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FINITE LATTICE IMPLICATION ALGEBRAS

R. A. BORZOOEI(1)AND S. F. HOSSEINY(2)

Abstract. In this paper, by considering a finite lattice implication algebra L and

A ⊆ L, the set of all co-atoms of L, we prove that L is equal to the filter generated

by A, that is L = [A). We give a correspondence theorem between the non-trivial

minimal filters and co-atoms of L. We prove that if A = {a1, a2, · · · , an}, then

L ∼= [a1) × [a2) × . . . × [an). Finally, we give a characterization of finite lattice

implication algebras. In particular, we show that there exists only one lattice

implication algebra of prime order.

1. Introduction

In the field of many-valued logic, lattice-valued logic plays an important role in

two aspects: One is that it extends the chain-type truth-value field of some well-

known presented logic [1, 2] to some relatively general lattices. The other is that the

incompletely comparable property of truth value characterized by a general lattice

can more efficiently reflect the uncertainty of people’s thinking, judging and decision.

Hence, lattice-valued logic is becoming a research field which strongly influences the

development of algebraic logic, computer science and artificial intelligence technology.

In order to establish a logic system with truth value in a relatively general lattice,

in 1993, Xu[6] established the lattice implication algebra by combining lattice and
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implication algebra, and investigated many useful structures. Lattice implication

algebra provides the foundation in order to establish the corresponding logic system

from the algebraic viewpoint. For the general development of lattice implication

algebras, the filter theory plays an important role. In this paper, we consider a

finite lattice implication algebra L and A ⊆ L, the set of all co-atoms of L, then

prove that L is equal to the filter generated by A, that is L = [A). Also, we prove

that if A = {a1, a2, · · · , an}, then L ∼= [a1) × [a2) × · · · × [an). Finally, we give a

characterization of finite lattice implication algebras.

2. Preliminaries

Definition 2.1. Let (L,≤) be a lattice. Then;

(i) L is called bounded, if there is a greatest element 1 and least element 0 of L,

(ii) If L is bounded, x ∈ L is called a co-atom, if x < 1 and there is no y ∈ L such

that x < y < 1,

(iii) a unary operation “′” on L is called order reversing involution if for any x, y ∈ L,

x ≤ y implies y′ ≤ x′ and (x′)′ = x

Definition 2.2. [6] By a lattice implication algebra we mean a bounded lattice

(L,∨,∧, 0, 1) with order-reversing involution “′” and a binary operation “→” sat-

isfying the following axioms: for all x, y, z ∈ L;

(I1) x → (y → z) = y → (x → z),

(I2) x → x = 1,

(I3) x → y = y′ → x′,

(I4) x → y = y → x = 1 ⇒ x = y,

(I5) (x → y) → y = (y → x) → x,

(L1) (x ∨ y) → z = (x → z) ∧ (y → z),

(L2) (x ∧ y) → z = (x → z) ∨ (y → z),
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In a lattice implication algebra, we can define a partial ordering “≤” by x ≤ y if

and only if x → y = 1. Moreover, x ≺ y means that x < y and there exist no z ∈ L

such that x < z < y.

Definition 2.3. [8] A subset F of a lattice implication algebra L is called a filter of

L if it satisfies

(F1) 1 ∈ F ,

(F2) x → y ∈ F and x ∈ F imply y ∈ F , for any x, y ∈ F .

The filter {1} 6= F ⊆ L is called minimal if and only if there is no filter G ⊆ L such

that {1} ⊂ G ⊂ F .

It is easy to prove that, for any filter F of a lattice implication algebra L, if x ≤ y

and x ∈ F , then y ∈ F .

Theorem 2.1. [6] Let L be a lattice implication algebra and ∅ 6= A ⊆ L. Then

[A) = {x ∈ L|∃ a1, . . . , an ∈ L, n ∈ N s.t. a1 → (· · · → (an → x) · · · ) = 1}

and for any a ∈ L,

[a) = {x ∈ L| ∃ n ∈ N, s.t. an → x = 1}

where, an → x = a → (a → (· · · → (a︸ ︷︷ ︸
n time

→ x) · · · )) and a0 → x = x

Proposition 2.1. [6, 9] Let L be a lattice implication algebra. Then the following

hold: for any x, y, z ∈ L;

(P1) x → 1 = 1,

(P2) x → y ≤ (y → z) → (x → z),

(P3) x ≤ y implies y → z ≤ x → z and z → x ≤ z → y.

