{cases}$$

Definition 2.14. ([12], Definition 1.2.4) Let (X, τ) be a fuzzy topological space. The fuzzy point x_t in X is said to be contained in a fuzzy set μ or to belong to μ , denoted by $x_t \in \mu$, if and only if $t \leq \mu(x)$, for each $x \in X$. Evidently every fuzzy set μ can be expressed as the union of all the fuzzy points which belong to μ .

Definition 2.15. ([12], Definition 8.2.3) A fuzzy topological space (X, τ) is called a FT_1 space if and only if every fuzzy point is a fuzzy closed set.

Definition 2.16. [13] Let (X, τ) be a fuzzy topological space. A fuzzy set μ is quasicoincident with a fuzzy set ν , denoted by $\mu q \nu$, if there exists $x \in X$ such that $\mu(x) + \nu(x) > 1$. If μ is not quasi-coincident with ν , then we write $\mu \overline{q} \nu$. It is known that $\mu \leq \nu$ if and only if $\mu \overline{q}(1-\nu)$. **Definition 2.17.** [13] Let (X, τ) be a fuzzy topological space. A fuzzy point x_{α} in X is quasi-coincident with a fuzzy set ν , denoted by $x_{\alpha}q\nu$, if and only if $\alpha + \nu(x) > 1$. If x_{α} is not quasi-coincident with ν , then we write $x_{\alpha}\overline{q}\nu$.

Lemma 2.18. [2] For a fuzzy set λ of a fuzzy topological space (X, τ) , the following hold:

- (1) $(int(\lambda))^1 = cl(\lambda^1);$
- (2) $(cl(\lambda))^1 = int(\lambda^1)$.

3. Λ -generalized fuzzy closed sets

Definition 3.1. A fuzzy set μ of a fuzzy topological space (X, τ) is called a Λ -fuzzy set if $\mu = \hat{\mu}$, where $\hat{\mu} = \wedge \{\lambda : \mu \leq \lambda, \lambda \in \tau\}$.

Remark 3.2. For a fuzzy set μ of a fuzzy topological space (X, τ) , the following properties hold:

- (1) $\mu \leq \hat{\mu}$.
- (2) If $\mu \in \tau$, then $\hat{\mu} = \mu$ and hence is a Λ -fuzzy set.
- (3) If $\hat{\mu} = \mu$, then the following Example 3.3 shows that μ need not be fuzzy open.
- (4) If $\mu \leq \sigma$, then $\hat{\mu} \leq \hat{\sigma}$.
- (5) If μ is any fuzzy subset of X, then $\hat{\hat{\mu}} = \hat{\mu}$.

Proof. (1), (2), (3), (4) Obvious.

(5) If $\rho \in \tau$ then $\mu \leq \rho \Leftrightarrow \hat{\mu} \leq \rho$ by the definition of $\hat{\mu}$ and (1). Hence $\hat{\hat{\mu}} = \hat{\mu}$ and $\hat{\mu}$ is a Λ -fuzzy set.

Example 3.3. Let X be a nonempty set. Define $C_a: X \rightarrow [0, 1]$ such that $C_a(x) = a$ for all $x \in X$ and $a \in [0, 1]$. Then $\tau = \{C_0, C_1, C_a: 3/10 < a \le 4/10\}$ is a fuzzy topology on X and (X, τ) is a fuzzy topological space. Now $\hat{C}_{3/10} = \wedge \{\rho: \rho \in \tau \text{ and } C_{3/10} \le \rho\} = C_b$ where $b = \wedge \{a \mid 3/10 < a \le 4/10\}$ and hence b = 3/10 and $\hat{C}_{3/10} = C_{3/10}$. Thus $C_{3/10}$ is a Λ -fuzzy set but not fuzzy open in X.

Proposition 3.4. In a FT_1 space (X, τ) , every fuzzy subset of X is a Λ -fuzzy set.

Proof. Let μ be any fuzzy subset of X such that $x_t \overline{q}\mu$. Then $\mu(x) \leq 1-t$. Since (X, τ) is a FT₁-space, x_t is a fuzzy closed set of X. Hence x_t^1 is fuzzy open containing μ . By definition of $\hat{\mu}$, $\hat{\mu} \leq x_t^1$ and therefore $x_t \overline{q}\hat{\mu}$. Thus $\mu(x) \leq 1-t \Rightarrow \hat{\mu}(x) \leq 1-t$ and hence $\hat{\mu}(x) \leq \mu(x)$. Then $\hat{\mu} = \mu$ and hence μ is a Λ -fuzzy set.

