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ON ρ−CONTRACTION IN G-METRIC SPACE

ANIMESH GUPTA (1) AND R.N. YADAVA (2)

Abstract. In this paper, we introduced a new type of a contractive condition

defined on G-metric space, namely a ρ−contraction, which generalizes the weak

contraction. We also proved some fixed point theorems for such a condition in

ordered metric spaces. A supporting example of our results is provided in the last

part of our paper as well.

1. Introduction

It is well known that the Banach contraction principle has been improved in dif-

ferent directions in different spaces by mathematicians over the years. Even in the

contemporary research, it remains a heavily investigated branch.

In 1997, Alber and Guerre-Delabriere [3] have introduced the concept of weak

contraction in Hilbert spaces. Later, Rhoades [19] showed, in 2001, that these re-

sults are also valid in complete metric spaces. In 2009, Harjani and Sadarangani

[11] carried the work of Rhoades [19] into partially ordered metric spaces. Harjini

and Sadarangani [11] also proved fixed point theorems for noncontinuous mappings,

nonincreasing mappings and even for non-monotonic mappings.
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On the other hand in 2006, Mustafa in collaboration with Sims introduced a new

notion of generalized metric space called G-metric space [14], which are called G-

metric spaces as generalization of metric space (X,d), to develop and to introduce a

new fixed point theory for a variety of mappings in this new setting, also to extend

known metric space theorems to a more general setting. After that several fixed point

results were proved in these spaces. Some of these works are noted in [1, 2, 15, 16,

17, 18].

The aim of this paper is to introduced a weak condition which resulted in the

concept called a ρ−contraction.

Definition 1.1. Let (X,¹, G) be an ordered G-metric space. A function ρ : X ×
X ×X → R is called a ρ−function in X if it satisfies the following conditions:

(i) ρ(x, y, z) ≥ 0 for every comparable x, y, z ∈ X;

(ii) for any sequence {xn}∞n=1, {yn}∞n=1 and {zn}∞n=1 in X such that xn, yn and

zn are comparable at each n ∈ N , if limn→∞ xn = x, limn→∞ yn = y and

limn→∞ zn = z, then limn→∞ ρ(xn, yn, zn) = ρ(x, y, z);

(iii) for any sequence {xn}∞n=1, {yn}∞n=1 and {zn}∞n=1 in X such that xn, yn and zn

are comparable at each n ∈ N , if limn→∞ ρ(xn, yn, zn) = 0

then limn→∞ G(xn, yn, zn) = 0.

If, in addition, then following condition is also satisfied:

(A) for any sequence {xn}∞n=1, {yn}∞n=1 and {zn}∞n=1 in X such that xn, yn and zn

are comparable at each n ∈ N , if the limit limn→∞ G(xn, yn, zn) exists, then

the limit limn→∞ ρ(xn, yn, zn) also exists,

then ρ is said to be a ρ−function of type (A) w.r.to ¹ in X.

Proposition 1.1. Let (X,¹, G) be an ordered G-metric space and ρ : X×X×X → R

be a ρ− function w.r.to ¹ in X. If x, y, z ∈ X are comparable and ρ(x, y, z) = 0 then

x = y = z.
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Proof. Let x, y, z ∈ X be comparable and ρ(x, y, z) = 0. Define {xn}∞n=1, {yn}∞n=1

and {zn}∞n=1 to be three constant sequences in X such that xn = x, yn = y and zn = z

for all n ∈ X. It follows from the definition of a ρ−function, since x, y and z are

comparable that G(x, y, z) = 0. That is x = y = z. ¤

Corollary 1.1. Let (X,¹, G) be a totally ordered G-metric space and ρ : X ×X ×
X → R be a ρ−function w.r.to ¹ in X. If x, y, z ∈ X and ρ(x, y, z) = 0 then

x = y = z.

Proof. Since X is totally ordered set, any x, y, z ∈ X are comparable. The rest of the

proof is straight forward. ¤

Example 1.1. Let X = R. Define G, ρ : X × X × X → R+ with G(x, y, z) = |
x − y | + | y − z | + | z − x | and ρ(x, y, z) = 1+ | x − y | + | y − z | + | z − x |. If

X is endowed with a usual ordering ¹, then (X,¹, G) is a totally ordered G- metric

space with ρ−as a ρ−function of type (A) w.r.to ¹ in X.

