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SEMICLASSICAL PSEUDODIFFERENTIAL OPERATORS WITH
OPERATOR SYMBOL

ABDERRAHMANE SENOUSSAOUI

Abstract. This work is a generalization to the symbol operator case of the clas-

sical h-pseudodifferentials operators. We are interested to the properties of compo-

sition, symbolic calculus, and the L2-continuity of these operators type.

1. Introduction

The main motivation of the h-pseudodifferential calculus is to get an algebraic

correspondence between the classical observables and the quantum observables (one

calls it a quantization of the classical observables). In particular, this would permit us

to localize (within the limits allowed by the uncertainty principle) both in position and

momentum variables any quantum state ψ, take a smooth cutoff function χ (x, ξ) ∈
C∞

0 (R2n) (the space of smooth compactly supported functions and χ is close to the

characteristic function of some compact subset of R2n ). Then its associated quantum

observable χ (x, hDx) ψ will have the effect of (essentially) cutting off the Cartesian

product Suppψ×Suppψ̂ outside Suppψ (here Supp stands for the support). Another

important feature of this calculus will consist in inverting the elliptic operators. If

a (x, ξ) is a classical observable that never vanishes (and therefore is invertible in

multiplicative algebra of smooth functions), one would like to be able to invert also
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its quantization a (x, hDx) . This procedure will be possible when a satisfies a little

bit more that it is an invertible element of a special kind of subalgebra of C∞ (Rn) ,

called spaces of symbols. We refer the reader to the books of [12, 9, 16].

The idea of the elaboration of this work is inspired works Martinez, Klein-Martinez-

Seiler-Wang [8], Martinez-Messirdi [11] and Messirdi-Senoussaoui [13, 14] on the study

of the spectrum of operators of the type

P = −h2∆x −∆y + V (x, y) = −h2∆x + V (x) on L2
(
Rn

x × Rp
y

)
,

where V (x, y) is the potential and is h = 1√
M
→ 0 (is proportional to the inverse of

the square-root of the nuclear mass), and the construction of asymptotic expansions

in powers of
√

h for eigenvalues and associated eigenfunctions of P of the types:

∑
j≥0

αjh
j/2 and e−ψ(x)/h

(∑
j≥0

aj (x, y) hj/2

)
,

where ψ (x) is the Agmon distance between x and the potential well.

We generalize to the case operator the well know scalar h-pseudodifferential calcu-

lus developed by many authors ([2, 4, 5, 6, 7, 10, 15, 16, 17, 19]). We introduce the

notion of symbol operator which satisfy estimates of special kind. We try to specify

a little bit more the way in which the symbols may depend on the semiclassical pa-

rameter h. We define the notion ∼(the so-called asymptotic equivalence of symbols),

which will be used used in the study of the semiclassical expansion of the spectrum.

We are interested in the composition of two h-pseudodifferentials operators with

operator symbol. We see that it is always possible, and that one can construct one

to one correspondences between h-pseudodifferential operators with operator symbol

and symbols depending on 2n variables.

For the h-pseudodifferential operator with operator symbol, an interesting question

is under which conditions on a these operators are bounded on L2. The last part of

this paper provides a rather complete answer to this question.
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We note the work of Balazard-Konlein [1] and Senoussaoui [18] to study these

operators type. This work presents a new approach for this study.

2. Spaces of symbols

Definition 2.1. An order function g is a C∞ (
Rd;R∗+

)
- function satisfying:

|∂α
x g(x)| ≤ Cαg (x) , ∀α ∈ Nd,∀x ∈ Rd

or

∂α
x g = O (g) , ∀α ∈ Nd.

The simplest examples is given by 〈x〉 =
(
1 + |x|2)

m
2 , where m is a natural number.

Other examples are ef(x) where f is smooth and bounded together with all its deriva-

tives.

Proposition 2.1. If g is an order function on Rd, then so is the function
1

g
.

Proof. Indeed, one has to show that for any α ∈ Nd, ∂α

(
1

g

)
= O

(
1

g

)
. Setting

g̃ =
1

g
and using the Leibniz formula to differentiate the identity gg̃ = 1 α times, the

required estimate is easily obtained by induction on |α| . ¤

Definition 2.2. A function a = a (x; h) defined on Rd × ]0, h0] −→ L (H,K) with

operator valued, for some h0 > 0 and H,K are Hilbert spaces, is said to be in

Sd
g (H,K) if a depends smoothly on x and for any α ∈ Nd one has

‖∂α
x a (x; h)‖L(H,K) = O (g (x))

uniformly with respect to (x; h) ∈ Rd × ]0, h0]

In particular, Sd
1 (H, K) is the set of C∞ (

Rd;L (H, K)
)

parameterized by some

h ∈ ]0, h0] that are uniformly bounded together with all their derivatives.
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• If V = V (x) ∈ Sn
1 (H,K) , then the operator ξ2 +V (x) is in S2n

g (H, K) where

g (ξ) = 〈ξ〉2 .

• Any χ ∈ C∞
0

(
Rd;L (H, K)

)
(the space of compactly supported C∞ functions

on Rd with operator valued) is in Sd
1 (H, K) .

By proposition 2.1and the Leibniz formulas we have the equivalence

(2.1) a ∈ Sd
g (H, K) ⇐⇒ 1

g
a ∈ Sd

1 (H,K) .

We endow Sd
g (H,K) with the topology associated with the family of seminorms

Nα (a) = sup
1

g
‖∂α

x a‖L(H,K) , and it can be verified easily that this makes Sd
g (H, K)

a Fréchet space (topological vector space where the topology is defined by a family

of seminorms). The algebraic properties of the space Sd
g (H,K) are the following.

Proposition 2.2. Let g1 and g2 be two order functions on Rd, and let a ∈ Sd
g1

(H,L) , b ∈
Sd

g2
(L,K) where H, L, K are Hilbert spaces. Then g1g2 is also an order function and

ba ∈ Sd
g1g2

(H,K) .

