Jordan Journal of Mathematics and Statistics (JJMS) 6(4), 2013, pp.251 - 264

.

A CLASS OF PRIMARY SUBSEMIMODULES

P. V. SRINIVASA RAO $^{(1)}$ AND M. SIVA MALA $^{(2)}$

ABSTRACT. The partial functions under disjoint-domain sums and functional composition is a so-ring, an algebraic structure possessing a natural partial ordering, an infinitary partial addition and a binary multiplication, subject to a set of axioms. In this paper we introduce the notion of primary subsemimodule with respect to a prime subsemimodule in partial semimodules and singular partial semiring with respect to a partial semimodule.

1. Introduction

The study of pfn(D, D) (the set of all partial functions of a set D to itself), Mfn(D, D) (the set of all multi functions of a set D to itself) and Mset(D, D) (the set of all total functions of a set D to the set of all finite multi sets of D) play an important role in the theory of computer science, and to abstract these structures Manes and Benson[4] introduced the notion of sum ordered partial semirings (so-rings). In

²⁰⁰⁰ Mathematics Subject Classification. 16Y60.

Key words and phrases. : Singular partial semiring wrt a partial semimodule, associated prime subsemimodule, primary partial ideal wrt a prime partial ideal, primary subsemimodule wrt a prime subsemimodule.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan. Received: July 27, 2012 Accepted: Oct. 29, 2013.

[5], we have obtained the ideal theory of so-rings. In [6], [7] we characterize prime, semiprime and primary subsemimodules with prime, semiprime and primary partial ideals respectively. In this paper we introduce the singular partial semiring with respect to a partial semimodule and we generalize the results of T. K. Dutta and M. L. Das[2] and we characterize primary subsemimodules wrt a prime subsemimodule with primary partial ideal wrt a prime partial ideal.

2. Preliminaries

In this section we collect some important definitions and results for our use in this paper.

Definition 2.1. [8] A partial semiring is a quadruple $(R, \Sigma, \cdot, 1)$, where (R, Σ) is a partial monoid, $(R, \cdot, 1)$ is a monoid with multiplicative operation \cdot and unit 1, and the additive and multiplicative structures obey the following distributive laws. If $\Sigma(x_i : i \in I)$ is defined in R, then for all y in R, $\Sigma(y \cdot x_i : i \in I)$ and $\Sigma(x_i \cdot y : i \in I)$ are defined and

$$y \cdot [\Sigma_i x_i] = \Sigma_i (y \cdot x_i); [\Sigma_i x_i] \cdot y = \Sigma_i (x_i \cdot y).$$

In addition to that, if $(R, \cdot, 1)$ is a commutative monoid then the partial semiring $(R, \Sigma, \cdot, 1)$ is called a commutative partial semiring.

Throughout this paper R stands for a commutative partial semiring.

Definition 2.2. [1] Let R be a partial semiring. A subset N of R is said to be a partial ideal of R if the following are satisfied

- (I1). if $(x_i : i \in I)$ is summable family in R and $x_i \in N$ for every $i \in I$ then $\Sigma x_i \in N$, (I2). if $x \in N$ and $r \in R$ then $xr, rx \in N$.
- **Definition 2.3.** [1] A proper partial ideal P of a partial semiring R is said to prime if and only if for any partial ideals A, B of R, $AB \subset P$ implies $A \subset P$ or $B \subset P$.

Spec(R) denotes the set of all prime partial ideals of a partial semiring R. For convenience we denote the set $\{H \in spec(R) \mid I \subset H\}$ by V(I).

Theorem 2.1. [5] If I is a partial ideal of a commutative partial semiring R then $\bigcap V(I) = \{ a \in R \mid a^n \in I \text{ for some positive integer } n \}.$

Definition 2.4. [8] Let $(R, \Sigma, \cdot, 1)$ be a partial semiring and $(M, \overline{\Sigma})$ be a partial monoid. Then M is said to be a left partial semimodule over R if there exists a function $*: R \times M \longrightarrow M: (r, x) \mapsto r * x$ which satisfies the following axioms for $x, (x_i : i \in I)$ in M and $r_1, r_2, (r_j : j \in J)$ in R

- (i). if $\overline{\Sigma_i}x_i$ exists then $r*(\overline{\Sigma_i}x_i) = \overline{\Sigma_i}(r*x_i)$,
- (ii). if $\Sigma_j r_j$ exists then $(\Sigma_j r_j) * x = \overline{\Sigma_j} (r_j * x)$,
- (iii). $r_1 * (r_2 * x) = (r_1 \cdot r_2) * x$,
- (iv). $1_R * x = x$,
- (v). $0_R * x = 0_M$.