Definition 3.5. A fuzzy set μ of a fuzzy topological space (X, τ) is said to be λ -fuzzy closed (briefly, λ f-closed) if μ can be put in the form $\mu = \alpha \wedge \beta$ where α is a Λ -fuzzy set and β is fuzzy closed in X.

The complement of a λf -closed set is λf -open. The collection of all λf -open sets in (X, τ) is denoted by $\lambda FO(X)$.

Lemma 3.6. In a fuzzy topological space (X, τ) , the following properties hold:

- (1) If μ_i is λf -closed for each $i \in \Delta$, then $\wedge_{i \in \Delta} \mu_i$ is λf -closed.
- (2) If μ_i is λf -open for each $i \in \Delta$, then $\forall_{i \in \Delta} \mu_i$ is λf -open.
- (3) Intersection of two λf -open sets is not necessarily λf -open.
- Proof. (1) Since μ_i is λ f-closed, $\mu_i = \alpha_i \wedge \beta_i$ where α_i is a Λ -fuzzy set and β_i is fuzzy closed for each i. Therefore $\wedge_{i \in \Delta} \mu_i = \wedge_{i \in \Delta} (\alpha_i \wedge \beta_i) = [\wedge_{i \in \Delta} \alpha_i] \wedge [\wedge_{i \in \Delta} \beta_i]$. Now $\wedge_{i \in \Delta} \alpha_i \leq \alpha_i$ for each i and by (4) of Remark 3.2.

We have $[\wedge_{i\in\Delta}\alpha_i]^{\wedge}\leq\hat{\alpha_i}$ for each i since each α_i is a Λ -fuzzy set.

Hence $[\wedge_{i\in\Delta}\alpha_i]^{\wedge}\leq \wedge_{i\in\Delta}\alpha_i$ and thus $\wedge_{i\in\Delta}\alpha_i$ is a Λ -fuzzy set.

Since β_i is fuzzy closed for each i, $\wedge_{i \in \Delta} \beta_i$ is fuzzy closed and hence $\wedge_{i \in \Delta} \mu_i$ is λ f-closed.

- (2) Taking complements the proof follows from (1).
- (3) Let $X = \{a, b\}$ and $A_1 : X \to [0, 1]$ be defined as $A_1(a) = 0.4$ and $A_1(b) = 0.6$. Then $\tau = \{0_X, 1_X, A_1\}$ is a fuzzy topology on X with $A_1 = \{(a, 0.4), (b, 0.6)\}$. In (X, τ) , A_1 and $A_2 = A_1^1$ are λ f-open subsets by (4) of Remark 3.7. $(A_1 \wedge A_2)^1$ is not λ f-closed, since the only Λ -fuzzy sets of X are 0_X , A_1 and

 1_X and the only fuzzy closed sets of X are 0_X , A_2 , 1_X . Thus $A_1 \wedge A_2$ is not λ f-open.

Remark 3.7. The following statements are true for any fuzzy topological space.

- (1) Every Λ -fuzzy set of X is λf -closed in X.
- (2) Every fuzzy closed set of X is λf -closed in X.
- (3) Every fuzzy LC set of X is λf -closed in X.
- (4) Every fuzzy open set of X is both λf -open and λf -closed.
- *Proof.* (1) Let μ be a Λ -fuzzy set. Then $\mu = \mu \wedge I_X$ where I_X is fuzzy closed of X. Hence μ is λ f-closed in X.
 - (2) Let μ be a fuzzy closed set of X. Then $\mu = I_X \wedge \mu$ where I_X is a Λ -fuzzy set of X. Hence μ is λ f-closed in X.
 - (3) Let μ be a fuzzy LC set. Then $\mu = \alpha \wedge \beta$ where α is a fuzzy open set and β is a fuzzy closed set of X. By (2) of Remark 3.2, α is a Λ -fuzzy set of X and hence μ is λ f-closed in X.
 - (4) Let μ be a fuzzy open of X. By (2) of Remark 3.2 and (1) of Remark 3.7, μ is λ f-closed. Again by (2) of Remark 3.7, μ is λ f-open. Thus μ is both λ f-closed and λ f-open in X.