Proof. This is an obvious consequence of the Leibniz formula. ¤

Definition 2.3. A symbol a ∈ Sd
g (H, K) is said to be elliptic if there exists a positive

constant C0 such that

‖a (x; h)‖L(H,K) ≥
1

C0

g (x)

uniformly with respect to (x; h) ∈ Rd × ]0, h0] .

Then we have the following proposition:

Proposition 2.3. If a ∈ Sd
g (H, K) is elliptic, then a−1 ∈ Sd

1
g

(K,H) .

Proof. Set b = a−1. Then the result is obtained by differentiating iteratively the

relation ba = IL(H) and by using the Leibniz formula. ¤
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2.1. Semiclassical expansions of symbols. Throughout this section g denotes an

arbitrary order function on Rd, and H, K are Hilbert spaces.

Definition 2.4. Let a ∈ Sd
g (H,K) and let (aj)j∈N be a sequence of symbols of

Sd
g (H,K) . Then we say that a is asymptotically equivalent to the formal sum

∞∑
j=0

hjaj

in Sd
g (H, K) , and we write

a ∼
∞∑

j=0

hjaj

if for any N ∈ N and for any α ∈ Nd there exist hN,α > 0 and CN,α > 0 such that
∥∥∥∥∥∂α

(
a−

N∑
j=0

hjaj

)∥∥∥∥∥
L(H,K)

≤ CN,αhNg

uniformly on Rd × ]0, hN,α] .

In other words, for any N > 0 the symbol a can be approximated by
N∑

j=0

hjaj up

to a symbol that vanishes together with all its derivatives as hN when goes to zero.

In practice, the existence of hN,α will not be explicitly written, being referred to as h

small enough at the end of an estimate.

In particular case where all the aj’s are identically zero, we write

a = O (h∞) in Sd
g (H, K) if a ∼ 0 in Sd

g (H,K) .

An important and surprising feature is that although a series of the type
∞∑

j=0

hjaj

has no reason to be convergent, one can always find a symbol that is, asymptotically

equivalent to it. The following proposition gives an answer:

Proposition 2.4. Let (aj)j∈N be an arbitrary sequence of symbols of Sd
g (H, K) . Then

there exists a ∈ Sd
g (H, K) such that a ∼

∞∑
j=0

hjaj in Sd
g (H,K) . Moreover, a is unique

up to O (h∞) in Sd
g (H, K) . Such a symbol a is called resummation of the formal

symbol
∞∑

j=0

hjaj.
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Proof. First of all, dividing everything by g and using (2.1) , we can assume without

loss of generality that g ≡ 1.

Since the unicity up to O (h∞) is obvious, we concentrate on the existence of a.

Then let χ ∈ C∞
0 (R) be such that suppχ ⊂ [−2, 2], χ = 1 on [−1, 1] .

We have the following lemma:

Lemma 2.1. There exists a decreasing sequence of positive numbers (εj)j∈N converg-

ing to zero, such that for any j ∈ N and α ∈ Nd with |α| ≤ j, one has

sup
x∈Rd

∥∥∥
(
1− χ

(εj

h

))
∂αaj (x; h)

∥∥∥
L(H,K)

≤ h−1

for h small enough.

Proof. Setting

Cj = sup
|α|≤j,x∈Rd

‖∂αaj (x; h)‖L(H,K)

and using the fact that 1− χ
(εj

h

)
is non zero only for h ≤ εj, we have

h sup
x∈Rd

∥∥∥
(
1− χ

(εj

h

))
∂αaj (x; h)

∥∥∥
L(H,K)

≤ Cjεj ≤ 1

if one has chosen the decreasing sequence (εj)j∈N in such a way that εj ≤ 1

Cj

(for all

j ≥ 0 one take, e.g., εj = min
{
(k + Ck)

−1 ; k ≤ j
}
). ¤

We then set

a (x; h) =
∑
j≥0

hj
(
1− χ

(εj

h

))
aj (x; h) ,

where actually, the sum contains only a finite number (depending on h > 0 fixed)

of nonzero terms (since εj < h if j becomes large). Thus a is a smooth function of

x ∈ Rd, and for any α ∈ Nd one has

‖∂αa (x; h)‖L(H,K) ≤
∑

j≤|α|
hj ‖∂αaj (x; h)‖L(H,K)+

∑

j>|α|
hj

∥∥∥
(
1− χ

(εj

h

))
∂αaj (x; h)

∥∥∥
L(H,K)
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and therefore, using Lemma 2.1,

‖∂αa (x; h)‖L(H,K) ≤ Cα +
∑

j>|α|
hj ≤ C ′

α,

where Cα, C ′
α are positive constants.

Thus a ∈ Sd
1 (H,K) , and for any α ∈ Nd and N ≥ |α| one has

∥∥∥∥∥∂α

(
a−

N∑
j=0

hjaj

)∥∥∥∥∥
L(H,K)

≤
N∑

j=0

hj
∥∥∥χ

(εj

h

)
∂αaj

∥∥∥
L(H,K)

+
∑

j≥N+1

hj
∥∥∥
(
1− χ

(εj

h

))
∂αaj

∥∥∥
L(H,K)

.

Using again Lemma 2.1, we get
∥∥∥∥∥∂α

(
a−

N∑
j=0

hjaj

)∥∥∥∥∥
L(H,K)

≤
N∑

j=0

hN+jε−N
j

∣∣∣∣
(εj

h

)N

χ
(εj

h

)∣∣∣∣Cj,α +
∑

j≥N+1

hj−1,

where the Cj,α’s are positive constants. Since the function R 3 t 7−→ tNχ (t) is

bounded, we deduce easily from the estimate above that there exists a constant CN

such that for any h > 0 sufficiently small,
∥∥∥∥∥∂α

(
a−

N∑
j=0

hjaj

)∥∥∥∥∥
L(H,K)

≤ CNhN .