Note that ρ(x, y, z) 6= 0 for all x, y, z ∈ X even when x = y = z. This example

show that the converges of Proposition 1.1 and that the Corollary 1.1 are not generally

true.

Definition 1.2. Let (X,¹, G) be an ordered G-metric space, a mapping f : X → X

is called ρ−contraction w.r.to ¹ if there exists a ρ−function ρ : X × X × X → R

w.r.to ¹ in X such that

G(fx, fy, fz) ≤ G(x, y, z)− ρ(x, y, z)(1.1)

for any comparable x, y, z ∈ X. Naturally, if there exists a ρ−function of type (A)

w.r.to ¹ in X such that inequality 1.1 holds for any comparable x, y, z ∈ X, then f

is said to be a ρ−contraction of type (A) w.r.to ¹.
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2. Main results

Theorem 2.1. Let (X,¹, G) be a complete ordered G-metric space and f : X → X

be continuous and nondecreasing ρ−contraction of type (A) w.r.to ¹. If there exists

x0 ∈ X with x0 ¹ fx0, then {fnx0}∞n=1 converges to a fixed point of f in X.

Proof. For the existence of fixed point, we choose x0 ∈ X such that x0 ¹ fx0. If

x0 = fx0, then the proof is finished. Suppose that fx0 6= x0. We define a sequence

{xn}∞n=1 such that xn = fnx0. Since x0 ¹ fx0 and f is nondecreasing w.r.to ¹, we

obtain

x0 ¹ x1 ¹ x2 ¹ ... ¹ xn ¹ xn+1 ¹ ....

If there exists n0 ∈ N such that ρ(xn0 , xn0+1, xn0+2) = G(xn0 , xn0+1, xn0+2), then

by the notion of ρ−contractivity, the proof is finished. Therefore, we assume that

ρ(xn, xn+1, xn+2) < G(xn, xn+1, xn+2) for all n ∈ N . Also assume that ρ(xn, xn+1, xn+2) 6=
0 for all n ∈ N . Otherwise we can find n0 ∈ N with xn0 = xn0+1, that is xn0 = fxn0 ,

and the proof is finished. Hence, we consider only the case where 0 < ρ(xn, xn+1, xn+2) <

G(xn, xn+1, xn+2) for all n ∈ N .

Since xn ¹ xn+1 for all n ∈ N , we have

G(xn, xn+1, xn+2) = G(fxn−1, fxn, fxn+1)

≤ G(xn−1, xn, xn+1)− ρ(xn−1, xn, xn+1)

≤ G(xn−1, xn, xn+1)

for all n ∈ N . Therefore, we have {G(xn−1, xn, xn+1)}∞n=1 nondecreasing. Since

{G(xn−1, xn, xn+1)}∞n=1 is bounded, there exists l ≥ 0 such that limn→∞ G(xn−1, xn, xn+1) =

l. Thus,there exists q ≥ 0 such that limn→∞ ρ(xn−1, xn, xn+1) = q.
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Assume that l > 0. Then, by the ρ−contractivity of f , we have

l ≤ l − q.

Hence,q = 0, which implies that l = 0, a contradiction. Therefore, we have

lim
n→∞

G(xn−1, xn, xn+1) = 0.(2.1)

Now we show that {xn}∞n=1 is a Cauchy sequence in X. Assume the contrary. Then

there exists ε0 > 0 for which we can define subsequences {xmk
}∞k=1, {xnk

}∞k=1 and

{xpk
}∞k=1 of {xn}∞n=1 such that nk is minimal in the sense that nk > mk > pk > k and

G(xpk
, xmk

, xnk
) ≥ ε0. Therefore, G(xpk

, xmk
, xnk−1) < ε0. Observe that

ε0 ≤ G(xpk
, xmk

, xnk
)

≤ G(xpk
, xpk−1, xpk−1) + G(xpk−1, xmk

, xnk
)

< ε0 + G(xpk−1, xmk
, xnk

).