The converse of each statement in Remark 3.7 is not true can be shown by the following Example.

- **Example 3.8.** (1) In Example 3.3, $C_{6/10}$ is fuzzy closed since $C_{4/10} \in \tau$. By (2) of Remark 3.7, $C_{6/10}$ is λf -closed. But $\hat{C}_{6/10} = C_1 \neq C_{6/10}$ and thus it is not a Λ -fuzzy set.
 - (2) In Example 3.3, $C_{3/10}$ is a Λ -fuzzy set since $\hat{C}_{3/10} = C_{3/10}$ and hence by (1) of Remark 3.7, $C_{3/10}$ is λf -closed but not fuzzy closed in X.
 - (3) In Example 3.3, $C_{3/10}$ is λf -closed by (1) of Remark 3.7. But $C_{3/10}$ is not a fuzzy LC set. If $C_{3/10} = \alpha \wedge \beta$ where α is fuzzy open and β is fuzzy closed in X, then $C_{3/10} = C_b \wedge C_d$. Since C_b is fuzzy open, b > 3/10 and C_d is fuzzy closed

implies $d \ge 6/10$. Thus $3/10 = min\{b,d\}$ which is a contradiction, proving that $C_{3/10}$ is not a fuzzy LC set of X.

(4) In Example 3.3, C_{6/10} is λf-closed by (2) of Remark 3.7. Since C_{4/10} is fuzzy open, by (4) of Remark 3.7, C_{4/10} is λf-closed and hence C_{6/10} is λf-open. Thus C_{6/10} is both λf-closed and λf-open but not fuzzy open.

Remark 3.9. From (1) and (2) of Example 3.8, it is easy to see that Λ -fuzzyness and fuzzy closedness are independent.

Lemma 3.10. For a fuzzy set μ of a fuzzy topological space (X, τ) , the following conditions are equivalent.

- (1) μ is λf -closed.
- (2) $\mu = L \wedge cl(\mu)$ where L is a Λ -fuzzy set.
- (3) $\mu = \hat{\mu} \wedge cl(\mu)$.

Proof. (1) \Rightarrow (2). Obvious since cl(μ) is fuzzy closed containing μ .

- (2) \Rightarrow (3). Obvious since $\hat{\mu}$ is a Λ -fuzzy set, by (5) of Remark 3.2.
- $(3) \Rightarrow (1)$. Follows since $\hat{\mu}$ is a Λ -fuzzy set.

Lemma 3.11. A fuzzy set μ of a fuzzy topological space (X, τ) is gf-closed if and only if $cl(\mu) \leq \hat{\mu}$.

Proof. Let μ be gf-closed in X. Then $\operatorname{cl}(\mu) \leq \lambda$, whenever $\mu \leq \lambda$ for any $\lambda \in \tau$. Thus $\operatorname{cl}(\mu) \leq \wedge \{\lambda : \mu \leq \lambda \text{ and } \lambda \in \tau\} = \hat{\mu}$.

Conversely. Let $\mu \leq \lambda$ and $\lambda \in \tau$. By the definition of $\hat{\mu}$, $\hat{\mu} \leq \lambda$. Then $\operatorname{cl}(\mu) \leq \hat{\mu} \leq \lambda$. Thus $\operatorname{cl}(\mu) \leq \lambda$ whenever $\mu \leq \lambda$ and $\lambda \in \tau$, which proves that μ is gf-closed.

Theorem 3.12. For a fuzzy set μ of a fuzzy topological space (X, τ) , the following conditions are equivalent.

- (1) μ is fuzzy closed.
- (2) μ is gf-closed and a fuzzy LC set.
- (3) μ is gf-closed and λ f-closed.

Proof. (1) \Rightarrow (2). Since every fuzzy closed set is gf-closed and also a fuzzy LC set, the proof follows immediately.

 $(2)\Rightarrow(3)$. By (3) of Remark 3.7, every fuzzy LC set is λ f-closed and hence the proof. $(3)\Rightarrow(1)$. Since μ is gf-closed, then by Lemma 3.11, $\operatorname{cl}(\mu)\leq\hat{\mu}$. But μ is λ f-closed, hence by Lemma 3.10, $\mu=\hat{\mu}\wedge\operatorname{cl}(\mu)$. Therfore $\mu=\operatorname{cl}(\mu)$ and thus μ is fuzzy closed.