¤

3. h-Pseudodifferential operators with operator symbol

Definition 3.1. For a ∈ S3n
〈ξ〉m (H, K) and for u ∈ C∞

0 (Rn, H) (the space of smooth

compactly supported functions with Hilbert valued), we define the h-pseudodifferential

operator with operator symbol by

(3.1) Oph (a) u (x; h) =
1

(2πh)n

∫

R2n

e
i
h
(x−y)ξa (x, y, ξ) u (y) dydξ.

Proposition 3.1. For all a ∈ S3n
〈ξ〉m (H, K) and for any ν ∈ R the operator h−νOph (a) :

C∞
0 (Rn, H) −→ C∞ (Rn, K) is linear continuous.

Proof. In general the integral (3.1) is not absolutely convergent, so we use the tech-

nique of the oscillatory integral developed by Hörmander see [7, 5, 16, 19] ¤
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Example 3.1. i): The scalar case:

a (x, y, ξ) =
∑

|α|≤m

bα (x) ξα

with bα ∈ S3n
1 (R,C) , we get

Oph (a) =
∑

|α|≤m

bα (x) (hDx)
α , Dx = −i∂x

ii): Inverse of 1−h2∆x+V (x) , V (x) ∈ L (H, K) : taking a (x, y, ξ) = (1 + ξ2 + V (x))
−1

,

we get an operator that satisfies

(
1− h2∆x + V (x)

) ◦Oph

((
1 + ξ2 + V (x)

)−1
)

= IL(K) on C∞
0 (Rn, K)

Theorem 3.1. For all a ∈ S3n
〈ξ〉m (H,K) , Oph (a) can be extended in a unique way

to a linear continuous operator S (Rn, H) −→ S (Rn, K) (the Schwarz space with

Hilbert valued). And by duality Oph (a) can be extended in a unique way to a linear

continuous operator S ′ (Rn, K) −→ S ′ (Rn, H)

Proof. For any α, β ∈ Nn, writing

(3.2) xβ∂α
x Iku (x) =

(∫

|x−y|≤ 1
2
|x|

+

∫

|x−y|≥ 1
2
|x|

)
xβ∂α

x

[
e

i
h
(x−y)ξ

(
tL

)k
(au)

]
dydξ

with L =
1

1 + ξ2
(1− hξDy) , we see that for k > m + n + |α| the first integral is

O (1) , because for any γ > 0,

xβ 〈ξ〉m+|α|−k 〈y〉−γ = O
(
〈ξ〉m+|α|−k 〈y〉|β|−γ

)

uniformly on
{|x− y| ≤ 1

2
|x|} , and is therefore integrable with respect to (y, ξ) on

R2n if γ > |β|+ n.

On the other hand, setting

L′ =
1

1 + |x− y|2 (1 + h (x− y) Dξ) ,
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we see by integrating by parts with respect to ξ that for any N ∈ N, the second

integral can be rewritten as sum of terms of the type

Cα′,α′′

∫

|x−y|≥ 1
2
|x|

xβe
i
h
(x−y)ξ

(
tL′

)N
[
ξα′∂α′′

x

(
tL

)k
(au)

]
dydξ

(with α′+α′′ = α and Cα′,α′′ are constant) and is therefore O (1) if we take N ≥ |β| .
As a consequence, Oph (a) u ∈ S (Rn, K) , and moreover, the previous consideration

actually show that
∥∥xβ∂α

x Oph (a) u (x)
∥∥

K
can be estimated by a finite number of

seminorms of u in S (Rn, H) . ¤

3.1. Composition. Thanks to Theorem 3.1, there is no theoretical problem in defin-

ing the composition of two h-pseudodifferential operators with operator symbol.

The problem is only to know whether this composed operator is again itself a h-

pseudodifferential operator.

Let H, K and L three Hilbert spaces and let m,m′ ∈ R.

Theorem 3.2 (theorem of composition). For all a ∈ S3n
〈ξ〉m (K, L) and b ∈ S3n

〈ξ〉m′ (H, K)

there exists c ∈ S3n

〈ξ〉m+m′ (H, L) such that

Oph (a) ◦Oph (b) = Oph (c) .

Moreover, a possible choice for c is given by the oscillatory integral

c (x, y, ξ) =
1

(2πh)n

∫
e

i
h
(x−z)(η−ξ)a (x, z, η) b (z, y, ξ) dzdη := a#b (x, y, ξ) ,

which satisfies

a#b (x, y, ξ) ∼
∑

|α|≥0

h|α|

i|α|α!
∂α

z ∂α
η (a (x, z, η) b (z, y, ξ))

∣∣∣z=x
η=ξ

in S3n

〈ξ〉m+m′ (H, L) .

Proof. Making integrations by parts and using the same decomposition as in (3.2) ,

we see that for u ∈ C∞
0 (Rn, H) we have

(3.3) Oph (a) u (z) = lim
ε→0+

δ→0+

1

(2πh)n

∫
e

i
h−ε〈ξ〉−δ〈z〉 (x−y)ξb (z, y, ξ) u (y) dydξ,
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where lim takes place for the topology of S (Rn, K). As a consequence, the continuity

of Oph (a): S (Rn, K) → S (Rn, L) gives

(2πh)2n Oph (a) ◦Oph (b) u (x) =

lim
ε→0+

δ→0+

∫
e

i
h
(x−z)ηa (x, z, η)

(∫
e

i
h−ε〈ξ〉−δ〈z〉 (x−y)ξb (z, y, ξ) u (y) dydξ

)
dzdη

which by a similar argument can be rewritten as

(2πh)2n Oph (a) ◦Oph (b) u (x) =

lim
ε→0+

δ→0+

∫
e

i
h
(x−z)η+ i

h−ε〈ξ〉−δ〈z〉−δ〈η〉 (x−y)ξa (x, z, η) b (z, y, ξ) u (y) dydξdzdη,

and therefore

(3.4) Oph (a) ◦Oph (b) u (x) = lim
ε→0+

δ→0+

1

(2πh)n

∫
e

i
h−ε〈ξ〉 (x−y)ξcδ (x, y, ξ) u (y) dydξ

with

cδ (x, y, ξ) =
1

(2πh)n

∫
e

i
h−δ〈z〉−δ〈η〉 (x−z)(η−ξ)a (x, z, η) b (z, y, ξ) dzdη.