Definition 2.5. [6] Let $(M, \overline{\Sigma})$ be a left partial semimodule over a partial semiring R. Then a nonempty subset N of M is said to be a subsemimodule of M if and only if N is closed under $\overline{\Sigma}$ and *.

Definition 2.6. [6] Let N be a subsemimodule of a left partial semimodule M over R. Then $(N:M) = \bigcap \{(N:m) \mid m \in M\}$ is called the associated partial ideal of N.

Definition 2.7. [6] Let M be a partial semimodule over R. Then M is said to be multiplication partial semimodule if for all subsemimodules N of M there exists a partial ideal I of R such that N = IM.

Definition 2.8. [6] Let M be a multiplication partial semimodule over R and N, K be subsemimodules of M such that N = IM and K = JM for some partial ideals I, J of R. Then the multiplication of N and K is defined as NK = (IM)(JM) = (IJ)M.

Definition 2.9. [6] Let M be a multiplication partial semimodule over R and $m_1, m_2 \in M$ such that $Rm_1 = I_1M$ and $Rm_2 = I_2M$ for some partial ideals I_1, I_2 of R. Then the multiplication of m_1 and m_2 is defined as $m_1m_2 = (I_1M)(I_2M) = (I_1I_2)M$.

Definition 2.10. [6] Let M be a partial semimodule over R and N be a proper subsemimodule of M. Then N is said to be prime subsemimodule of M if for any $r \in R$ and $n \in M$, $r * n \in N$ implies $r \in (N : M)$ or $n \in N$.

Theorem 2.2. [6] Let M be a multiplication partial semimodule over R and N be a subsemimodule of M. Then N is prime subsemimodule of M if and only if (N : M) is a prime partial ideal of R.

Definition 2.11. [7] A proper partial ideal I of R is said to be primary if for any $a, b \in R$, $ab \in I$ implies $a \in I$ or $b^n \in I$ for some $n \in Z^+$.

Lemma 2.1. [7] If I is a primary partial ideal of R then \sqrt{I} is a prime partial ideal of R.

Definition 2.12. [7] A proper subsemimodule N of a partial semimodule M over R is said to be primary if for any $a \in R$, $x \in M$, $a * x \in N$ implies $x \in N$ or $a \in \bigcap V((N : M))$.

Lemma 2.2. [7] Let M be a multiplication partial semimodule over R and N be a subsemimodule of M. Then $\bigcap V((N:M)) = (\bigcap V(N):M)$.

Definition 2.13. [7] Let M be a partial semimodule over R and N be a subsemimodule of M. Then define $(N :_M r) = \{m \in M \mid r * m \in N\}$ for any $r \in R$.

3. Singular partial semiring wrt a partial semimodule

Definition 3.1. Let M be a partial semimodule over a partial semiring R. Then for any $r \in R$, define $(0:_M r) = \{m \in M \mid r * m = 0_M\}$, called the annihilator of $\{r\}$ in M, denoted by $A_M(r)$.

Remark 1. $A_M(r)$ is a subtractive subsemimodule of M.

Definition 3.2. Let N be a nonzero subsemimodule of a partial semimodule M over R. Then N is said to be an essential subsemimodule if N has nonzero intersection with all nonzero subsemimodules of M.

Definition 3.3. Let M be a partial semimodule over R. Then define $S_M(R) = \{r \in R \mid A_M(r) \text{ is an essential subsemimodule of } M\}.$ i.e., $S_M(R) = \{r \in R \mid A_M(r) \cap N \neq 0_M \text{ for every nonzero subsemimodule } N \text{ of } M\}.$

Theorem 3.1. $S_M(R)$ is a subtractive partial ideal of R.