Letting k →∞, we obtain ε0 ≤ limk→∞ G(xpk
, xmk

, xnk
) ≤ ε0 and so

lim
k→∞

G(xpk
, xmk

, xnk
) = ε0.(2.2)

Similarly we have

lim
k→∞

G(xpk−1, xmk−1, xnk−1) = ε0.(2.3)

Further we deduce that the limit limk→∞ ρ(xpk−1, xmk−1, xnk−1) also exists. Now

by the ρ−contractivity, we have

G(xpk
, xmk

, xnk
) = G(fxpk−1, fxmk−1, fxnk−1)

≤ G(xpk−1, xmk−1, xnk−1)− ρ(xpk−1, xmk−1, xnk−1).
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From 2.2 and 2.3, we may find that

0 ≤ − lim
n→∞

ρ(xpk−1, xmk−1, xnk−1),(2.4)

which further implies that limn→∞ ρ(xpk−1, xmk−1, xnk−1) = 0. Notice that xmk−1 ¹
xnk−1 at each k ∈ N . Consequently, we obtain that limn→∞ G(xpk−1, xmk−1, xnk−1) =

0, which is a contradiction. So {xn}∞n=1 is a Cauchy sequence. Since X is complete,

there exists x? such that xn = fnx0 → x? as n →∞. Finally, the continuity of f and

ffnx0 = fn+1x0 → x? implies that fx? = x?.

Therefore, x? is a fixed point of f . ¤

Next, we drop the continuity of f in Theorem 2.1 and find out that we can still

guarantee a fixed point if we strengthen the condition of a partially ordered set to be

a sequentially ordered set.

Theorem 2.2. Let (X,¹, G) be a complete sequentially ordered G-metric space and

f : X → X be nondecreasing ρ−contraction of type (A) w.r.to ¹. If there exists

x0 ∈ X with x0 ¹ fx0, then {fnx0}∞n=1 converges to a fixed point of f in X.

Proof. If we take xn = fnx0 in the proof of the Theorem 2.1, then we conclude that

{xn}∞n=1 converges to a point x? ∈ X.

Next we prove that x? is fixed point of f in X. Indeed suppose that x? is not a fixed

point of f , i.e., G(x?, fx?, fx?) 6= 0. Since x? is comparable with xn for all n ∈ N ,

we have

G(x?, fx?, fx?) ≤ G(x?, fxn, fxn) + G(fxn, fx?, fx?)

≤ G(x?, fxn, fxn) + G(xn, x?, x?)− ρ(xn, x?, x?)

≤ G(x?, xn+1, xn+1) + G(xn, x
?, x?)− ρ(xn, x

?, x?)

≤ G(x?, xn+1, xn+1) + G(xn, x
?, x?)
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for all n ∈ N . By the definition of convergent sequence, we have for any ε > 0, there

exists n ∈ N such that G(xn, xn, x?) < ε
2
. Therefore we have

G(x?, fx?, fx?) <
ε

2
+

ε

2
< ε.

As easily seen, G(x?, fx?, fx?) = 0, which is contradiction. Hence x? is a fixed point

of f . ¤

Corollary 2.1. Let (X,¹, G) be a complete totally ordered G-metric space and f :

X → X be nondecreasing ρ−contraction of type (A) w.r.to ¹. If there exists x0 ∈ X

with x0 ¹ fx0, then {fnx0}∞n=1 converges to a fixed point of f in X.

Proof. Take xn = fnx0 as in proof of Theorem 2.1. Since the total ordering implies

the partial ordering, we conclude that {xn}∞n=1 converges to a fixed point.

Next we show that the fixed point of f is unique. Assume that u, v and w are three

distinct fixed points of f , i.e., G(u, v, w) 6= 0. Since X is totally ordered, u, v and w

are comparable. Thus, we have

G(u, v, w) = G(fu, fv, fw)

≤ G(u, v, w)− ρ(u, v, w)

which is a contradiction. Therefore, u = v = w and the fixed point of f is unique. ¤

We can still guarantee the uniqueness of the fixed point by weakening the total

ordering as stated and proved in the next theorem.