As a consequence, by the dominated convergence theorem it is enough to prove that

cδ = O
(
〈ξ〉m+m′)

(with respect of the norm) uniformly with respect to δ, that for

all (x, y, ξ) ∈ R3n, cδ (x, y, ξ) has a limit c0 (x, y, ξ) as δ → 0+ (so that the first limit

δ → 0+ can be taken in (3.4), leading to a convergent integral), and that c0 ∈
S3n

〈ξ〉m+m′ (H, L) (so the second limit ε → 0+ can be taken in (3.4), leading to an

oscillatory integral).

Set

L1 =

(
1 +

|η − ξ|2
h2

+
|x− z|2

h2

)−1 (
1− (η − ξ)

h
Dz +

(x− z)

h
Dη

)
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and let χ1 ∈ C∞
0 (R) , χ1 (s) = 1 for |s| ≤ 1, χ1 (s) = 0 for |s| ≥ 2. For x, y ∈ Rn, we

set χ (x, y) = χ1 (|x− y|) . Then for any k ≥ |m|+ 2n + 1 one has

cδ (x, y, ξ) =
1

(2πh)n

∫
e

i
h
(x−z)(η−ξ)

(
tL1

)k (
e−δ〈z〉−δ〈η〉a (x, z, η) b (z, y, ξ)

)
dzdη

= dδ (x, y, ξ) + eδ (x, y, ξ) + fδ (x, y, ξ) ,

where

(2πh)n dδ (x, y, ξ) =
∫

e
i
h
(x−z)(η−ξ)

(
tL1

)k (
(1− χ (ξ, η)) e−δ〈z〉−δ〈η〉a (x, z, η) b (z, y, ξ)

)
dzdη

=

∫
O

(
〈η〉m 〈ξ〉m′

(1 + h−1 |η − ξ|+ h−1 |x− z|)k

)
dzdη

=

∫
O


 〈η〉m 〈ξ〉m′

(
1 + 1+|η−ξ|

2h

)k−n− 1
2


 dη,

and thus in the case m ≥ 0,

(2πh)n dδ (x, y, ξ) =

∫
O

(
hk−n− 1

2
(〈ξ〉+ 〈η − ξ〉)m 〈ξ〉m′

〈η − ξ〉k−n− 1
2

)
dη

= O
(
hk−n− 1

2 〈ξ〉m+m′)
.

In the case m < 0, one splits the integral into the two regions

{
|η| ≥ 〈ξ〉

2

}
and

{
|η| ≤ 〈ξ〉

2

}
. In the first region one has 〈η〉m = O (〈ξ〉m) , and therefore one gets

the same estimate as before. In the second region one has 〈η − ξ〉 ≥ 〈ξ〉
C

for some

positive constant C, and therefore the corresponding integral can be estimated by

O
(
hk−n− 1

2 〈ξ〉m′−(k−2n−1)
)

.
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Similarly,

(2πh)n eδ (x, y, ξ) =
∫

e
i
h
(x−z)(η−ξ)

(
tL1

)k [
χ (ξ, η) (1− χ (x, z)) e−δ〈z〉−δ〈η〉a (x, z, η) b (z, y, ξ)

]
dzdη

= O
(
hk−n− 1

2 〈ξ〉m+m′)

for all k ≥ |m| + 2n + 1, and uniformly with respect to (x, y, ξ) ∈ R3n and δ > 0.

Actually, the same argument also given that for any α ∈ N3n,

(3.5) ‖∂αdα (x, y, ξ)‖L(H,L) + ‖∂αeα (x, y, ξ)‖L(H,L) = O
(
h∞ 〈ξ〉m+m′)

uniformly with respect to (x, y, ξ) ∈ R3n and δ > 0.

So it remains to study the last term fδ, which, by integrations by parts, can be

written as

fδ (x, y, ξ) =
1

(2πh)n

∫
e

i
h
(x−z)(η−ξ)χ (ξ, η) χ (x, z) e−δ〈z〉−δ〈η〉a (x, z, η) b (z, y, ξ) dzdη.

Making the change of variables




z′ = z − x

η′ = η − ξ

we get

fδ (x, y, ξ) =
1

(2πh)n

∫
e−

i
h

z′η′uδ
x,y,ξ (z′, η′) dz′dη′

with

uδ
x,y,ξ (z′, η′) =

χ (ξ, η′ + ξ) χ (x, z′ + x) e−δ〈z′+x〉−δ〈η′+ξ〉a (x, z′ + x, η′ + ξ) b (z′ + x, y, ξ) ∈ C∞
0

(
R2n,L (H,L)

)
.

Then we can apply the stationary phase theorem ([5, 7, 16]) to this integral and we

obtain for all N ≥ 1,

(3.6) fδ (x, y, ξ) =
∑

|α|≤N−1

h|α|

i|α|α!
∂α

z ∂β
η uδ

x,y,ξ (z, η)

∣∣∣∣z=0
η=0

+ SN
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with

‖SN‖L(H,L) ≤ ChN

N !