Definition 3.13. For a fuzzy set μ of a fuzzy topological space (X, τ) , $cl_{\lambda}(\mu)$ is defined as the intersection of all λ f-closed sets containing μ and is called the λ f-closure of μ .

Remark 3.14. The following properties hold in any fuzzy topological space:

- (1) For a fuzzy set μ , $\mu \leq cl_{\lambda}(\mu)$.
- (2) $cl_{\lambda}(\mu)$ is λf -closed for a fuzzy set μ .
- (3) If μ is λf -closed, then $\mu = cl_{\lambda}(\mu)$.
- (4) If $\mu \leq \sigma$, then $cl_{\lambda}(\mu) \leq cl_{\lambda}(\sigma)$.
- (5) For a fuzzy set μ , $cl_{\lambda}(\mu) \leq cl(\mu)$.

Definition 3.15. A fuzzy set μ of a fuzzy topological space (X, τ) is called Λ -generalized fuzzy closed (briefly, Λ gf-closed) (respectively, Λ -gf-closed, gf- Λ -closed) if $cl(\mu) \leq \beta$ (respectively, $cl_{\lambda}(\mu) \leq \beta$, $cl_{\lambda}(\mu) \leq \beta$) whenever $\mu \leq \beta$ and β is λ f-open (respectively, β is λ f-open, β is fuzzy open).

As a consequence of the above definition, we have the following Proposition.

Proposition 3.16. For a fuzzy topological space (X, τ) , then the following properties hold.

- (1) Every fuzzy closed set is Λgf -closed.
- (2) Every Λqf -closed set is qf-closed.
- (3) Every λf -closed set is Λ -gf-closed.
- (4) Every Λ -gf-closed set is gf- Λ -closed.
- (5) Every Λgf -closed set is Λ -gf-closed.
- (6) Every gf-closed set is gf- Λ -closed.

Proof. (1) Let μ be a fuzzy closed set and λ be any λ f-open set containing μ . Then $cl(\mu) = \mu \leq \lambda$. Thus $cl(\mu) \leq \lambda$ and hence μ is Λ gf-closed.

- (2) Since any fuzzy open set λ is λ f-open by (2) of Remark 3.7, the proof follows.
- (3) Proof follows from (3) of Remark 3.14.
- (4) Proof follows from (2) of Remark 3.7.
- (5) Proof follows from (5) of Remark 3.14.
- (6) Proof follows from (5) of Remark 3.14.

Remark 3.17. From the above discussions, we have the following diagram:

Remark 3.18. From the single Example 3.3 it is seen that none of the above implications is reversible.

The different types of fuzzy sets other than C_0 and C_1 in Example 3.3 are

fuzzy open sets =
$$\{C_a : 3/10 < a \le 4/10\};$$

fuzzy closed sets =
$$\{C_a : 6/10 \le a < 7/10\};$$

$$\Lambda$$
-fuzzy sets = { C_a : $3/10 \le a \le 4/10$ };

$$\lambda f\text{-closed sets} = \{C_a : 3/10 \le a \le 4/10, 6/10 \le a < 7/10\};$$

$$\lambda f$$
-open sets = { C_a : $3/10 < a \le 4/10, 6/10 \le a \le 7/10$ };

gf-closed sets =
$$\{C_a : 4/10 < a \le 1\};$$

$$\Lambda\text{-gf-closed sets} = \{C_a : 0 \le a < 7/10, 7/10 < a \le 1\};$$

$$\Lambda gf\text{-}closed\ sets = \{C_a: 4/10 < a < 7/10, 7/10 < a \le 1\};$$

and
$$gf$$
- Λ -closed sets = { $C_a : 0 \le a \le 1$ }.

(1) Λgf -closed $\rightarrow fuzzy$ closed.

The
$$\lambda f$$
-open sets containing $C_{5/10}$ are $\{C_a : 6/10 \le a \le 7/10\}$. But $cl(C_{5/10})$ = $C_{6/10} \le \{C_a : 6/10 \le a \le 7/10\}$. Thus $cl(C_{5/10}) \le \lambda$ whenever $C_{5/10} \le \lambda$

and λ is λf -open, which proves that $C_{5/10}$ is Λgf -closed. But $C_{5/10}$ is not fuzzy closed.

(2) gf-closed $\rightarrow \Lambda gf$ -closed.