(P4) x′ = x → 0,

(P5) x ∨ y = (x → y) → y,
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(P6) 0 → x = 1,

(P7) 1 → x = x,

(P8) x → y ≥ x′ and x → y ≥ y,

(P9) (x → y) ∨ (y → x) = 1,

(P10) x → (y ∨ z) = (x → y) ∨ (x → z),

(P11) x → (y ∧ z) = (x → y) ∧ (x → z),

(P12) (x → z) → (y → z) = y → (x ∨ z) = (z → x) → (y → x),

(P13) (z → x) → (z → y) = (x ∧ z) → y = (x → z) → (x → y),

(P14) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Definition 2.4. [9] Let L1 and L2 be lattice implication algebras, f : L1 −→ L2 a

mapping from L1 to L2. Then

(i) f is called an implication homomorphism, if for all x, y ∈ L1;

f(x → y) = f(x) → f(y)

(ii) If f is an implication homomorphism and satisfies

f(x ∨ y) = f(x) ∨ f(y) , f(x ∧ y) = f(x) ∧ f(y) , f(x′) = (f(x))′

for any x, y ∈ L1, then f is called a lattice implication homomorphism.

Theorem 2.2. [9] Let L1 and L2 be lattice implication algebras and f : L1 −→ L2

a mapping. Then f is a lattice implication homomorphism if and only if f is an

implication homomorphism and f(0) = 0.

Theorem 2.3. [9] Let L1, L2,..., Ln be lattice implication algebras and L = L1 ×
L2 × · · · × Ln. Then (L,∨,∧,→,′ , 0, 1) is a lattice implication algebra, where binary

operations ∨,∧,→ and unary operation ′ on L are defined as follows:

(x1, x2, · · · , xn) ∨ (y1, y2, · · · , yn) = (x1 ∨ y1, x2 ∨ y2, · · · , xn ∨ yn)
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(x1, x2, · · · , xn) ∧ (y1, y2, · · · , yn) = (x1 ∧ y1, x2 ∧ y2, · · · , xn ∧ yn)

(x1, x2, · · · , xn) → (y1, y2, · · · , yn) = (x1 → y1, x2 → y2, · · · , xn → yn)

(x1, x2, · · · , xn)′ = (x′1, x
′
2, · · · , x′n)

Theorem 2.4. [9] Let L1, L2, · · · , Ln be lattice implication algebras. Then any filter

of L1 × L2 × . . .× Ln is as F1 × F2 × · · · × Fn such that Fi is a filter of Li, for any

1 ≤ i ≤ n.

Note 2.1. From now on, in this paper we let always L be a finite lattice implication

algebra, unless otherwise is stated.

3. Correspondence Theorem for minimal filters

Lemma 3.1. Let x, y, z ∈ L. Then the following hold:

(i) If x ≺ y, then y → x is a co-atom,

(ii) If x ∨ y = 1, then x → y = y and y → x = x,

(iii) If x, y ≺ z and x 6= y, then z → x 6= z → y.

Proof. (i) Let x, y ∈ L and x ≺ y. Then there exists z ∈ L such that y → x < z < 1,

by contrary. Then, by (P3), z → x ≤ (y → x) → x. x ≤ y, so by (P5), (y → x) →
x = x ∨ y = y. Moreover, by (P8), x ≤ z → x ≤ (y → x) → x = y.

Now, since x ≺ y, z → x = x or z → x = y. If z → x = x, then (z → x) → x = x →
x = 1. Since x ≤ y → x < z, we have

z = x ∨ z = (z → x) → x = 1

which is a contradiction. If z → x = y, then by (I1)

z → (y → x) = y → (z → x) = y → y = 1

and so z ≤ y → x < z, which is impossible. Therefore, y → x is a co-atom.

(ii) By (P5), 1 = x ∨ y = (x → y) → y and so x → y ≤ y. Moreover, by (P8),
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y ≤ x → y and so by (I4), x → y = y. Similarly, we can show that y → x = x.

(iii) Let x, y ≺ z and x 6= y but z → x = z → y, by contrary. Since x ≤ x ∨ y ≤ z

and x ≺ z, so x ∨ y = x or x ∨ y = z. If x ∨ y = x, then y ≤ x ≺ z and y 6= x, so

y ⊀ z, which is impossible. If x ∨ y = z then by (P10),

z → x = (z → x) ∨ (z → y) = z → (x ∨ y) = z → z = 1

and so z ≤ x, which is impossible. Therefore, z → x 6= z → y. ¤

Theorem 3.1. (i) L is a chain if and only if any filters of L is equal to {1} or L,

(ii) If a ∈ L is the only co-atom of L, then L = [a).