∑

|α+β|≤2n+1

∥∥∥∂α
z ∂β

η (∂z∂η)
N uδ

x,y,ξ

∥∥∥
L1(R2n,L(H,L))

= O


hN

∫

|η−ξ|≤2,|x−z|≤2

〈η〉m 〈ξ〉m′
dzdη




= O
(
hN 〈ξ〉m+m′)

uniformly. Doing the same procedure for ∂γfδ, we get, in particular,

(3.7) ‖∂γfδ (x, y, ξ)‖L(H,L) = O
(
〈ξ〉m+m′)

uniformly with respect to δ > 0 and (x, y, ξ) ∈ R3n.

Moreover, since for k ≥ m + 2n + 1 one has

∥∥∥
(

tL1

)k [
e−δ〈z〉−δ〈η〉a (x, z, η) b (z, y, ξ)

]∥∥∥
L1(R2n,L(H,L))

= Ox,y,ξ (1)

uniformly with respect to δ, we get by the dominated convergence theorem

cδ (x, y, ξ) −→ c0 (x, y, ξ) as δ −→ 0+,

where

c0 (x, y, ξ) =
1

(2πh)n

∫
e

i
h
(x−z)(η−ξ)

(
tL1

)k
[a (x, z, η) b (z, y, ξ)] dzdη.

Since the estimates (3.5) and (3.7) are uniform with respect to δ, we also have

c0 ∈ S3n

〈ξ〉m+m′ (H, L) ,

and finally, we deduce from (3.4) that

Oph (a) ◦Oph (b) u (x) = lim
ε→0+

1

(2πh)n

∫
e

i
h−ε〈ξ〉 (x−y)ξc0 (x, y, ξ) u (y) dydξ

=
1

(2πh)n

∫
e

i
h
(x−y)ξc0 (x, y, ξ) u (y) dydξ,
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where the last integral has to be interpreted as an oscillatory one. Taking also

the limit δ −→ 0+ into (3.6) , we obtain the semiclassical asymptotic expansion

of c0 (x, y, ξ) . ¤

Proposition 3.2. Let m ∈ R and let a ∈ S3n
〈ξ〉m (H, K) be an elliptic symbol in the

sense of the definition 2.3. Then there exists b ∈ S3n
〈ξ〉−m (K,H) such that





Oph (a) ◦Oph (b) = IL(K) + Oph (r) ,

Oph (b) ◦Oph (a) = IL(H) + Oph (r′) ,

with r = O (h∞) in S3n
1 (K, K) and, r′ = O (h∞) in S3n

1 (H,H) .

Proof. By proposition 2.3, we know that a−1 ∈ S3n
〈ξ〉−m (K, H) . Then, setting b = a−1

and using the expansion of a#b given in the theorem, it is possible to define bj ∈
S3n
〈ξ〉−m (K,H) recursively, in such a way that if b ∼ ∑

hjbj, then

a#b = 1 +O (h∞) in S3n
1 (K, K) and b#a = 1 +O (h∞) in S3n

1 (H,H) .

and by theorem 3.2, this implies




Oph (a) ◦Oph (b) = IL(K) + Oph (r) ,

Oph (b) ◦Oph (a) = IL(H) + Oph (r′) ,

r = O (h∞) in S3n
1 (K, K) and, r′ = O (h∞) in S3n

1 (H, H) . ¤

4. Symbolic calculus-change of quantization

If x ∈ Rn denotes the position, these functions depend on 2n variables only. Then it

could seem more convenient to work with h-pseudodifferential operators with symbol

operator of the form a = a (x, ξ) depending on 2n variables.

Noting that for a ∈ S2n
〈ξ〉m (H, K) and for t ∈ [0, 1] we have a ((1− t) x + ty, ξ) ∈

S3n
〈ξ〉m (H,K) , we set

Opt
h (a) := Oph (a ((1− t) x + ty, ξ)) .
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The values t = 0, t =
1

2
and t = 1 play a particular role, and they are respectively

called:

t = 0 :standard quantization or left quantization

t =
1

2
:Weyl quantization denoted by Opw

h

t = 1 :right quantization.

Remark 1. The Weyl quantization is particulary useful in quantum mechanics because

it has the property that when a is a symmetric operator, then Opw
h (a) is symetric

with respect to the L2 (Rn, H)-scalar product.

Theorem 4.1. Let b = b (x, y, ξ) ∈ S3n
〈ξ〉m (H, K) and t ∈ [0, 1] . Then there exists a

unique bt (x, ξ) ∈ S2n
〈ξ〉m (H, K) such that

Oph (b) = Opt
h (bt)

Moreover, bt is given by the oscillatory integral

(4.1) bt (x, ξ) =
1

(2πh)n

∫

R2n

e
i
h
(ξ′−ξ)θb (x + tθ, x− (1− t) θ, ξ′) dξ′dθ

and satisfies

bt (x, ξ) ∼
∑

α∈Nn

(−1)|α| h|α|

i|α|α!
∂α

ξ ∂α
θ b (x + tθ, x− (1− t) θ, ξ) |θ=0 in S2n

〈ξ〉m (H, K) .

Here bt is called the t-symbol of Oph (a) , and is denoted by bt = σt (Oph (a)) .

Proof. We try to find bt ∈ S2n
〈ξ〉m (H, K) such that

∫
e

i
h
(x−y)ξb (x, y, ξ) dξ =

∫
e

i
h
(x−y)ξbt ((1− t) x + ty, ξ) dξ.