For $C_{7/10}$, C_1 is the only fuzzy open set containing $C_{7/10}$ and hence $C_{7/10}$ is gf-closed. Since $C_{7/10}$ is λf -open set containing $C_{7/10}$ we have $C_{7/10} \leq C_{7/10}$. But $cl(C_{7/10}) = C_1 \nleq C_{7/10}$. Hence $C_{7/10}$ is not Λgf -closed. Thus $C_{7/10}$ is gf-closed but not Λgf -closed.

- (3) Λ -gf-closed- $\rightarrow \lambda$ f-closed. $C_{5/10}$ is Λ gf-closed and therefore Λ -gf-closed. But $C_{5/10}$ is not λ f-closed.
- (4) gf- Λ -closed-A-f-closed. By (2) $C_{7/10}$ is gf-closed and therefore gf- Λ -closed. Now $C_{7/10}$ is λf -open and $C_{7/10} \leq C_{7/10}$. But $cl_{\lambda}(C_{7/10}) = C_1 \nleq C_{7/10}$ and hence $C_{7/10}$ is not Λ -gf-closed.
- (5) λf -closed \rightarrow fuzzy closed. $C_{3/10}$ is a Λ -fuzzy set and therefore it is λf -closed, but $C_{3/10}$ is not fuzzy closed.
- (6) Λ-gf-closed→Λgf-closed.
 By (5) C_{3/10} is λf-closed and hence Λ-gf-closed. But C_{4/10} is fuzzy open and hence λf-open with C_{3/10}≤C_{4/10} whereas cl(C_{3/10}) = C_{6/10}≰C_{4/10} which proves that C_{3/10} is not Λgf-closed.
- (7) gf- Λ -closed- $\to gf$ -closed. $cl_{\lambda}(C_{4/10}) = C_{4/10}$ and hence $cl_{\lambda}(C_{4/10}) \le \lambda$ whenever $C_{4/10} \le \lambda$ and λ is fuzzy open. Thus $C_{4/10}$ is gf- Λ -closed. But $C_{4/10}$ is fuzzy open and $C_{4/10} \le C_{4/10}$ whereas $cl(C_{4/10}) = C_{6/10} \nleq C_{4/10}$. This proves that $C_{4/10}$ is not gf-closed.

Remark 3.19. The following concepts are independent. This fact can be seen from the Examples given.

(1) Λgf-closedness and λf-closedness.
Example (1): In Example 3.3, C_{3/10} is λf-closed. But C_{3/10} is not Λgf-closed by (6) of Remark 3.18.

Example (2): In Example 3.3, $C_{5/10}$ is Λgf -closed by (1) of Remark 3.18. But $C_{5/10}$ is not λf -closed.

- (2) Λ -gf-closedness and gf-closedness.
 - Example (1): In Example 3.3, $C_{4/10}$ is Λ -gf-closed since $cl_{\lambda}(C_{4/10}) = C_{4/10}$ by (7) of Remark 3.18. But it is not gf-closed by (7) of Remark 3.18. Example (2): In Example 3.3, $C_{7/10}$ is gf-closed by (2) of Remark 3.18. But $C_{7/10}$ is not Λ -gf-closed by (4) of Remark 3.18.
- (3) λf -closedness and gf-closedness.
 - Example (1): In Example 3.3, $C_{3/10}$ is λf -closed by (5) of Remark 3.18. But $C_{3/10}$ is not gf-closed for $C_{4/10}$ is fuzzy open such that $C_{3/10} \leq C_{4/10}$ whereas $cl(C_{3/10}) = C_{6/10} \nleq C_{4/10}$.
 - Example (2): In Example 3.3, $C_{7/10}$ is gf-closed by (2) of Remark 3.18. By (4) of Remark 3.18, $C_{7/10}$ is not Λ -gf-closed and hence not λ f-closed.
- Remark 3.20. (1) Decomposition of a fuzzy closed set in terms of λf -closedness and gf-closedness.

By Theorem 3.12, a fuzzy set μ is fuzzy closed $\Leftrightarrow \mu$ is λf -closed and gf-closed. By (3) of Remark 3.19, λf -closedness and gf-closedness are independent.