Proof. (i) (⇒) Let L be a chain of order n, F be a filter of L and F 6= {1}. Then

there exists a co-atom a ∈ L such that for any 1 6= x ∈ L, x ≤ a. Hence x ∨ a = a

and so (a → x) → x = a. (a → x) → x < 1, since a < 1, and so a → x � x. Since L

is a chain,

a → x > x(*)

Now, we claim that 0 ∈ [a). Let 0 /∈ [a), by contrary. Then for any i ∈ N, ai → 0 6= 1

and so by (*),

ai → 0 = a → (ai−1 → 0) > ai−1 → 0

Hence,

an → 0 > an−1 → 0 > . . . > a2 → 0 > a → 0 > 0

Now, since B = {an → 0, an−1 → 0, . . . , a2 → 0, a → 0, 0} ⊆ L, so n + 1 = |B| ≤
|L| = n, which is a contradiction. Thus 0 ∈ [a) and so [a) = L. Now, let x ∈ F . L

is a chain, so x ≤ a and a ∈ F , since F is filter. Hence, L = [a) ⊆ F ⊆ L and so

F = L.

(⇐) Let the only filters of L be {1} and L and there exist x, y ∈ L such that

y � x. Hence y → x 6= 1 and so by hypothesis, {1} ⊂ [y → x) = L. Now, since
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x → y ∈ L = [y → x), so there exists m ∈ N such that (y → x)m → (x → y) = 1.

By (P9), (x → y) ∨ (y → x) = 1, so by Lemma 3.1(ii), (y → x) → (x → y) = x → y

and so

1 = (y → x)m → (x → y)

= (y → x)m−1 → ((y → x) → (x → y))

= (y → x)m−1 → (x → y)

...

= (y → x)2 → (x → y)

= (y → x) → ((y → x) → (x → y))

= (y → x) → (x → y)

= x → y

Hence x ≤ y. Therefore, L is a chain.

(ii) Let a ∈ L be the only co-atom of L. First we show that L is a chain. For this let

x, y ∈ L such that x � y and y � x, by contrary. Then x → y 6= 1 and y → x 6= 1. a

is the only co-atom of L, so x → y ≤ a and y → x ≤ a and so by (P9),

1 = (x → y) ∨ (y → x) ≤ a < 1

which is impossible. Hence x ≤ y or y ≤ x and so L is a chain. Now, by (i), L = [a),

since {1} 6= [a) ⊆ L. ¤

Theorem 3.2. (i) Let a ∈ L be a co-atom. Then the filter F = [a) is a non-trivial

chain minimal filter,

(ii) Any non-trivial minimal filter of L is the form F = [a), such that a ∈ L is a

co-atom.
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Proof. (i) Let a ∈ L be a co-atom. Obviously, [a) is non-trivial. Now, suppose that

F = [a) is not a chain. Since L is finite, so there exist x, y ∈ F such that x � y,

y � x, x ≺ x∨ y and y ≺ x∨ y. Then by Lemma 3.1(i), (x∨ y) → x and (x∨ y) → y

are co-atoms of L. Moreover, by Lemma 3.1(iii), (x∨ y) → x 6= (x∨ y) → y and this

implies that at least one of them is not equal to a. W.O.L.G, let (x ∨ y) → x = b

and b 6= a. Since by (P8), b ≥ x and x ∈ F , so b ∈ F and by Theorem 2.1, there

exists n ∈ N, such that an → b = 1. Now, since a and b are co-atoms, so a ∨ b = 1

and by Lemma 3.1(ii), a → b = b. Hence (a → (a → b)) = a → b = b. By a similar

way, we can prove that 1 = an → b = a → (. . . → (a → (a → b)) . . .) = b, which is a

contradiction. Therefore, [a) is a chain.

Now, we show that F = [a) is a minimal filter of L. Let E be a non-trivial filter of

L such that E ⊆ F . Then there exists 1 6= x ∈ E ∩ F . We have x ∈ F = [a), so

there exists smallest n ∈ N such that an → x = 1 and so a ≤ an−1 → x. Since a is a

co-atom, so an−1 → x = 1 or an−1 → x = a. n is the smallest, so an−1 → x 6= 1 and

an−1 → x = a. But, by (P8) we can prove that

x ≤ a → x ≤ a → (a → x) ≤ . . . ≤ (a → (. . . → (a → (a → x)) . . .)) = an−1 → x = a

and so x ≤ a. Now since x ∈ E and E is a filter we have a ∈ E and so E ⊆ F =

[a) ⊆ E. Hence F = E. Therefore, F = [a) is a minimal filter of L.