Proof. Since $A_M(0_R)$ is an essential subsemimodule of M, $0_R \in S_M(R)$.

Let $(r_i: i \in I)$ be a summable family in R and $r_i \in S_M(R)$, $i \in I$. Then $\Sigma_i r_i$ exists and $A_M(r_i) \cap N \neq 0_M \forall$ nonzero subsemimodule N of M, $i \in I$. $\Rightarrow (\bigcap A_M(r_i)) \cap N \neq 0_M \forall$ nonzero subsemimodule N of M. $\Rightarrow A_M(\Sigma_i r_i) \cap N \neq 0_M \forall$ nonzero subsemimodule N of M and hence $A_M(\Sigma_i r_i) \in S_M(R)$.

Now let $r \in S_M(R)$ and $r' \in R$. Then $A_M(r)$ is an essential subsemimodule of M. Now for any nonzero subsemimodule N of M, r'*N is a nonzero subsemimodule of M. Since $A_M(r)$ is essential, $A_M(r) \cap (r'*N) \neq 0_M$. $\Rightarrow \exists 0_M \neq r'*n \in A_M(r) \cap (r'*N)$ where $0_M \neq n \in N$. $\Rightarrow (rr')*n = r*(r'*n) = 0_M$. $\Rightarrow 0_M \neq n \in A_M(rr') \cap N$. $\Rightarrow A_M(rr')$ is an essential subsemimodule of M. $\Rightarrow rr' \in S_M(R)$. Hence $S_M(R)$ is a partial ideal of R. Let $r, r' \in R$ be such that $r, r + r' \in S_M(R)$. Then $A_M(r)$ and $A_M(r + r')$ are essential subsemimodules of M. Now for any nonzero subsemimodule N of M, $A_M(r) \cap A_M(r + r') \cap N \neq 0_M$. $\Rightarrow \exists 0_M \neq n \in A_M(r) \cap A_M(r + r')$. $\Rightarrow r * n = 0_M$ and $(r + r') * n = 0_M$. $\Rightarrow r' * n = 0_M$. $\Rightarrow 0_M \neq n \in A_M(r') \cap N$. $\Rightarrow A_M(r')$ is an essential subsemimodule of M. $\Rightarrow r' \in S_M(R)$. Hence $S_M(R)$ is a subtractive partial ideal of R.

Definition 3.4. Let M be a partial semimodule over R. Then $S_M(R)$ is called singular partial ideal of R with respect to M.

Theorem 3.2. $S_M(R) = \{x \in R \mid x * N = 0_M \text{ for some essential subsemimodule } N \text{ of } M\}.$

Proof. Take $S = \{x \in R \mid x * N = 0_M \text{ for some essential subsemimodule } N \text{ of } M\}$. Let $x \in S_M(R)$. Then $A_M(x)$ is an essential subsemimodule of M. Moreover $x * A_M(x) = 0_M$. $\Rightarrow x \in S$. Now for any $x \in S$, $x * N = 0_M$ for some essential subsemimodule N of M. $\Rightarrow N \subseteq A_M(x)$. Since N is essential, $A_M(x)$ is an essential subsemimodule of M. $\Rightarrow x \in S_M(R)$. Hence $S_M(R) = S$.

Theorem 3.3. $S_M(R) = \{x \in R \mid x * N = 0_M \text{ for some essential subtractive subsemimodule } N \text{ of } M\}.$

Proof. Take $S' = \{x \in R \mid x*N = 0_M \text{ for some essential subtractive subsemimodule } N \text{ of } M\}$. By above theorem, $S' \subseteq S \subseteq S_M(R)$. Now let $x \in S_M(R)$. Then $x*N = 0_M$ for some essential subsemimodule N of M. Let \bar{N} be the subtractive closure of N. i.e., $\bar{N} = \{m \in M \mid \exists m' \in N \ni m + m' \in N\}$. Since $N \subseteq \bar{N}$ and N is essential, \bar{N} is an essential subtractive subsemimodule of M. Now let $m \in \bar{N}$. Then $\exists m' \in N \ni m + m' \in N$. $\Rightarrow x*m' = 0_M$ and $x*(m+m') = 0_M$. $\Rightarrow x*m = 0_M \forall m \in \bar{N}$. $\Rightarrow x*\bar{N} = 0_M$. $\Rightarrow x \in S'$. Hence $S_M(R) = S'$.