(2) Decomposition of a fuzzy closed set in terms of λf-closedness and Λgf-closedness. Let μ be fuzzy closed in (X, τ). By Proposition 3.16, μ is Λgf-closed. Also by (2) of Remark 3.7, μ is λf-closed. Hence μ is Λgf-closed and λf-closed. Conversely. Let μ be Λgf-closed and λf-closed. By Proposition 3.16, μ is gf-closed and hence by Theorem 3.12, μ is fuzzy closed. Thus μ is fuzzy closed⇔μ is Λgf-closed and λf-closed. By (1) of Remark 3.19, Λgf-closedness and λf-closedness are independent.

Theorem 3.21. The union of two Λgf -closed sets is Λgf -closed.

Proof. Let A and B be any two Λ gf-closed sets of a fuzzy topological space (X, τ) . Let $A \vee B \leq U$, where U is λ f-open. Then $A \leq U$ and $B \leq U$. Since A and B are Λ gf-closed,

 $cl(A) \le U$ and $cl(B) \le U$. Hence $cl(A \lor B) = cl(A) \lor cl(B) \le U$. Thus $A \lor B$ is Λgf -closed in X.

Remark 3.22. The intersection of two Λgf -closed sets need not be Λgf -closed as can be verified by the following Example.

Example 3.23. Let $X=\{a, b\}$ and $A: X\rightarrow [0, 1]$ be defined as A(a)=0.2, A(b)=0.2. Then (X, τ) is a fuzzy topological space with $\tau=\{0_X, 1_X, A\}$. The Λ -fuzzy sets in X are 0_X , 1_X and A. The fuzzy closed sets are 0_X , 1_X and A^1 . Hence the λf -closed sets are 0_X , 1_X , A and A^1 . The λf -open sets are 0_X , 1_X , A and A^1 where $A=\{(a, 0.2), (b, 0.2)\}$ and $A^1=\{(a, 0.8), (b, 0.8)\}$. $\mu_1=\{(a, 0.2), (b, 1)\}$ is Λgf -closed since 1_X is the only λf -open set in X containing μ_1 . And $\mu_2=\{(a, 1), (b, 0.2)\}$ is also Λgf -closed since 1_X is the only λf -open set in X containing μ_2 . But $\mu_1 \wedge \mu_2=\{(a, 0.2), (b, 0.2)\}$ which is fuzzy open and hence λf -open, with $\{(a, 0.2), (b, 0.2)\}$ whereas $cl\{(a, 0.2), (b, 0.2)\}=\{(a, 0.8), (b, 0.8)\} \not \leq \{(a, 0.2), (b, 0.2)\}$. This verifies that $\mu_1 \wedge \mu_2$ is not Λgf -closed, inspite of μ_1 and μ_2 being Λgf -closed in X.

Proposition 3.24. If A is a Λgf -closed set of (X, τ) and $A \leq B \leq cl(A)$, then B is a Λgf -closed set of (X, τ) .

Proof. Let $B \le U$ where U is λf -open in X. Since $A \le B$, $A \le U$. But A is Λgf -closed set in X, then $cl(A) \le U$. Also, $B \le cl(A)$, $cl(B) \le cl(A) \le U$. Therefore B is Λgf -closed in X.

Theorem 3.25. If A is a λf -open and Λgf -closed set of (X, τ) , then A is fuzzy closed in X.

Proof. Since A is λ f-open and Λ gf-closed, then $cl(A) \leq A$ and hence A is fuzzy closed in X.

Theorem 3.26. Let A be a Λgf -closed set in (X, τ) .

(1) If A is fuzzy regular open, then scl(A) and pint(A) are Λgf -closed sets.

(2) If A is fuzzy regular closed, then pcl(A) and sint(A) are Λgf -closed sets.

Proof. (1) By the definitions, $scl(A) \ge A$ and $pint(A) \le A$. But A is fuzzy regular open, then A = int(cl(A)). Therefore A is fuzzy semiclosed and fuzzy preopen. Thus A is fuzzy semiclosed and hence A = scl(A). Similarly we obtain A = pint(A). Therefore scl(A) and pint(A) are Λgf -closed sets.

(2) By the definitions, $pcl(A) \ge A$ and $sint(A) \le A$. But A is fuzzy regular closed, then A = cl(int(A)). Therefore A is fuzzy preclosed and fuzzy semiopen. Thus A = pcl(A) and A = sint(A). Therefore pcl(A) and sint(A) are Agf-closed sets.

Theorem 3.27. Let (X, τ) be a fuzzy $T_{1/2}$ space. Then the following conditions are equivalent.