(ii) Let F be a non-trivial minimal filter of L. Then {1} 6= F . Now, let 1 6= x ∈ F .

There exists a co-atom 1 6= a ∈ L such that x ≤ a, since L is finite and so a ∈ F .

Then [a) ⊆ F . Since F is minimal and [a) is a filter, so F = [a). ¤

Theorem 3.3 (Correspondence Theorem). There exists a bijection map between the

set of all non-trivial minimal filters and the set of all co-atoms of L.

Proof. Let F = {F : F is a non-trivial minimal filter of L}, C = {a : a is a co-atom

of L} and ϕ : C → F be defined by ϕ(a) = [a). It is clear that ϕ is well-defined.
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Now, we show that ϕ is one-to-one and onto. Let ϕ(a) = ϕ(b), for a, b ∈ C. Then

[a) = [b). a ∈ [a), so a ∈ [b) and so there exists smallest n ∈ N such that an → b = 1.

Similar to the proof of Theorem 3.2(i), we can get that a ≤ b. Now, since b ∈ [b), so

b ∈ [a) and similarly we get that b ≤ a and so a = b. Hence ϕ is one-to-one. Now, let

F ∈ F . Then by Theorem 3.2(ii), there exists a co-atom a ∈ L such that F = [a).

Now, ϕ is onto, since a ∈ C and ϕ(a) = F . ¤

4. Characterization of finite lattice implication algebras

Theorem 4.1. Let A be the set of all co-atoms of L. Then [A) = L.

Proof. It is clear that [A) ⊆ L. Now, let 1 6= x ∈ L. Since L is finite, so there exist

m ∈ N and b1, b2, . . . , bm ∈ L such that x ≺ b1 ≺ b2 ≺ . . . ≺ bm ≺ 1. Then by Lemma

3.1(i),

bm = 1 → bm, bm → bm−1, . . . , b2 → b1, b1 → x

are co-atoms of L. Moreover,

bm → ((bm → bm−1) → · · · ((b3 → b2) → ((b2 → b1) → ((b1 → x) → x))) · · · )

= bm → ((bm → bm−1) → · · · ((b3 → b2) → ((b2 → b1) → (b1 ∨ x))) · · · ) , by (P5)

= bm → ((bm → bm−1) → · · · ((b3 → b2) → ((b2 → b1) → b1)) · · · ) , since x ≤ b1

= bm → ((bm → bm−1) → · · · ((b3 → b2) → (b2 ∨ b1)) · · · ) , by (P5)

= bm → ((bm → bm−1) → · · · ((b3 → b2) → b2) · · · ) , since b1 ≤ b2

...

= bm → ((bm → bm−1) → bm−1)

= bm → (bm ∨ bm−1) , by (P5)

= bm → bm , since bm−1 < bm

= 1
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Now, since {bm, bm → bm−1, . . . , b2 → b1, b1 → x} ⊆ A, we get that x ∈ [A) and so

L ⊆ [A). Therefore, L = [A). ¤

Lemma 4.1. Let F be a filter of L. Then (F,∧,∨,→, 1, 0F =
∧

x∈F

x) is a lattice

implication algebra.

Proof. We have 1 ∈ F , since F is filter. F is finite, so 0F =
∧

x∈F

x ∈ F . Now, let

x, y ∈ F . x ≤ x ∨ y and x ∈ F , so x ∨ y ∈ F . Moreover, by (I2), (P8) and (P11),

y ≤ x → y = 1 ∧ (x → y) = (x → x) ∧ (x → y) = x → (x ∧ y)

Now, since x, y ∈ F , we conclude that x → (x∧ y) ∈ F and x∧ y ∈ F . Also, by (P4)

and (P8), x′ = x → 0F ≥ 0F and x′ ∈ F since 0F ∈ F . Finally, since y ≤ x → y

and y ∈ F , we have x → y ∈ F . Therefore, F is closed under ∨,∧,→ and ′. Hence

(F,∧,∨,→,′ , 0F , 1) is a lattice implication algebra. ¤

Lemma 4.2. Let F1 6= F2 be two non-trivial minimal filters of L. Then,

(i) F1 ∩ F2 = {1}
(ii) If a ∈ F1 and b ∈ F2, then a → b = b and b → a = a.