Definition 3.5. Let M be a partial semimodule over R. Then R is said to be singular partial semiring with respect to M (in short., singular wrt M) if $S_M(R) = R$.

Theorem 3.4. If R is a nil partial semiring then R is singular wrt every partial semimodule over R.

Proof. Let M be a partial semimodule over R, $a \in R$ and N be a nonzero subsemimodule of M. Then \exists a positive integer m such that $a^m = 0_R$. \Rightarrow for any $0_M \neq n \in N$, $0_M \neq Rn \subseteq N$. $\Rightarrow a^mRn = 0_M$. Let n be the least positive integer such that $a^nRn = 0_M$ and $a^{n-1}Rn \neq 0_M$. $\Rightarrow a^{n-1}Rn \subseteq A_M(a)$. $\Rightarrow 0_M \neq a^{n-1}Rn \subseteq A_M(a) \cap N$. $\Rightarrow A_M(a)$ is an essential subsemimodule of M. $\Rightarrow a \in S_M(R)$. Hence $S_M(R) = R$. Therefore R is singular wrt any partial semimodule M.

Remark 2. If I is a partial ideal of a partial semiring R then $S_M(I) = I \cap S_M(R)$.

Remark 3. If K is a partial ideal of a partial semiring R then $KS_M(R) \subseteq S_M(K)$.

Proof. Let $x \in KS_M(R)$. Then $x = \Sigma_i x_i y_i$ where $x_i \in K$, $y_i \in S_M(R)$, $i \in I$. $\Rightarrow x_i y_i \in K$ and $A_M(y_i)$ is an essential subsemimodule of M, $i \in I$. Now for any $i \in I$, $A_M(y_i) \subseteq A_M(x_i y_i)$. $\Rightarrow A_M(x_i y_i)$ is an essential subsemimodule of M, $i \in I$. $\Rightarrow x_i y_i \in S_M(K)$, $i \in I$. $\Rightarrow x = \Sigma_i x_i y_i \in S_M(K)$. Hence the remark.

Definition 3.6. Let M, M' be partial semimodules over R. Then a surjective homomorphism $\gamma: M \to M'$ is said to be semiisomorphism if $\ker \gamma = 0$.

Theorem 3.5. If $\gamma: M \to M'$ is a semiisomorphism and $S_M(R) = R$ then $S_{M'}(R) = R$.

Proof. Suppose if $S_{M'}(R) \subset R$. Then $\exists 0 \neq r \in R \ni r \notin S_{M'}(R)$. Since $r \notin S_{M'}(R)$, \exists a nonzero subsemimodule N' of $M' \ni A_{M'}(r) \cap N' = 0$. $\Rightarrow 0 \neq n' \in N' \subseteq M'$.

Since γ is onto, $\exists \ 0 \neq n \in M \ni \gamma(n) = n' \in N'$. Take $N = \{a \in M \mid \gamma(a) \in N'\}$. Then N is a nonzero subsemimodule of M. $\Rightarrow A_M(r) \cap N \neq 0$. $\Rightarrow \exists \ 0 \neq b \in N \ni r * b = 0$. $\Rightarrow r * \gamma(b) = \gamma(r * b) = 0$. $\Rightarrow \gamma(b) \in A_{M'}(r) \cap N' = 0$. $\Rightarrow b \in \ker \gamma = 0$. $\Rightarrow b = 0$, a contradiction. Hence $S_{M'}(R) = R$.

Theorem 3.6. If $\gamma: M \to M'$ is a semiisomorphism and $S_{M'}(R) = 0$ then $S_M(R) = 0$.