Setting 



θ = x− y

z = (1− t) + ty = x− tθ,
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or, equivalently, 



x = z + tθ

y = z − (1− t) θ,

we are led to
∫

e
i
h

θξb (z + tθ, z − (1− t) θ, ξ) dξ =

∫
e

i
h

θξbt (z, ξ) dξ,

where the right-hand side has to be interpreted as an oscillatory integral. In partic-

ular, by integrations by parts we see that it defines an element of S2n
1 (H,K) with

respect to the variables (z, θ) . Since, moreover, the right-hand side is proportional to

the inverse h-Fourier transforms of ξ 7−→ bt (z, ξ) , we obtain necessarily:

(4.2) bt (z, ζ) =
1

(2πh)n

∫
e

i
h
(ξ−ζ)θb (z + tθ, z − (1− t) θ, ξ) dξdθ,

where now the right-hand side to be interpreted as a Fourier transform with respect to

θ. Introducing again a cutoff function of the type χ (θ, ξ − ζ) and making integrations

by parts as in the proof of the theorem of composition, we see in the same way that

btS
2n
〈ζ〉m (H, K) , and the stationary phase theorem ([16, 5, 7]) also gives

bt (z, ζ)
∑

α∈Nn

(−1)|α| h|α|

i|α|α!
∂α

ξ ∂α
θ b (x + tθ, x− (1− t) θ, ξ)

∣∣∣∣ξ=ζ
θ=0

.

Finally, the unicity of bt is a consequence of (4.2) . ¤

Example 4.1. If V (x) = −∆y + V (x, y) ∈ Sn
1

(
H2

(
Rn

y

)
, L2

(
Rn

y

))
, then for all

t ∈ [0, 1] one has σt (−h2∆x + V (x)) = ξ2 + V (x) which therefore does not depend

on t.

Let H, K, L three Hilbert spaces.

Theorem 4.2 (Symbolic calculus). Let a (x, ξ) ∈ S2n
〈ξ〉m (K, L) , and b (x, ξ) ∈ S2n

〈ξ〉m′ (H, K) .

Then for all t ∈ [0, 1] there exists an unique ct ∈ S2n

〈ξ〉m+m′ (H, L) such that

Opt
h (a) ◦Opt

h (b) = Opt
h (ct) .
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Moreover, ct is given by

(4.3)

ct (x, ξ; h) = eih(DηDv−DuDξ) [a ((1− t) x + tu, η) b (tx + (1− t) v, ξ)]
∣∣∣u=v=x

η=ξ
:= a#tb,

and it satisfies

ct (x, ξ; h) ∼
∑

k≥0

hk

ikk!
(DηDv −DuDξ)

k [a ((1− t) x + tu, η) b (tx + (1− t) v, ξ)]
∣∣∣u=v=x

η=ξ

in S2n

〈ξ〉m+m′ (H,L) .

Proof. By the theorem of composition, one has

Opt
h (a) ◦Opt

h (b) = Oph (c)

with

c (x, y, ξ) =
1

(2πh)n

∫
e

i
h
(x−z)(η−ξ)a ((1− t) x + tz, η) b ((1− t) z + ty, ξ) dzdη

∼
∑

α∈Nn

(−1)|α| h|α|

i|α|α!
∂α

z ∂α
η (a ((1− t) x + tz, η) b ((1− t) z + ty, ξ))

∣∣∣z=x
η=ξ

(4.4)

in S2n

〈ξ〉m+m′ (H,L) . Moreover, by the previous theorem,

Oph (c) = Opt
h (ct)

with

ct (x, ξ) =
1

(2πh)n

∫
e

i
h
(ξ′−ξ)θc (x + tθ, x− (1− t) θ, ξ′) dξ′dθ

∼
∑

α∈Nn

(−1)|α| h|α|

i|α|α!
∂α

ξ ∂α
θ (c (x + tθ, x− (1− t) θ, ξ)) |θ=0(4.5)

and therefore,

ct (x, ξ) =
1

(2πh)2n

∫
e

i
h
(ξ′−ξ)θ+(x+tθ−z)(η−ξ′)a ((1− t) (x + tθ) + tz, η)

×b ((1− t) z + t (x− (1− t) θ) , ξ′) dzdηdξ′dθ.
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Then we make the change of variables

(z, θ) 7−→ (u, v) = (z + (1− t) θ, z − tθ) ,

which has determinant 1 and gives

ct (x, ξ) =
1

(2πh)2n

∫
e

i
h
[x(η−ξ)+u(ξ′−ξ)−v(η−ξ)]a ((1− t) x + tu, η)(4.6)

×b (tx + (1− t) v, ξ′) dzdηdξ′dθ.

On the other hand, by the Fourier-inverse formula we have

eih[DηDv−DuDξ] [a ((1− t) x + tu, η) b (tx + (1− t) v, ξ)]
∣∣∣u=v=x

η=ξ
=

1

(2πh)2n

∫
e

i
h
[(ξ−η)(v−x)+(ξ−ξ′)(x−u)]a ((1− t) x + tu, η) b (tx + (1− t) v, ξ′) dudvdηdξ′.

Comparing this last formula with (4.6) we get immediately

ct (x, ξ) = eih[DηDv−DuDξ] [a ((1− t) x + tu, η) b (tx + (1− t) v, ξ)]
∣∣∣u=v=x

η=ξ
.

Then the asymptotic expansion of ct can be obtained either by again introducing

cutoff function and using the stationary phase theorem. ¤

Particular cases

• For t = 0 : Op0
h (a) ◦Op0

h (b) = Op0
h

(
cl

)
, with

(4.7) cl (x, ξ) = eihDηDya (x, η) b (y, ξ)

∣∣∣∣y=x
η=ξ

:= a#b ∼
∑

α∈Nn

h|α|

i|α|α!
∂α

ξ a (x, ξ) ∂α
x b (x, ξ) .

• For t =
1

2
: Opw

h (a) ◦Opw
h (b) = Opw

h (cw) , with

cw (x, ξ) = eih[DηDx−DyDξ]a (y, η) b (x, ξ)

∣∣∣∣y=x
η=ξ

:=w a#b

∼
∑

α∈Nn

(−1)|α| h|α+β|

(2i)|α+β| α!β!