Theorem 2.3. Let (X,¹, G) be a complete partially ordered G-metric space and

f : X → X be continuous and nondecreasing ρ−contraction of type (A) w.r.to ¹.

Suppose that for each x, y, z ∈ X, there exists r ∈ X which is comparable to x, y, z.

If there exists x0 ∈ X with x0 ¹ fx0, then {fnx0}∞n=1 converges to a fixed point of f

in X.
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Proof. Take xn = fnx0 as in proof of Theorem 2.1. Since the total ordering implies

the partial ordering, we conclude that {xn}∞n=1 converges to a fixed point.

Next we show that the fixed point of f is unique. Assume that u, v, w are distinct

fixed points of f , i.e., G(u, v, w) 6= 0. Since u, v, w ∈ X, there exists r ∈ X such

that r is comparable to u, v, w. We will prove this part by showing that the sequence

{rn}∞n=1 given by rn = fnr converges to u, v and w. Therefore we have

G(u, fnr, fnr) ≤ G(u, fn−1r, fn−1r)− ρ(u, fn−1r, fn−1r)

≤ G(u, fn−1r, fn−1r).(2.5)

If we define a sequence yn = G(u, fn−1r, fn−1r) and zn = ρ(u, fn−1r, fn−1r), we may

obtain from 2.5 that {yn}∞n=1 is nonincreasing and there exist l, q ≥ 0 such that

limn→∞ yn = l and limn→∞ zn = q.

Assume that l > 0. Then by the ρ−contractivity of f , we have

l ≤ l − q

which contradiction. Hence limn→∞ yn = 0. In the same way, we can show that

limn→∞ G(u, fn−1r, fn−1r) = 0. That is, {rn}∞n=1 converges to u, v and w. Since the

limit of convergent sequence is unique, we conclude that u = v = w. Hence, this

yields the uniqueness of fixed point. ¤

Theorem 2.4. Let (X,¹, G) be a complete sequentially ordered G-metric space and

f : X → X be continuous and nondecreasing ρ−contraction of type (A) w.r.to ¹.

Suppose that for each x, y, z ∈ X, there exists r ∈ X which is comparable to x, y, z.

If there exists x0 ∈ X with x0 ¹ fx0, then {fnx0}∞n=1 converges to a fixed point of f

in X.
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Proof. Take xn = fnx0 as in proof of Theorem 2.1. Since the total ordering implies

the partial ordering, we conclude that {xn}∞n=1 converges to a fixed point. The rest

of the proof is similar to the proof of Theorem 2.3. ¤

Remark 1. In parallel with the study of Theorems 2.1, 2.2, 2.3 and 2.4, we can also

prove in the same way that if the mapping f is nonincreasing, the above theorems

still hold. However, we will omit the result for nonincreasing mappings.

Next we drop the monotonically conditions of f and find out that we can still apply

our results to confirm the existence and uniqueness of a fixed point of f .

Theorem 2.5. Let (X,¹, G) be a complete partially ordered G-metric space and f :

X → X be continuous ρ−contraction of type (A) w.r.to ¹ such that the comparability

of x, y, z ∈ X implies comparability of fx, fy, fz ∈ f(X). If there exists x0 ∈ X such

that x0 and fx0 are comparable, then {fnx0}∞n=1 converges to a fixed point of f in X.

Proof. For the existence of fixed point, we choose x0 ∈ X such that x0 and fx0 are

comparable. If fx0 = x0, then the proof is finished. Suppose that fx0 6= x0. We

define a sequence {xn}∞n=1 such that xn = fnx0. Since x0 and fx0 are comparable,

we have xn and xn+1 comparable for all n ∈ N .

If there exists n0 ∈ N such that ρ(xn0 , xn0+1, xn0+2) = G(xn0 , xn0+1, xn0+2), then

by the notion of ρ−contractivity, the proof is finished. Therefore, we assume that

ρ(xn, xn+1, xn+2) < G(xn, xn+1, xn+2) for all n ∈ N . Also assume that ρ(xn, xn+1, xn+2) 6=
0 for all n ∈ N . Otherwise we can find n0 ∈ N with xn0 = xn0+1, that is xn0 = fxn0 ,

and the proof is finished. Hence, we consider only the case where 0 < ρ(xn, xn+1, xn+2) <

G(xn, xn+1, xn+2) for all n ∈ N .