Proof. Suppose if $S_M(R) \neq 0$. Then $\exists \ 0 \neq r \in R \ni r \in S_M(R)$. $\Rightarrow 0 \neq r \in R$ and $A_M(r)$ is an essential subsemimodule of M. Since $S_{M'}(R) = 0$, $r \notin S_{M'}(R)$. $\Rightarrow \exists$ a nonzero subsemimodule N' of $M' \ni A_{M'}(r) \cap N' = 0$. Since $N' \neq 0$, $\exists \ 0 \neq n' \in N' \subseteq M'$. Since γ is onto, $\exists \ 0 \neq n \in M \ni \gamma(n) = n' \in N'$. Take $N = \{a \in M \mid \gamma(a) \in N'\}$. Then N is a nonzero subsemimodule of M. $\Rightarrow A_M(r) \cap N \neq 0$. $\Rightarrow \exists \ 0 \neq b \in N$ $\Rightarrow r * b = 0$. $\Rightarrow \gamma(b) \in A_{M'}(r) \cap N' = 0$. $\Rightarrow b \in \ker \gamma = 0$, a contradiction. Hence $S_M(R) = 0$.

Theorem 3.7. If $\gamma: M \to M'$ is a semiisomorphism and $S_M(R) = 0$ then $S_{M'}(R) = 0$.

Proof. Suppose if $S_{M'}(R) \neq 0$. Then $\exists 0 \neq r \in R \ni r \in S_{M'}(R)$. $\Rightarrow A_{M'}(r)$ is an essential subsemimodule of M'. Since $S_M(R) = 0$, $r \notin S_M(R)$. $\Rightarrow \exists$ a nonzero subsemimodule N of $M \ni A_M(r) \cap N = 0$. Since $N \neq 0$, $\exists 0 \neq n \in N$. If $\gamma(n) = 0$ then $n \in \ker \gamma = 0$, a contradiction. Hence $\gamma(n) \neq 0$. $\Rightarrow N' = \gamma(N)$ is a nonzero subsemimodule of M'. $\Rightarrow A_{M'}(r) \cap N' \neq 0$. $\Rightarrow \exists 0 \neq x \in N' \ni r * x = 0$. $\Rightarrow \exists 0 \neq x \in N \ni \gamma(a) = x$ and $x * \gamma(a) = 0$. $\Rightarrow \gamma(r * a) = 0$. $\Rightarrow r * a \in \ker \gamma = 0$. $\Rightarrow a \in A_M(r) \cap N = 0$, a contradiction. Hence $S_{M'}(R) = 0$.

Definition 3.7. A prime subsemimodule N of M is said to be associated prime of R if $N = (0:_M r) = A_M(r)$ for some $0 \neq r \in R$.

Denote the set of all associated primes of R by $AP_M(R)$ or simply AP(R).

Remark 4. If $N \in AP(R)$ then N is a subtractive subsemimodule of M.

Lemma 3.1. Any maximal element of $\{A_M(r) \mid 0 \neq r \in R\}$ is a prime subsemimodule of M.

Proof. Let $A_M(x) = (0:_M x)$ be a maximal element of $\{A_M(r) \mid 0 \neq r \in R\}$. Let $r \in R$ and $m \in M \ni r * m \in A_M(x)$ and $r \notin (A_M(x):M)$. $\Rightarrow x * (r * m) = 0$ and $rM \not\subseteq A_M(x)$. $\Rightarrow (xr) * m = 0$ and $x * (rM) \neq 0$. $\Rightarrow (rx) * m = 0$ and $rx \neq 0$. $\Rightarrow m \in A_M(rx)$. Clearly $A_M(x) \subseteq A_M(rx)$. Since $A_M(x)$ is maximal, $A_M(x) = A_M(rx)$. $\Rightarrow m \in A_M(x)$. Hence $A_M(x)$ is a prime subsemimodule of M.

Theorem 3.8. If M is Noetherian then $AP(R) \neq 0$ if and only if $R \neq 0$.

Proof. Suppose $R \neq 0$. Then $\exists 0 \neq s \in R$. Take $\mathbb{A} = \{A_M(r) \mid 0 \neq r \in R\}$. clearly $A_M(s) \in \mathbb{A}$. $\Rightarrow \mathbb{A}$ is a nonempty family of subsemimodules of M. Since M is Noetherian, \mathbb{A} has a maximal element. Let it be $A_M(x)$ for some $0 \neq x \in R$. Then by above lemma, $A_M(x) \in AP(R)$ and hence $AP(R) \neq 0$.

