ANOTHER DECOMPOSITION OF *-CONTINUITY VIA IDEAL TOPOLOGICAL SPACES

S. JAFARI⁽¹⁾, K. VISWANATHAN ⁽²⁾ AND J. JAYASUDHA ⁽³⁾

ABSTRACT. In this paper, we introduce the notions of ω - \mathcal{I} -LC *-sets, \mathcal{I}_{ω}^* -closed sets and \mathcal{I} - ω_t -sets. Also defined the notions of ω - \mathcal{I} -LC *-continuous maps, \mathcal{I}_{ω}^* -continuous maps, \mathcal{I} -continuous maps and obtained decompositions of *-continuity.

1. Introduction and Preliminaries

The concept of ideals in topological spaces is treated in the classic text by Kuratowski [11] and Vaidyanathaswamy [17]. The notion of \mathcal{I} -open sets in topological spaces was introduced by Jankovic and Hamlett [9]. Dontchev et al. [2] introduced and studied the notion of \mathcal{I}_g -closed sets. An ideal \mathcal{I} on a topological space (X, τ) is a non-empty collection of subsets of X satisfying the following properties:(1) $A \in \mathcal{I}$ and $B \subseteq A$ imply $B \in \mathcal{I}$ (heredity); (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$ (finite additivity). A topological space (X, τ) with an ideal \mathcal{I} on X is called an *ideal topological space* and is denoted by (X, τ, \mathcal{I}) . For a subset $A \subseteq X$, $A^*(\mathcal{I}) = \{x \in X : U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$, is called the *local function* [11] of A with respect to \mathcal{I} and τ . We simply write A^* in case there is no chance for confusion. A Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(\mathcal{I})$ called the *-topology finer than τ is defined by $Cl^*(A) = A \cup A^*$ [17]. Let (X, τ) denote a topological space on which no separation axioms are assumed unless explicitly stated. In a topological space (X, τ) , the

²⁰⁰⁰ Mathematics Subject Classification. Primary 54A05; Secondary 54D15, 54D30.

 $[\]textit{Key words and phrases.} \ \text{G-}\mathcal{I}\text{-LC *-set}, \ \omega\text{-}\mathcal{I}\text{-LC *-set}, \ \mathcal{I}_g^*\text{-closed set}, \ \mathcal{I}_\omega^*\text{-closed set}, \ \mathcal{I}\text{-}\omega_t\text{-set}.$

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

closure and the interior of any subset A of X will be denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is said to be g-closed [12] (resp. ω -closed [15]) if $Cl(A) \subset U$ whenever $A \subset U$ and U is open (resp. semi-open) in X. The complement of a g-closed (resp. ω -closed) set is said to be g-open (resp. ω -open). A subset A of a topological space (X, τ) is said to be g*-closed [18] if $Cl(A) \subset U$ whenever $A \subset U$ and U is g-open in X. A subset A of an ideal space (X, τ, \mathcal{I}) is *-closed [9] (resp. *-perfect [5]) if $A^* \subset A$ (resp. $A = A^*$).

Definition 1.1. A subset A of a topological space (X, τ) is called

- (1) locally closed [3] (briefly LC) if $A = U \cap V$, where U is open and V is closed.
- (2) ω -LC *-set [15] if $A = U \cap V$, where U is ω -open and V is closed.
- (3) t-set [16] if Int(Cl(A)) = Int(A).
- (4) ω_t -set [8] if $A = C \cap D$, where C is ω -open and D is a t-set.

Definition 1.2. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called

- (1) t- \mathcal{I} -set [4] if $Int(Cl^*(A)) = Int(A)$.
- (2) α^* - \mathcal{I} -set [4] if $Int(Cl^*(Int(A))) = Int(A)$.
- (3) \mathcal{I} -LC set [1] if $A = C \cap D$, where $C \in \tau$ and D is *-perfect.
- (4) weakly- \mathcal{I} -LC set [10] if $A = C \cap D$, where $C \in \tau$ and D is *-closed.
- (5) $C_{\mathcal{I}}$ -set [4] if $A = C \cap D$, where $C \in \tau$ and D is an α^* - \mathcal{I} -set.
- (6) G- \mathcal{I} -LC *-set [7] if $A = C \cap D$, where C is g-open and D is *-closed.

Definition 1.3. [7] A subset A of an ideal space (X, τ, \mathcal{I}) is said to be \mathcal{I}_g^* -closed if $A^* \subset U$ whenever $A \subset U$ and U is g-open in X.

Definition 1.4. [6] A function $f:(X,\tau,\mathcal{I})\to (Y,\sigma)$ is said to be *-continuous if $f^{-1}(A)$ is *-closed in (X,τ,\mathcal{I}) for every closed set A in (Y,σ) .

Definition 1.5. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be ω -LC *-continuous [15] (resp. g^* -continuous [18], ω_t -continuous [8]) if $f^{-1}(A)$ is ω -LC *-set (resp. g^* -closed, ω_t -set) in (X,τ) for every closed set A of (Y,σ) .

Definition 1.6. [7] A function $f:(X,\tau,\mathcal{I})\to (Y,\sigma)$ is said to be \mathcal{I}_g^* -continuous (resp. G- \mathcal{I} -LC *-continuous) if $f^{-1}(V)$ is \mathcal{I}_g^* -closed(resp. G- \mathcal{I} -LC *-set) in (X,τ,\mathcal{I}) for every closed set V in (Y,σ) .