Since xn and xn+1 are comparable for all n ∈ N , we have
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G(xn, xn+1, xn+2) = G(fxn−1, fxn, fxn+1)

≤ G(xn−1, xn, xn+1)− ρ(xn−1, xn, xn+1)

≤ G(xn−1, xn, xn+1)

for all n ∈ N . Therefore, we have {G(xn−1, xn, xn+1)}∞n=1 nonincreasing. Since

{G(xn−1, xn, xn+1)}∞n=1 is bounded, there exists l ≥ 0 such that limn→∞ G(xn−1, xn, xn+1) =

l. Thus,there exists q ≥ 0 such that limn→∞ ρ(xn−1, xn, xn+1) = q.

Assume that l > 0. Then, by the ρ−contractivity of f , we have

l ≤ l − q.

Hence,q = 0, which implies that l = 0, a contradiction. Therefore, we have

lim
n→∞

G(xn−1, xn, xn+1) = 0.(2.6)

Now we show that {xn}∞n=1 is a Cauchy sequence in X. Assume the contrary. Then

there exists ε0 > 0 for which we can define subsequences {xmk
}∞k=1, {xnk

}∞k=1 and

{xpk
}∞k=1 of {xn}∞n=1 such that nk is minimal in the sense that nk > mk > pk > k and

G(xpk
, xmk

, xnk
) ≥ ε0. Therefore, G(xpk

, xpk−1, xpk−1) < ε0. Observe that

ε0 ≤ G(xpk
, xmk

, xnk
)

≤ G(xpk
, xpk−1, xpk−1) + G(xpk−1, xmk

, xnk
)

< ε0 + G(xpk−1, xmk
, xnk

).

Letting k →∞, we obtain ε0 ≤ limk→∞ G(xpk
, xmk

, xnk
) ≤ ε0 and so

lim
k→∞

G(xpk
, xmk

, xnk
) = ε0.(2.7)



ON ρ−CONTRACTION IN G-METRIC SPACE 57

Similarly we have

lim
k→∞

G(xpk−1, xmk−1, xnk−1) = ε0.(2.8)

Further we deduce that the limit limk→∞ ρ(xpk−1, xmk−1, xnk−1) also exists. Now

by the ρ−contractivity, we have

G(xpk
, xmk

, xnk
) = G(fxpk−1, fxmk−1, fxnk−1)

≤ G(xpk−1, xmk−1, xnk−1)− ρ(xpk−1, xmk−1, xnk−1).

From 2.7 and 2.8, we may find that

0 ≤ − lim
n→∞

ρ(xpk−1, xmk−1, xnk−1),(2.9)

which further implies that limn→∞ ρ(xpk−1, xmk−1, xnk−1) = 0. Notice that xmk−1 ¹
xnk−1 at each k ∈ N . Consequently, we obtain that limn→∞ G(xpk−1, xmk−1, xnk−1) =

0, which is a contradiction. So {xn}∞n=1 is a Cauchy sequence. Since X is complete,

there exists x? such that xn = fnx0 → x? as n →∞. Finally, the continuity of f and

ffnx0 = fn+1x0 → x? implies that fx? = x?.

Therefore, x? is a fixed point of f . ¤

Theorem 2.6. Let (X,¹, G) be a complete sequentially ordered G-metric space and

f : X → X be continuous ρ−contraction of type (A) w.r.to ¹ such that the com-

parability of x, y, z ∈ X implies comparability of fx, fy, fz ∈ f(X). If there exists

x0 ∈ X such that x0 and fx0 are comparable, then {fnx0}∞n=1 converges to a fixed

point of f in X.