Conversely suppose $AP(R) \neq 0$. $\Rightarrow \exists$ a prime subsemimodule $N = A_M(x)$ for some $0 \neq x \in R$. Hence $R \neq 0$.

4. Primary subsemimodules wrt a prime subsemimodule

Definition 4.1. Let I be a partial ideal and P be a prime partial ideals of R. Then I is said to be primary with respect to P (in short., primary wrt P) if for any $a, b \in R$ $\exists ab \in I$ and $b \notin P$ then $a^n \in I$ for some $n \in Z^+$.

Theorem 4.1. If I is a primary partial ideal of R then I is primary wrt $\bigcap V(I)$.

Proof. Suppose I is primary. Then by lemma 3.6 of [7], $\bigcap V(I)$ is prime partial ideal of R. Let $a, b \in R \ni ab \in I$ and $b \notin \bigcap V(I)$. Then $ab \in I$ and $b^n \notin I$ for all $n \ge 1$. Since I is primary, $a \in I$. Hence I is primary wrt $\bigcap V(I)$.

Theorem 4.2. Let I be a partial ideal and P be a prime partial ideal of R. Then I is primary wrt P if and only if for any partial ideals A, B of R, $AB \subseteq I$ and $B \not\subseteq P$ implies $a^n \in I$ for some $n \in \mathbb{Z}^+$, $\forall a \in A$.

Proof. Suppose I is primary wrt P and let A, B be partial ideals of $R \ni AB \subseteq I$ and $B \not\subseteq P$. Then $\exists b \in B \ni b \not\in P$. Now for any $a \in A$, $ab \in AB \subseteq I$ and $b \notin P$. \Rightarrow $a^n \in I$ for some $n \in \mathbb{Z}^+$.

Conversely suppose for any A, B of $R, AB \subseteq I$ and $B \not\subseteq P$ implies $a^n \in I$ for some $n \in \mathbb{Z}^+, \ \forall \ a \in A$. Let $a, b \in R \ni ab \in I$ and $b \not\in P$. Now $(aR)(bR) = (ab)R \subseteq I$ and $bR \not\subseteq P$. $\Rightarrow (ar)^n \in I$ for some $n \in \mathbb{Z}^+, \ \forall \ ar \in aR$. $\Rightarrow a^n \in I$ for some $n \in \mathbb{Z}^+$. Hence I is primary wrt P.

Definition 4.2. Let N be a proper subsemimodule and P be a prime subsemimodule of a partial semimodule M. Then N is said to be primary wrt P if for any $a \in R$, $m \in M$, $a * m \in N$ and $m \notin P$ implies $a^n \in (N : M)$ for some $n \in \mathbb{Z}^+$.

Remark 5. The intersection of any two primary subsemimodules wrt P of a partial semimodule M is primary wrt P.

Proof. Let N_1, N_2 be two primary subsemimodules wrt P of M and let $a \in R, m \in M$ $\ni a * m \in N_1 \cap N_2$ and $m \notin P$. Then $a^n \in (N_1 : M)$ and $a^k \in (N_2 : M)$ for some $n, k \in \mathbb{Z}^+$. Take $l = \max\{n, k\}$. Then $a^l \in (N_1 : M) \cap (N_2 : M) = (N_1 \cap N_2 : M)$ for some $l \in \mathbb{Z}^+$. Hence $N_1 \cap N_2$ is primary wrt P. **Theorem 4.3.** Let M be a partial semimodule over R, N be a proper subsemimodule and P be a prime subsemimodule of M. If N is primary wrt P then its associated partial ideal (N:M) is a primary partial ideal wrt (P:M) of R.

Proof. Suppose N is primary wrt P of M. Since P is prime subsemimodule of M, (P:M) is a prime partial ideal of R. Let $a,b \in R \ni ab \in (N:M)$ and $b \not\in (P:M)$. Then $a(bM) = (ab)M \subseteq N$ and $bM \not\subseteq P$. $\Rightarrow a^n \in (N:M)$ for some $n \in \mathbb{Z}^+$. Hence (N:M) is a primary partial ideal wrt (P:M) of R.