- (1) A is fuzzy closed.
- (2) A is Λgf -closed.
- (3) A is qf-closed.

Proof. Obvious.

Definition 3.28. A fuzzy set A in (X, τ) is said to be Λgf -open in (X, τ) if and only if A^1 is Λgf -closed in (X, τ) .

It is evident that every fuzzy open set of (X, τ) is Λgf -open in (X, τ) but not conversely.

In Example of Remark 3.18, $C_{5/10}$ is Λgf -open but not fuzzy open in X.

Theorem 3.29. The intersection of two Λgf -open sets in (X, τ) is Λgf -open.

Proof. This is obvious by Theorem 3.21.

The following Example shows that arbitrary union of Λgf -closed sets is not necessarily Λgf -closed.

Example 3.30. In Example 3.3, Λgf -closed sets = $\{C_a : 4/10 < a < 7/10 \text{ and } 7/10 < a \le 1\}$ by Remark 3.18. C_a is Λgf -closed for each a such that 4/10 < a < 7/10

and $\forall C_a = C_b$ where $b = \forall \{a \mid 4/10 < a < 7/10\}$. Hence $\forall C_a = C_{7/10}$, where 4/10 < a < 7/10, which is not Λgf -closed.

Theorem 3.31. A fuzzy set A is Λgf -open in (X, τ) if and only if $F \leq int(A)$ whenever F is λf -closed in (X, τ) and $F \leq A$.

Proof. Sufficiency. We first prove that A^1 is Λgf -closed. Let $A^1 \leq G$, where G is λf -open. Hence $G^1 \leq A$ and G^1 is λf -closed. Then by the assumption $G^1 \leq \operatorname{int}(A)$ which implies that $(\operatorname{int}(A))^1 \leq G$, so $\operatorname{cl}(A^1) \leq G$. Hence A^1 is Λgf -closed i.e., A is Λgf -open.

Conversely. Let A be Λ gf-open. Then A¹ is Λ gf-closed and let F be a λ f-closed set contained in A. Then A¹ \leq F¹. But A¹ is Λ gf-closed, then $cl(A^1)\leq$ F¹. This implies that $F\leq (cl(A^1))^1=int(A)$. Thus $F\leq int(A)$.

Proposition 3.32. If $int(A) \leq B \leq A$ and A is Λgf -open in (X, τ) , then B is Λgf -open in (X, τ) .

Proof. Suppose int(A) \leq B \leq A and A is Λ gf-open in (X, τ). Then A¹ \leq B¹ \leq cl(A¹) and A¹ is Λ gf-closed. By Proposition 3.24, B¹ is Λ gf-closed in (X, τ) and hence B is Λ gf-open in (X, τ).

4. Fuzzy functions

We begin with the following notions:

Definition 4.1. A fuzzy function $f:(X, \tau) \rightarrow (Y, \sigma)$ is said to be

- (1) λf -irresolute if $f^{-1}(V)$ is λf -open in X for every λf -open set V of Y.
- (2) λf -closed if f(F) is λf -closed in Y for every λf -closed set F of X.

Theorem 4.2. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a λf -irresolute fuzzy closed function. If A is Λgf -closed in X, then f(A) is Λgf -closed in Y.

Proof. Let A be a Λ gf-closed set of X and V be a λ f-open set of Y containing f(A). But f is λ f-irresolute, then $f^{-1}(V)$ is λ f-open in X and $A \leq f^{-1}(V)$. Since A is Λ gf-closed, hence $cl(A) \leq f^{-1}(V)$ and $f(A) \leq f(cl(A)) \leq V$. Since f is fuzzy closed, we obtain $cl(f(A)) \leq V$. This shows that f(A) is Λ gf-closed in Y.

Lemma 4.3. A function $f:(X, \tau) \rightarrow (Y, \sigma)$ is λf -closed if and only if for each fuzzy subset B of Y and each $U \in \lambda FO(X)$ containing $f^{-1}(B)$, there exists $V \in \lambda FO(Y)$ such that $B \leq V$ and $f^{-1}(V) \leq U$.