Proof. (i) F1 ∩ F2 is a filter and F1 6= F2, hence F1 ∩ F2  F1. Now, F1 ∩ F2 = {1}
since F1 is minimal.

(ii) Let a ∈ F1 and b ∈ F2. a ∨ b ∈ F1 since a ≤ a ∨ b and F1 is filter. Similarly,

a ∨ b ∈ F2. Hence a ∨ b ∈ F1 ∩ F2 = {1} and so a ∨ b = 1. From Lemma 3.1(ii), it

directly is followed that a → b = b and b → a = a. ¤

Theorem 4.2. Let A = {a1, a2, · · · , an} be the set of all distinct co-atoms of L. Then

L ∼= [a1)× [a2)× · · · × [an)

Proof. By Lemma 4.1, for all 1 ≤ i ≤ n, the filter [ai) is a lattice implication algebra

and so by Theorem 2.3, [a1)×[a2)×· · ·×[an) is a lattice implication algebra. Moreover,
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by Theorem 4.1, L = [A). Now, it is enough to prove that [A) ∼= [a1)×[a2)×· · ·×[an).

For this, let ϕ : [a1) × [a2) × · · · × [an) −→ [A) be defined by ϕ(x1, x2, . . . , xn) =

x1 ∧ x2 ∧ . . .∧ xn. Since for any 1 ≤ i ≤ n, so xi ∈ [ai), there exists mi ∈ N such that

ai
mi → xi = 1(4.1)

and so by (P11), (I1) and (P1),

an
mn → (an−1

mn−1 → (· · · (a3
m3 → (a2

m2 → (a1
m1 → (x1 ∧ x2 ∧ x3 ∧ · · · ∧ xn))))

· · · ))

= an
mn → (an−1

mn−1 → (· · · (a3
m3 → (a2

m2 → ((am1
1 → x1) ∧ (a1

m1 → (x2 ∧ x3 ∧

· · · ∧ xn))))) · · · ))

= an
mn → (an−1

mn−1 → (· · · (a3
m3 → (a2

m2 → (1 ∧ (a1
m1 → (x2 ∧ x3 ∧ · · · ∧ xn))

))) · · · ))

= an
mn → (an−1

mn−1 → (· · · (a3
m3 → (a2

m2 → (am1
1 → (x2 ∧ x3 ∧ · · · ∧ xn)))) · · · ))

= an
mn → (an−1

mn−1 → (· · · (a3
m3 → (a1

m1 → (am2
2 → (x2 ∧ x3 ∧ · · · ∧ xn)))) · · · ))

= an
mn → (an−1

mn−1 → (· · · (a3
m3 → (a1

m1 → ((am2
2 → x2) ∧ (am2

2 → (x3 ∧ · · · ∧

xn))))) · · · ))

= an
mn → (an−1

mn−1 → (· · · (a3
m3 → (a1

m1 → (1 ∧ (am2
2 → (x3 ∧ · · · ∧ xn))))) · · · ))

= an
mn → (an−1

mn−1 → (· · · (a3
m3 → (a1

m1 → (am2
2 → (x3 ∧ · · · ∧ xn)))) · · · ))

= an
mn → (an−1

mn−1 → (· · · (a1
m1 → (a2

m2 → (am3
3 → (x3 ∧ · · · ∧ xn)))) · · · ))

...

= a1
m1 → (a2

m2 → (· · · (an−1
mn−1 → (an

mn → xn)) · · · ))

= a1
m1 → (a2

m2 → (· · · (an−1
mn−1 → 1) · · · )) = 1



276 R. A. BORZOOEI AND S. F. HOSSEINY

Hence, x1 ∧ x2 ∧ . . . ∧ xn ∈ [A) and so ϕ is well-defined.

Now, we prove that ϕ is a homomorphism. Let (x1, x2, · · · , xn), (y1, y2, · · · , yn) ∈
[a1)× [a2)× · · · × [an). By Theorem 2.2, it is enough to prove that

ϕ((x1, x2, · · · , xn) → (y1, y2, · · · , yn)) = ϕ((x1, x2, · · · , xn)) → ϕ((y1, y2, · · · , yn))

ϕ((0[a1), 0[a2), · · · , 0[an))) = 0

First we show that

(x1 ∧ · · · ∧ xn) → (y1 ∧ · · · ∧ yn) = (x1 → y1) ∧ · · · ∧ (xn → yn)(*)

By (P11) and (L2),

(x1 ∧ · · · ∧ xn) → (y1 ∧ · · · ∧ yn)