The following is an example of a partial semimodule M over R in which the converse of above theorem is not true in general.

Example 4.1. Let R be the partial semiring \mathbb{N} with finite support addition and usual multiplication. Then $M = \mathbb{N} \times \mathbb{N}$ is a left partial semimodule over R by the scalar multiplication $*(x,(a,b)) \mapsto (xa,xb)$. Then $K = 0 \times 4\mathbb{N}$ is a subsemimodule of M and $P = \mathbb{N} \times 3\mathbb{N}$ is a prime subsemimodule of M. Here (K:M) = 0 and $(P:M) = \{r \in \mathbb{N} \mid r*(\mathbb{N} \times \mathbb{N}) \subseteq \mathbb{N} \times 3\mathbb{N}\} = 3\mathbb{N}$ which is a prime partial ideal of R. Clearly (K:M) is primary wrt (P:M). Since $2*(0,2) \in K$, $(0,2) \notin P$ and $2^n \notin (K:M) \ \forall \ n \in Z^+$, K is not primary subsemimodule wrt P of M.

Now we show that the converse of above theorem is true for the multiplication partial semimodules.

Theorem 4.4. Let M be a multiplication partial semimodule over R, N be a subsemimodule and P be a prime subsemimodule of M. Then N is primary wrt P if and only if (N : M) is primary wrt (P : M).

Proof. By above theorem, we get the necessary part. for sufficient part, suppose (N:M) is primary wrt (P:M). Let $a \in R$, $m \in M \ni a * m \in N$ and $m \notin P$.

Since M is multiplication partial semimodule, \exists a partial ideal I of $R \ni Rm = IM$. $\Rightarrow (aI)M = a(IM) = a*(Rm) \subseteq N$ and $IM = Rm \not\subseteq P$. $\Rightarrow aI \subseteq (N:M)$ and $I \not\subseteq (P:M) \Rightarrow a^n \in (N:M)$ for some $n \in \mathbb{Z}^+$. Hence N is primary wrt P.

Theorem 4.5. Let M be a multiplication partial semimodule over R, N be a subsemimodule and P be a prime subsemimodule of M. Then the following conditions are equivalent:

- (1). N is primary wrt P,
- (2). for any subsemimodules U, V of M, $UV \subseteq N$ and $V \not\subseteq P$ implies $u^n \in N$ for some

$$n \in \mathbb{Z}^+, \, \forall \, u \in U,$$

(3). for any $m_1, m_2 \in M$, $m_1 m_2 \in N$ and $m_2 \notin P$ implies $m_1^n \in N$ for some $n \in \mathbb{Z}^+$.

Proof. (1) \Rightarrow (2): Suppose N is primary wrt P and let U,V be subsemimodules of M $\ni UV \subseteq N$ and $V \not\subseteq P$. Since M is multiplication partial semimodule, \exists partial ideal I,J of $R\ni U=IM$ and V=JM. $\Rightarrow UV=(IJ)M\subseteq N$ and $V=JM\not\subseteq P$. $\Rightarrow IJ\subseteq (N:M)$ and $J\not\subseteq (P:M)$. Since (N:M) is primary wrt (P:M), $i^n\in (N:M)$ for some $n\in\mathbb{Z}^+, \forall i\in I$. $\Rightarrow u^n=(i*m)^n\in (iM)^n=(iM)^n=i^nM\subseteq N$ for some $n\in\mathbb{Z}^+, \forall u\in U=IM$.

 $(2)\Rightarrow(3)$: Suppose for any subsemimodules U,V of $M,UV\subseteq N$ and $V\not\subseteq P$ implies $u^n\in N$ for some $n\in\mathbb{Z}^+,\ \forall\ u\in U$. Let $m_1,m_2\in M\ni m_1m_2\in N$ and $m_2\not\in P$. Since M is multiplication semimodule, \exists partial ideals I,J of $R\ni Rm_1=IM$ and $Rm_2=JM.\ \Rightarrow\ m_1m_2=(Rm_1)(Rm_2)=(IJ)M\subseteq N$ and $Rm_2=JM\not\subseteq P.\ \Rightarrow\ (r*m_1)^n\in N$ for some $n\in\mathbb{Z}^+,\ \forall\ r*m_1\in Rm_1$ and hence $m_1^n\in N$ for some $n\in\mathbb{Z}^+$. $(3)\Rightarrow(1)$: Suppose for any $m_1,m_2\in M,\ m_1m_2\in N$ and $m_2\not\in P$ implies $m_1^n\in N$ for

some $n \in \mathbb{Z}^+$. We prove (N:M) is primary wrt (P:M). Let I, J be partial ideals of