Proof. Necessity. Suppose that f is a λf -closed function. Let $B \leq Y$ and $U \in \lambda FO(X)$ containing $f^{-1}(B)$. Put $V = (f(U^1))^1$. Then we obtain $V \in \lambda FO(Y)$, $B \leq V$ and $f^{-1}(V) \leq U$. Sufficiency. Let F be any λf -closed set of (X, τ) . Set f(F) = B, then $F \leq f^{-1}(B)$ and $f^{-1}(B^1) \leq F^1 \in \lambda FO(X)$. By hypothesis, there exists $V \in \lambda FO(Y)$ such that $B^1 \leq V$ and $f^{-1}(V) \leq F^1$. Therefore we obtain $V^1 \leq B = f(F) \leq V^1$. Hence $f(F) = V^1$ and f(F) is λf -closed in (Y, σ) . Therefore, f is λf -closed.

Theorem 4.4. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a fuzzy continuous λf -closed function. If B is a Λgf -closed set of (Y, σ) , then $f^{-1}(B)$ is Λgf -closed in (X, τ) .

Proof. Let B be a Λ gf-closed in (Y, σ) and U be a λ f-open set of (X, τ) containing $f^{-1}(B)$. Since f is λ f-closed, then by Lemma 4.3 there exists a λ f-open set V of (Y, σ) such that $B \leq V$ and $f^{-1}(V) \leq U$. But B is Λ gf-closed in (Y, σ) , then $cl(B) \leq V$ and hence $f^{-1}(B) \leq f^{-1}(cl(B)) \leq f^{-1}(V) \leq U$. Since f is fuzzy continuous, $f^{-1}(cl(B))$ is fuzzy closed and hence $cl(f^{-1}(B)) \leq U$. This shows that $f^{-1}(B)$ is Λ gf-closed in (X, τ) .

Acknowledgement

The authors would like to thank the referees for the helpful suggestions.

References

- [1] F. G. Arenas, J. Dontchev and M. Ganster, On λ -sets and dual of generalized continuity, Questions Answers Gen. Topology, 15(1997), 3-13.
- [2] K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82(1)(1981), 14-32.
- [3] G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy sets and Systems, 86(1)(1997), 93-100.
- [4] M. Caldas, S. Jafari and T. Noiri, On Λ-generalized closed sets in topological spaces, Acta Math. Hungar., 118(4) (2008), 337-343.

- [5] M. Caldas and S. Jafari, On some low separation axioms via λ -open and λ -closure operator, Rend. Circ. Mat. Palermo (2), 54(2005), 195-208.
- [6] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182-190.
- [7] M. Ganster and I. L. Reilly, Locally closed sets and LC-continuous functions, Internat J. Math. Math. Sci., 12(1989), 417-424.
- [8] B. Krsteska, Fuzzy strongly preopen sets and fuzzy strong precontinuity, Mat. Vesnik, 50(1998), 111-123.
- [9] B. Krsteska, A note on the article "Fuzzy less strongly semiopen sets and fuzzy less strong semicontinuity", Fuzzy sets and Systems, 107(1)(1999), 107-108.
- [10] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo (2), 19(1970), 89-96.
- [11] H. Maki, Generalized Λ-sets and the associated closure operator in: The Special Issue in Commemoration of Prof. Kazusada IKEDA'S Retirement, 1 Oct. (1986), 139-146.
- [12] N. Palaniappan, Fuzzy topology, Narosa Publishing House, 2002.
- [13] P. Pao-Ming and L. Ying-Ming, Fuzzy topology I. Neighborhood structure of fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76(1980), 571-599.
- [14] M. Rajamani, On decomposition of fuzzy continuity in fuzzy topological spaces, Acta Ciencia Indica, XXVIIM (4)(2001), 545-547.
- [15] M. K. Singal and N. Prakash, Fuzzy preopen sets and fuzzy preseparation axioms, Fuzzy sets and Systems, 44(2)(1991), 273-281.
- [16] T. H. Yalvas, Semi-interior and semi-closure of a fuzzy set, J. Math. Anal. Appl., 132(1988), 356-364.
- [17] L. A. Zadeh, Fuzzy sets, Information and control, 8(1965), 338-353.
- (1,2) Mathematics Section, Faculty of Engineering and Technology, Annamalai University, Chidambaram, Tamil Nadu, India.

E-mail address, (1): k_g_balu@yahoo.co.in

 $E ext{-}mail\ address,\ (2): \ \mathtt{ssm_3096@yahoo.co.in}$

(3) Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt., Tamil Nadu, India.

E-mail address: siingam@yahoo.com