= ((x1 ∧ · · · ∧ xn) → y1) ∧ · · · ∧ ((x1 ∧ · · · ∧ xn) → yn)

= ((x1 → y1) ∨ · · · ∨ (xn → y1)) ∧ · · · ∧ ((x1 → yn) ∨ · · · ∨ (xn → yn))

= ((x1 → y1) ∨ y1 ∨ · · · ∨ y1) ∧ · · · ∧ (yn ∨ · · · ∨ yn ∧ (xn → yn)) , by Lemma 4.2(ii)

= (x1 → y1) ∧ · · · ∧ (xn → yn) , since yi ≤ xi → yi

Hence we have (*). So

ϕ((x1, · · · , xn)) → ϕ((y1, · · · , yn)) = (x1 ∧ · · · ∧ xn) → (y1 ∧ · · · ∧ yn)

= (x1 → y1) ∧ · · · ∧ (xn → yn) , by (*)

= ϕ((x1 → y1), · · · , (xn → yn))

= ϕ((x1, · · · , xn) → (y1, · · · , yn))

Now, let x ∈ L. By Theorem 4.1, L = [a1, a2, . . . , an), so there exist n ∈ N and

minimal numbers m1,m2, . . . , mn ∈ N ∪ {0}, such that

a1
m1 → (a2

m2 → (. . . (an
mn → x) . . .)) = 1(4.2)
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Now, let for any 1 ≤ i ≤ n,

xi = a1
m1 → (a2

m2 → (· · · (ai−1
mi−1 → (ai+1

mi+1 → (· · · (an
mn → x) · · · ))) · · · ))

(4.3)

Hence, by (P8) and (I1), for all 1 ≤ i ≤ n, x ≤ xi and

ai
mi → xi

= ai
mi → (a1

m1 → (a2
m2 → (· · · (ai−1

mi−1 → (ai+1
mi+1(· · · (an

mn → x) · · · ))) · · · )))

= a1
m1 → (a2

m2 → (. . . (ai−1
mi−1 → (ai

mi → (ai+1
mi+1(. . . (an

mn → x) · · · )))) · · · ))

= 1

and so xi ∈ [ai). Hence (x1, x2, . . . , xn) ∈ [a1)× [a2)× . . .× [an). Now, we claim that

x = x1 ∧x2 ∧ . . .∧xn, that is ϕ(x1, x2, · · · , xn) = x. For all i ∈ {1, 2, ..., n}, x ≤ xi so

x ≤ x1∧x2∧ . . .∧xn. Now, we should prove that x1∧x2∧ . . .∧xn ≤ x or equivalently

(x1 ∧ x2 ∧ . . . ∧ xn) → x = 1. First we show that for any 1 ≤ i ≤ n,

a1
m1 → (. . . (ai−1

mi−1 → (ai+1
mi+1 → (. . . (an

mn → ai) . . .))) . . .)) = ai(4.4)

For any i ≤ j ≤ n and j 6= i, ai ∨ aj = 1, so by Lemma 3.1(ii), aj → ai = ai and so

a1
m1 → (. . . (ai−1

mi−1 → (ai+1
mi+1 → (. . . (an

mn → ai) . . .))) . . .)

= a1
m1 → (. . . (ai−1

mi−1 → (ai+1
mi+1 → (. . . (an

mn−1 → (an → ai)) . . .))) . . .)

= a1
m1 → (. . . (ai−1

mi−1 → (ai+1
mi+1 → (. . . (an

mn−1 → ai) . . .))) . . .)

= a1
m1 → (. . . (ai−1

mi−1 → (ai+1
mi+1 → (. . . (an

mn−2 → (an → ai)) . . .))) . . .)

...

= ai
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Moreover, we must show that for any 1 ≤ i ≤ n,

ai = a1
m1 → (· · · (ai−1

mi−1 → (ai
mi−1 → (ai+1

mi+1 → (· · · (an
mn → x) · · · )))) · · · )

(4.5)

By using (I1), repeatedly, we have

ai → (a1
m1 → (· · · (ai−1

mi−1 → (ai
mi−1 → (ai+1

mi+1 → (· · · (an
mn → x) · · · ))))

· · · ))

= a1
m1 → (· · · (ai−1

mi−1 → (ai
mi → (ai+1

mi+1 → (· · · (an
mn → x) · · · )))) · · · )

= 1

Then,

ai ≤ a1
m1 → (· · · (ai−1

mi−1 → (ai
mi−1 → (ai+1

mi+1 → (· · · (an
mn → x) · · · )))) · · · )