 $R \ni IJ \subseteq (N:M), i^n \not\in (N:M), \forall n \in \mathbb{Z}^+, \text{ for some } i \in I \text{ and } J \not\subseteq (P:M). \text{ Then } (IJ)M \subseteq N, i^nM \not\subseteq N \text{ and } JM \not\subseteq P. \Rightarrow \exists j \in J, m_1, m_2 \in M \ni i^n * m_1 \in IM \setminus N \text{ and } j * m_2 \in JM \setminus P. \text{ Now } (i * m_1)(j * m_2) \in (IM)(JM) = (IJ)M \subseteq N \text{ and } j * m_2 \not\in P. \Rightarrow (i * m_1)^l \in N \text{ for some } l \in \mathbb{Z}^+. \Rightarrow i^l * m_1 = (i * m_1)^l \in N, \text{ a contradiction. Hence } (N:M) \text{ is primary wrt } (P:M). \Rightarrow N \text{ is primary wrt } P. \square$

Theorem 4.6. If N is primary subsemimodule of a multiplication partial semimodule M then N is primary wrt $\bigcap V(N)$.

Proof. Since N is primary, (N:M) is primary partial ideal of R (by theorem 4.3). $\Rightarrow (N:M)$ is primary wrt $\bigcap V((N:M))$ (by theorem 3.2). $\Rightarrow (N:M)$ is primary wrt $(\bigcap V(N):M)$ (by lemma 1.16). $\Rightarrow N$ is primary $\bigcap V(N)$ (by theorem 4.4). \square

Acknowledgement

The authors are thankful to Dr. N. Prabhakara Rao, Prof. & Head, Department of Mathematics, Bapatla Engineering College, Bapatla, Guntur (Dt.), A.P for his guidance in the preparation of this paper.

References

- [1] Acharyulu, G.V.S.: A Study of Sum-Ordered Partial Semirings, Doctoral thesis, Andhra University, 1992.
- [2] Dutta, T.K. and Das, M.L.: Singular radical in semiring, Southeast Asian Bulletin of Mathematics, Vol. 34, pp. 405-416, 2010.
- [3] Jonathan S. Golan.: Semirings and their Applications, Kluwer Academic Publishers, 1999.
- [4] Manes, E.G., and Benson, D.B.: *The Inverse Semigroup of a Sum-Ordered semiring*, Semigroup Forum, 31, pp. 129-152, 1985.
- [5] Srininvasa Rao, P.V.: Ideals Of Sum Ordered Partial Semirings, Intenational Journal of Computational Cognition(IJCC), Vol. 7, No. 2, pp. 59-64, June 2009.

- [6] Srinivasa Rao, P.V.: On prime subsemimodules of partial semimodules, International Journal of Computational Cognition(IJCC), Vol. 9, No. 2, pp. 40-44, June 2011.
- [7] Srinivasa Rao, P.V. and Siva Mala, M.: Primary subsemimodules of partial semimodules, Advances in Algebra, Vol. 5, No. 3, pp. 125-133, 2012.
- [8] Streenstrup, M.E.: Sum-Ordered partial semirings, Doctoral thesis, Graduate school of the University of Massachusetts, Feb 1985 (Department of computer and Information Science).
- (1) Department of S & H, DVR & Dr. HS MIC College of Technology, Kanchika Cherla-521180, Andhra Pradesh, INDIA

 $E\text{-}mail\ address:\ srinu_fu2004@yahoo.co.in$

(2) Department of Mathematics, V.R. Siddhartha Engineering College, Kanuru, Vijayawada-520007, Andhra Pradesh, INDIA

 $E\text{-}mail\ address:\ sivamala_aug9@yahoo.co.in$