Theorem 2.7. Let (X,¹, G) be a complete totally ordered G-metric space and f :

X → X be ρ−contraction of type (A) w.r.to ¹ such that the comparability of x, y, z ∈
X implies comparability of fx, fy, fz ∈ f(X). If there exists x0 ∈ X such that x0

and fx0 are comparable, then {fnx0}∞n=1 converges to a fixed point of f in X.
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Theorem 2.8. Let (X,¹, G) be a complete partially ordered G-metric space and f :

X → X be continuous ρ−contraction of type (A) w.r.to ¹ such that the comparability

of x, y, z ∈ X implies comparability of fx, fy, fz ∈ f(X). If there exists x0 ∈ X such

that x0 and fx0 are comparable, then {fnx0}∞n=1 converges to a fixed point of f in X.

Theorem 2.9. Let (X,¹, G) be a complete sequentially ordered G-metric space and

f : X → X be ρ−contraction of type (A) w.r.to ¹ such that the comparability of

x, y, z ∈ X implies comparability of fx, fy, fz ∈ f(X). If there exists x0 ∈ X such

that x0 and fx0 are comparable, then {fnx0}∞n=1 converges to a fixed point of f in X.

3. Example

We give an example to ensure the applicability of our theorems.

Example 3.1. Let X = [0, 1] × [0, 1] and suppose that we write x = (x1, x2) and

y = (y1, y2) for all x, y ∈ X. Define G, ρ : X ×X ×X → R by

G(x, y, z) =





0, if x = y = z

2 max{x1 + y1 + z1, x2 + y2 + z2} otherwise

and

ρ(x, y, z) =





0, if x = y = z

max{x1, x2 + y2 + z2} otherwise.

Let ¹ be an ordering in X such that for x, y, z ∈ X, x ¹ y ¹ y if and only if

x1 = y1 = z1 and x2 ¹ y2 ¹ z2 . Then (X,¹, G) is a partially ordered G-metric space

with ρ−function of type (A) w.r.to ¹ in X.

Now, let f be a self mapping on X defined by f(x) = f(x1, x2) =
(
0,

x2
2

2

)
for all

x ∈ X. It is obvious that f is continuous and nondecreasing w.r.to ¹.

Let x, y, z ∈ X be comparable w.r.to ¹. If x = y = z, then they clearly satisfy the

inequality 1.1. On the other hand, if x 6= y 6= z, we have
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G(fx, fy, fz) = G(f(x1, x2), f(y1, y2), f(z1, z2))

= G

((
0,

x2
2

2

)
,

(
0,

y2
2

2

)
,

(
0,

z2
2

2

))

= 2 max{0, x2
2

2
+

y2
2

2
+

z2
2

2
}

= x2
2 + y2

2 + z2
2

≤ x2 + y2 + z2

≤ max{3x1, x2 + y2 + z2}

≤ 2 max{3x1, x2 + y2 + z2} −max{3x1, x2 + y2 + z2}

≤ 2 max{3x1, x2 + y2 + z2} −max{x1, x2 + y2 + z2}

≤ G(x, y, z)− ρ(x, y, z).

Therefore the inequality 1.1 is satisfied for every comparable x, y, z ∈ X. So f is a

continuous and nondecreasing ρ−contraction of type (A) w.r.to ¹. Let x0 = (0, 0), so

we have x0 ¹ fx0. Now applying Theorem 2.1, we conclude that f has a fixed point

in X which is the point (0,0).

Acknowledgement

The authors would like to express their sincere thanks to the editor and the anony-

mous referees for their valuable comments and useful suggestions in improving the

article.

References

[1] Abbas M. and Rhoades B.E. , Common fixed point results for noncommuting mappings without

continuity in generalised metric spaces, Appl. Math. Comput. 215, 262-269 (2009).

[2] Abbas M. Nazir T. and Radenovic S., Some periodic point results in generalized metric spaces,

Appl.Math. Comput. 217, 4094-4099 (2010).



60 ANIMESH GUPTA AND R.N. YADAVA

[3] Alber, YI, Guerre-Delabriere, S: Principles of weakly contractive maps in Hilbert spaces. In:

Gohberg, I, Lyubich, Y (eds.) New Results in Operator Theory. Advances and Appl., 98,

Birkhauser, Basel (1997) 7-22.