Now since ai is a co-atom, we have

a1
m1 → (· · · (ai−1

mi−1 → (ai
mi−1 → (ai+1

mi+1 → (· · · (an
mn → x) · · · )))) · · · ) = 1 or ai

If a1
m1 → (· · · (ai−1

mi−1 → (ai
mi−1 → (ai+1

mi+1 → (· · · (an
mn → x) · · · )))) · · · ) = 1,

then we have a contradiction by (4.2). Hence a1
m1 → (· · · (ai−1

mi−1 → (ai
mi−1 →

(ai+1
mi+1 → (· · · (an

mn → x) · · · )))) · · · ) = ai and so we have (4.5). Now, let z =
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(x1 ∧ x2 ∧ . . . ∧ xn) → x. Hence for any 1 ≤ i ≤ n,

z → ai

= ((x1 ∧ x2 ∧ · · · ∧ xn) → x) → ai

= ((x1 → x) ∨ (x2 → x) ∨ · · · ∨ (xi → x) ∨ · · · ∨ (xn → x)) → ai , by (L2)

= ((x1 → x) → ai) ∧ ((x2 → x) → ai) ∧ · · · ∧ ((xi → x) → ai) ∧ · · · ∧ ((xn → x)

→ ai)) , by (L1)

≤ (xi → x) → ai

= (xi → x) → (a1
m1 → (· · · (ai−1

mi−1 → (ai
mi−1 → (ai+1

mi+1 → (· · · (an
mn → x)

· · · )))) · · · )) , by (4.5)

= a1
m1 → (· · · (ai−1

mi−1 → (ai
mi−1 → (ai+1

mi+1 → (· · · (an
mn → ((xi → x) → x))

· · · )) · · · )

= a1
m1 → (· · · (ai−1

mi−1 → (ai
mi−1 → (ai+1

mi+1 → (· · · (an
mn → (xi ∨ x)) · · · )) · · · )

= a1
m1 → (· · · (ai−1

mi−1 → (ai
mi−1 → (ai+1

mi+1 → (· · · (an
mn → xi) · · · )) · · · ) ,

since x ≤ xi

= a1
m1 → (· · · (ai−1

mi−1 → (ai
mi−1 → (ai+1

mi+1 → (· · · (an
mn → (a1

m1 → (· · ·

(ai−1
mi−1 → (ai+1

mi+1 → (· · · (an
mn → x) · · · ))) · · · ))) · · · )))) · · · ) , by (4.3)

= a1
m1 → (· · · (ai−1

mi−1 → (ai+1
mi+1 → (· · · (an

mn → (a1
m1 → (· · ·

(ai−1
mi−1 → (ai

mi−1 → (ai+1
mi+1 → (· · · (an

mn → x) · · · )))) · · · ))) · · · ))) · · · )

= a1
m1 → (· · · (ai−1

mi−1 → (ai+1
mi+1 → (· · · (an

mn → ai) · · · ))) · · · ) , by (4.5)

= ai , by (4.4)

Hence, for any 1 ≤ i ≤ n,
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z → ai ≤ ai < 1(4.6)

Now, if z 6= 1, then there exists a co-atom aj ∈ A, such that z ≤ aj and so z → aj = 1,

which is a contradiction by (4.6). Hence z = 1 and so (x1 ∧ x2 ∧ · · · ∧ xn) → x = 1.

Therefore, x1∧x2∧ · · · ∧xn = x. Now, if x = 0 then x1∧x2∧ · · · ∧xn = 0. 0[ai) ≤ xi,

Since xi ∈ [ai) and so

0 ≤ 0[a1) ∧ · · · ∧ 0[an) ≤ x1 ∧ · · · ∧ xn = 0

and this implies that

ϕ((0[a1), 0[a2), · · · , 0[an))) = 0[a1) ∧ 0[a2) ∧ · · · ∧ 0[an) = 0

Therefore, ϕ is a lattice implication homomorphism.

Now, let x ∈ L. By the above argument, there exist n ∈ N and xi ∈ L, for i ∈
{1, 2, ..., n}, such that x1 ∧ x2 ∧ · · · ∧ xn = x. Hence ϕ(x1, x2, · · · , xn) = x1 ∧ x2 ∧
· · · ∧ xn = x and so ϕ is onto.