(
∂α

x ∂β
ξ a (x, ξ)

) (
∂α

ξ ∂β
x b (x, ξ)

)
.(4.8)
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5. L2-Boundedness

Until now, we have made our h-pseudodifferential operators with operator symbol

act on S (Rn, H) and S ′ (Rn, H) . However, for applications in quantum mechanic

(where the physical states are described by functions in L2), it is useful to know

how these h-pseudodifferential operators transform L2 (Rn, H) . The following result

provides a rather complete answer to this problem.

Theorem 5.1 (Calderón-Vaillancourt). Let a ∈ S3n
1 (H, K) where H,K are two

Hilbert spaces. Then A = Oph (a) is continuous on L2 (Rn, H) , and

‖Oph (a)‖L(L2(Rn,H),L2(Rn,K)) ≤ Cn


 ∑

|α|≤Mn

‖∂αa‖L∞(R3n,L(H,K))


 ,

where the positive constants Cn depend only on n.

Before giving the proof of the theorem of Calderón-Vaillancourt, let’s give three

lemmas:

Lemma 5.1. For all d ∈ Rd there exists χ0 ∈ C∞
0

(
Rd

)
such that, if we write χµ (z) =

χ0 (z − µ) (where µ ∈ Zd), one has

∑

µ∈Zd

χµ = 1 on Rd.

Proof. Let K =
{
z ∈ Rd; |zj| ≤ 1

2
for j = 1, ..., d

}
. Then K is compact, and there-

fore there exists ϕ ∈ C∞
0

(
Rd

)
such that ϕ ≥ 0 and ϕ = 1 on K. Set

ψ (z) =
∑

µ∈Zd

ϕ (z − µ) ,

we have

∀ν ∈ Zd, ψ (z + ν) = ψ (z)

and by construction,

∀z ∈ Rd, ψ (z) ≥ 1.
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Then χ0 :=
ϕ

ψ
solves the problem. ¤

Lemma 5.2 (Cotlar-Stein Lemma). Let H be a Hilbert space, (Aµ)µ∈Zd a family of

bounded operators on H, and ω : Zd −→ R+ an application satisfying

∀µ, ν ∈ Zd, ‖AµA
∗
ν‖+

∥∥A∗
µAν

∥∥ ≤ ω (µ− ν)

and

C0 :=
∑

µ∈Zd

√
ω (µ) < +∞.

Then for all M ≥ 0, one has,
∥∥∥∥∥∥

∑

|µ|≤M

Aµ

∥∥∥∥∥∥
≤ C0.

Proof. See [16, Page 83]. ¤

Lemma 5.3. If Au (x) =
∫

K (x, y) u (y) dy with K ∈ C0
(
Rn

x×Rn
y ,L (H, K)

)
(H,K

are Hilbert spaces), then

‖A‖L(L2(Rn,H),L2(Rn,K)) ≤
(

sup
x

∫
‖K (x, y)‖L(H,K) dy

)1/2 (
sup

y

∫
‖K (x, y)‖L(H,K) dx

)1/2

,

where L (L2 (Rn, H) , L2 (Rn, K)) denotes the space of bounded linear operators from

L2 (Rn, H) into L2 (Rn, K).

Proof. Using Cauchy-Schwarz inequality, we have

‖Au (x)‖2
K ≤

(∫
‖K (x, y)‖1/2

L(H,K) ‖K (x, y)‖1/2
L(H,K) ‖u (y)‖H dy

)2

∫
‖K (x, y)‖L(H,K) dy.

∫
‖K (x, y)‖L(H,K) ‖u (y)‖2

H dy,

and therefore

‖Au‖2
L2(Rn,K) ≤

∫ (∫
‖K (x, y)‖L(H,K) dy.

∫
‖K (x, y)‖L(H,K) ‖u (y)‖2

H dy

)
dx

≤
(

sup
x

∫
‖K (x, y)‖L(H,K) dy

)(
sup

y

∫
‖K (x, y)‖L(H,K) dx

)
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¤

Proof of Calderón-Vaillancourt theorem . By theorem 4.1, there exists b ∈ bt (x, ξ) ∈
S2n

1 (H, K) such that A = Opw
h (b) . Moreover, using the operator

L :=
(
1 + θ2 + (ξ − ξ′)2

)−1

(1 + hθDξ′ + h (ξ′ − ξ) Dθ)

to make integrations by parts in the integral expression of b, we see that for any

α ∈ N2n the quantity ‖∂αb‖L∞(H,K) can be estimated by a finite number of derivatives

of a. As a consequence, it is enough to prove the theorem for A = Opw
h (a) with

a ∈ S2n
1 (H, K) . Moreover, by the change of variables ξ 7−→ hξ we see that

Opw
h (a (x, ξ)) = Opw

1 a (x, hξ) ,

and for all α, β ∈ Nn we have

∂α
x ∂β

ξ (a (x, hξ)) = h|β|
(
∂α

x ∂β
ξ a

)
(x, hξ) = O

(
h|β|

∥∥∥∂α
x ∂β

ξ a
∥∥∥

L∞(H,K)

)
.

Therefore, it is indeed enough to prove the result for h = 1, that is, for the operator

A = Opw
1 (a) .

Now we apply lemma 5.1 with d = 2n, and for µ ∈ Z2n we set

aµ = aχµ.

Since |∂αχµ (z)| = |(∂αχµ) (z − µ)| ≤ sup |∂αχµ| for all α ∈ N2n, we obtain by Leibniz

formula

(5.1) ∂αaµ = O
(

sup
β≤α

∥∥∂βa
∥∥

L∞(H,K)

)
uniformly with respect to µ ∈ Z2n.