[4] Aydi, H, Vetro, C, Sintunavarat, W, Kumam, P: Coincidence and fixed points for contractions

and cyclical contractions in partial metric spaces. Fixed Point Theory Appl. 2012, 124 (2012)

[5] Ciric, L: A generalization of Banachs contraction principle. Proc. Am. Math. Soc. 45, 267-273

(1974)

[6] Ciric, L: A new fixed-point theorem for contractive mappings. Publ. Inst. Math. (Belgr.) 30,

25-27 (1981)

[7] Ciric, L: Solving the Banach fixed point principle for nonlinear contractions in probabilistic

metric spaces. Nonlinear Anal., Theory Methods Appl. 72(3-4), 2009-2018 (2010)

[8] Chaipunya, P, Cho, YJ, Kumam, P: Geraghty-type theorems in modular metric spaces with an

application to partial differential equation. Adv. Differ. Equ. 2012, 83 (2012)

[9] Chaipunya, P, Mongkolkeha, C, Sintunavarat, W, Kumam, P: Fixed-point theorems for multi-

valued mappings in modular metric spaces. Abstr. Appl. Anal. 2012, Article ID 503504 (2012)

[10] Chaipunya, P, Mongkolkeha, C, Sintunavarat, W, Kumam, P: Erratum to Fixed-point theorems

for multivalued mappings in modular metric spaces. Abstr. Appl. Anal. 2012, Article ID 241919

(2012)

[11] Harjani, J, Sadarangani, K: Fixed point theorems for weakly contractive mappings in partially

ordered sets. Nonlinear Anal. 71, 3403-3410 (2009)

[12] Mongkolkeha, C, Sintunavarat, W, Kumam, P: Fixed point theorems for contraction mappings

in modular metric spaces. Fixed Point Theory Appl. 2011, 93 (2011)

[13] Mongkolkeha, C, Sintunavarat, W, Kumam, P: Correction: Fixed point theorems for contraction

mappings in modular metric spaces. Fixed Point Theory Appl. 2011, 2011:93. Fixed Point

Theory Appl. 2012, 103 (2012)

[14] Mustafa Z. and Sims B., A new approach to generalized metric spaces, J. Nonlinear Convex

Anal. 7(2) 289-297 (2006).

[15] Mustafa Z., Obiedat H. and Awawdeh F. , Some of fixed point theorem for mapping on complete

G-metric spaces, Fixed Point Theory Appl., 2008(2008), Article ID 189870,page 12.

[16] Mustafa Z., Shatanawi W. and Bataineh M. , Fixed point theorems on uncomplete G-metric

spaces, J. Math. Stat. 4(4), 196-201 (2008).



ON ρ−CONTRACTION IN G-METRIC SPACE 61

[17] Mustafa Z., Shatanawi W. and Bataineh M. , Existence of fixed point result in G-metric spaces,

Int. J. Math. Math. Sci. 2009(2009), page 10, Article ID 283028.

[18] Mustafa Z. and Sims B. , Fixed point theorems for contractive mappings in complete G-metric

space, Fixed Point Theory Appl. 2009(2009), page 10, Article ID 917175.

[19] Rhoades, BE: Some theorems on weakly contractive maps. Nonlinear Anal. 47, 2683-2693 (2001)

[20] Sintunavarat, W, Kumam, P: Weak condition for generalized multi-valued (f, α, β)-weak con-

traction mappings. Appl. Math. Lett. 24(4), 460-465 (2011)

[21] Suzuki, T: A generalized Banach contraction principle that characterizes metric completeness.

Proc. Am. Math. Soc. 136(5), 1861-1869 (2008)

(1) Department of Mathematics, Sagar Institute of Engineering, Technology and

Research, Ratibad Bhopal (M.P.), India

E-mail address: dranimeshgupta10@gmail.com

(2) Chairman, Environment Management and Human Welfare Council Bhopal -

INDIA.

Cap-Net UNDP Representative and Former Director, Advance Material Process

Research Institute, (AMPRI-CSIR) Bhopal - INDIA

E-mail address: dryadava@gmail.com