In the following, we should prove that ϕ is one-to-one. Let (x1, · · · , xn), (y1, · · · , yn) ∈
[a1) × · · · × [an) and ϕ((x1, · · · , xn)) = ϕ((y1, · · · , yn)). Hence, x1 ∧ · · · ∧ xn =

y1 ∧ · · · ∧ yn. yi ≤ xi → yi, for all 1 ≤ i ≤ n, so by (*);

1 = (x1 ∧ · · · ∧ xn) → (y1 ∧ · · · ∧ yn) = (x1 → y1) ∧ · · · ∧ (xn → yn)

Thus, xi → yi = 1 and so xi ≤ yi, for any 1 ≤ i ≤ n. Similarly, we can prove that

yi ≤ xi for any 1 ≤ i ≤ n and this implies that xi = yi, for any 1 ≤ i ≤ n. Hence,

(x1, · · · , xn) = (y1, · · · , yn) and so ϕ is an isomorphism. Therefore,

L ∼= [a1)× [a2)× . . .× [an)

¤
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Corollary 4.1. Let A = {a1, a2, · · · , an} be the set of all distinct co-atoms of L.

Then,

(i) For any filter F of L, there exist ai1 , ai2 , · · · , aim ∈ A such that

F ∼= [ai1)× [ai2)× · · · × [aim)

(ii) For any ai1 , ai2 , · · · , aim ∈ A, there exists a filter F of L such that

F ∼= [ai1)× [ai2)× · · · × [aim)

(iii) The number of non-isomorphic filters of L is at most equal to 2n.

Proof. (i) By Theorem 4.2, L ∼= [a1) × [a2) × · · · × [an). Now, let F be a filter of L.

Then there exists a filter F ′ of [a1)× [a2)× · · · × [an) such that F ∼= F ′. By Lemma

2.4, for any 1 ≤ i ≤ n, there exists a filter F ′
i of [ai) such that F ′ = F ′

1×F ′
2×· · ·×F ′

n.

Now, since for any 1 ≤ i ≤ n, [ai) is a minimal filter and so is a chain, we have

F ′ = {1} or [ai). Now, since {1} × F ′
i
∼= F ′

i , so there exist ai1 , ai2 , · · · , aim ∈ A such

that

F ∼= F ′ ∼= F ′
i1
× F ′

i2
× · · · × F ′

im = [ai1)× [ai2)× · · · × [aim)

(ii) It is easy to see that F ′ = [ai1)×[ai2)×· · ·×[aim) is a filter of [a1)×[a2)×· · ·×[an)

Now, by Theorem 4.2, we have L ∼= [a1)× [a2)× · · · × [an), so there exists a filter F

of L such that F ∼= F ′ = [ai1)× [ai2)× · · · × [aim).

(iii) By Theorem 4.2, (i) and (ii) the proof is clear. ¤

Corollary 4.2. If F is a filter of L, then |F |
∣∣|L|.

Proof. If A = {a1, a2, · · · , an} be the set of all distinct co-atoms of L, then by The-

orem 4.2, L ∼= [a1) × [a2) × · · · × [an) and so |L| = |[a1)|.|[a2)|. · · · .|[an)|. Moreover,
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by Corollary 4.1, there exist ai1 , ai2 , · · · , aim ∈ A such that 1 ≤ m ≤ n and

F ∼= [ai1)× [ai2)× · · · × [aim)

and so |F | = |[ai1)|.|[ai2)|. · · · .|[aim)|. Now, since for any 1 ≤ j ≤ m, there exists

1 ≤ k ≤ m such that [aij) = [ak) and so |[aij)| = |[ak)|. Hence

|F | = |[ai1)|.|[ai2)|. · · · .|[aim)|
∣∣|[a1)|.|[a2)|. · · · .|[an)| = |L|

¤

Corollary 4.3. There is only one lattice implication algebra of order any prime

number p, up to isomorphism.

Proof. Let |L| = p, while p is a prime number. We know that if |L| ≥ 2, then there

exists at least one co-atom in L. We claim that, in this case there is only one co-atom

in L. Let A = {a1, a2, · · · , an} (n ≥ 2) be the set of all distinct co-atoms of L, by

contrary. Then by Theorem 4.2, L ∼= [a1)× [a2)×· · ·× [an) and 1 < |[ai)| < |L|. But,

by Corollary 4.2, |[ai)|
∣∣|L| = p and so |[ai)| = 1 or p, which is impassible. Then L

has only one co-atom a and so by Theorem 3.1(ii), L = [a). Thus by Theorem 3.1(i),

L is a chain. Since we have only one chain of order p up to isomorphism, there exists

only one lattice implication algebra of order p, up to isomorphism. ¤
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