We set

Aµ = Opw
1 (aµ) ,

so that for any u ∈ C∞
0 (Rn, H) , one has

(5.2) Au =
∑

µ

Aµu.
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For µ, ν, we have

AµA
∗
νu (x) =

∫
Kµ,ν (x, y) u (y) dy

with

Kµ,ν (x, y) =
1

(2π)2n

∫
ei(xξ−yη−zξ+zη)aµ

(
x + z

2
, ξ

) (
taν

) (
y + z

2
, η

)
dzdηdξ,

where taν is the transpose of the operator aν . Since aµ and aν are smooth and com-

pactly supported, we see that Kµ,ν ∈ C∞ (R2n, K) , and we set

L =
1

1 + |x− z|2 + |y − z|2 + |ξ − η|2 (1 + (x− z) Dξ − (y − z) Dη − (ξ − η) Dz) ,

which satisfies

L
(
ei(xξ−yη−zξ+zη)

)
= ei(xξ−yη−zξ+zη).

Using L to integrate by parts, we get for any N ≥ 0,

Kµ,ν (x, y) =
1

(2π)2n

∫
ei(xξ−yη−zξ+zη)

(
tL

)N
aµ

(
x + z

2
, ξ

) (
taν

) (
y + z

2
, η

)
dzdηdξ.

Moreover, when |µ− ν| is large enough, we have on Supp(aµ (t, τ) (taν) (s, σ)) ,

1

C
|µ− ν| ≤ |t− s|+ |τ − σ| ≤ C |µ− ν| ,

where C > 0 is a constant. Setting µ = (µ1,µ2) and ν = (ν1, ν2) in Z2n, we deduce

from this and (5.1) that

∫
‖Kµ,ν (x, y)‖K dy =

∫

Dµ,ν

O




sup
|α|≤N

∥∥∂βa
∥∥2

L∞(H,K)

(
1 + |x− z|2 + |y − z|2 + |ξ − η|2)N


 dydzdηdξ,

where O is uniform with respect to µ, ν and a, and where

Dµ,ν =

{
1

C
|µ− ν| ≤ |x− y|+ |ξ − η| ≤ C |µ− ν| , |ξ − µ2| ≤ C ′, |η − µ2| ≤ C ′

}

with C ′ depends only on n.
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Since |x− z|+ |y − z| ≥ |x− y| , this gives

∫
‖Kµ,ν (x, y)‖K dy =

∫

Dµ,ν

O




(1 + |µ− ν|)2n+2−N sup
|α|≤N

∥∥∂βa
∥∥2

L∞(H,K)

(1 + |x− z|)n+1 (1 + |x− y|)n+1


 dydz,

and therefore, for all N ≥ 0,

(5.3) sup
x∈Rn

∫
‖Kµ,ν (x, y)‖K dy = O

(
(1 + |µ− ν|)2n+2−N sup

|α|≤N

∥∥∂βa
∥∥2

L∞(H,K)

)
.

In the same way, we see that

(5.4) sup
y∈Rn

∫
‖Kµ,ν (x, y)‖K dx = O

(
(1 + |µ− ν|)2n+2−N sup

|α|≤N

∥∥∂βa
∥∥2

L∞(H,K)

)
.

We deduce from the lemma 5.3 and (5.3)-(5.4) that for all N ≥ 0,

‖AµA
∗
ν‖L(L2(Rn,K)) = O

(
(1 + |µ− ν|)2n+2−N sup

|α|≤N

∥∥∂βa
∥∥2

L∞(H,K)

)

uniformly with respect to µ, ν, and exactly in the same way one can prove

∥∥A∗
µAν

∥∥
L(L2(Rn,H))

= O
(

(1 + |µ− ν|)2n+2−N sup
|α|≤N

∥∥∂βa
∥∥2

L∞(H,K)

)
.

Then we choose N = 4n + 3, so that we can apply the Cotlar-Stein lemma with

d = 2n and

ω (µ) = C (1 + |µ|)−2n−1 sup
|α|≤N

∥∥∂βa
∥∥2

L∞(H,K)
,

where C > 0 depends only on n. We obtain that for any M ≥ 0 and for any u ∈
C∞

0 (Rn, H) , ∥∥∥∥∥∥
∑

|µ|≤M

Aµu

∥∥∥∥∥∥
L2(Rn,K)

≤ C0 ‖u‖L2(Rn,H)

with

C0 =
√

C
∑

µ

(1 + |µ|)−n−1/2 sup
|α|≤N

∥∥∂βa
∥∥

L∞(H,K)
.

Taking the limit M −→ +∞, we get by (5.2) ,

‖Au‖L2(Rn,K) ≤ C0 ‖u‖L2(Rn,H)
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6. Conclusion

Using proposition 3.2 and theorem 5.1, we get that if a ∈ S3n
〈ξ〉m (H, K) is elliptic,

there exists b ∈ S3n
〈ξ〉−m (H, K) such that





Oph (a) ◦Oph (b) = IL(K) + R1,

Oph (b) ◦Oph (a) = IL(H) + R2,

with

‖R1‖L(K) + ‖R1‖L(H) = O (h∞) .

In particular, if m = 0 and h small enough, Oph (a) = Oph is invertible:L2 (Rn, H) →
L2 (Rn, K), with inverse given by

(Oph (a))−1 = Oph (b)

[ ∞∑

k=0

(−1)k Rk
1

]
=

[ ∞∑

k=0

(−1)k Rk
1

]
Oph (b)

= Oph (b) +O (h∞) .

7. Example

This theory can be applied to study the spectrum and resonances for the Hamil-

tonian in the approximation of Born-Oppenheimer [20] of type:

P = −h2∆x −∆y + V (x, y) on L2
(
Rn

x × Rp
y

)
.

We can consider the operator P = Oph (a) , where

a (x, ξ) = ξ2 −∆y + V (x, y) ∈ S2n
〈ξ〉2 (H, K) , H = H2

(
Rp

y

)
and K = L2

(
Rp

y

)
.

If the symbol a (x, ξ) is invertible, than we can construct the inverse of P . We refer

to [8, 11, 13, 14].
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