For a subset A of an ideal space (X, τ, \mathcal{I}) , if A is *-closed, then by [13] A is weakly- \mathcal{I} -LC. Also by Definition 1.3 it follows that if A is *-closed, then A is \mathcal{I}_q^* -closed.

2.
$$\omega$$
- \mathcal{I} -LC *-SETS

Definition 2.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be an ω - \mathcal{I} -LC *-set if $A = C \cap D$, where C is ω -open and D is *-closed.

Proposition 2.1. Let (X, τ, \mathcal{I}) be an ideal space and $A \subset X$. Then the following hold:

- (1) If A is ω -open, then A is an ω - \mathcal{I} -LC *-set;
- (2) If A is *-closed, then A is an ω - \mathcal{I} -LC *-set;
- (3) If A is weakly- \mathcal{I} -LC set, then A is an ω - \mathcal{I} -LC *-set;
- (4) If A is an ω - \mathcal{I} -LC *-set, then A is a G- \mathcal{I} -LC *-set.

The converse of Proposition 2.1 need not be true as seen from the following examples.

Example 2.1. Let $X = \{a, b, c, d\}, \ \tau = \{\emptyset, \{b\}, \{b, c, d\}, X\} \ and \ \mathcal{I} = \{\emptyset, \{b\}\}.$ Then,

- (1) $A = \{a\}$ is an ω -I-LC *-set but not an ω -open set.
- (2) $A = \{c, d\}$ is an ω - \mathcal{I} -LC *-set but not a *-closed set.
- (3) $A = \{c\}$ is a G-I-LC *-set but not an ω -I-LC *-set.

Example 2.2. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{b\}, \{a, d\}, \{a, b, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Then, $A = \{a\}$ is an ω - \mathcal{I} -LC*-set but not a weakly- \mathcal{I} -LC set.

Theorem 2.1. Let (X, τ, \mathcal{I}) be an ideal space and A be an ω - \mathcal{I} -LC *-subset of X. Then the following hold:

- (1) If B is a *-closed set, then $A \cap B$ is an ω - \mathcal{I} -LC *-set;
- (2) If B is an ω -open set, then $A \cap B$ is an ω - \mathcal{I} -LC *-set;
- (3) If B is an ω - \mathcal{I} -LC *-set, then $A \cap B$ is an ω - \mathcal{I} -LC *-set.

Proof. 1. Let B be *-closed and A is ω - \mathcal{I} -LC *-set, then $A \cap B = (C \cap D) \cap B = C \cap (D \cap B)$, where $D \cap B$ is *-closed. Hence $A \cap B$ is an ω - \mathcal{I} -LC *-set.

- 2. Let B be ω -open and A is ω - \mathcal{I} -LC *-set, then $A \cap B = (C \cap D) \cap B = (C \cap B) \cap D$, where $C \cap B$ is ω -open [15]. Hence $A \cap B$ is an ω - \mathcal{I} -LC *-set.
- 3. Let A and B be ω - \mathcal{I} -LC *-sets, then $A \cap B = (C \cap D) \cap (U \cap V) = (C \cap U) \cap (D \cap V)$, where $C \cap U$ is ω -open and $D \cap V$ is *-closed. Hence $A \cap B$ is an ω - \mathcal{I} -LC *-set. \square

Remark 1. The union of any two ω - \mathcal{I} -LC *-sets need not be an ω - \mathcal{I} -LC *-set.

Example 2.3. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then, $A = \{a\}$ and $B = \{c\}$ are ω - \mathcal{I} -LC *-sets but $A \cup B = \{a, c\}$ is not an ω - \mathcal{I} -LC *-set.

Definition 2.2. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be \mathcal{I}_{ω}^* -closed if $A^* \subset U$ whenever $A \subset U$ and U is ω -open in X.

Proposition 2.2. Let (X, τ, \mathcal{I}) be an ideal space and A be a subset of X. If A is \mathcal{I}_g^* -closed, then A is \mathcal{I}_ω^* -closed.

The converse of Proposition 2.2 need not be true as seen from the following example.

Example 2.4. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then, $A = \{c\}$ is \mathcal{I}_{ω}^* -closed but not \mathcal{I}_q^* -closed.

Definition 2.3. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be an \mathcal{I} - ω_t -set if $A = C \cap D$, where C is ω -open and D is a t- \mathcal{I} -set.

Proposition 2.3. Let (X, τ, \mathcal{I}) be an ideal space and A be a subset of X. If A is an ω - \mathcal{I} -LC *-set, then A is an \mathcal{I} - ω_t -set.

The converse of Proposition 2.3 need not be true as seen from the following example.

Example 2.5. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $A = \{c\}$ is an \mathcal{I} - ω_t -set but not an ω - \mathcal{I} -LC *-set.

Proposition 2.4. Let (X, τ, \mathcal{I}) be an ideal space and A be a subset of X. If A is an \mathcal{I} - ω_t -set, then A is a $C_{\mathcal{I}}$ -set.

The converse of Proposition 2.4 need not be true as seen from the following example.

Example 2.6. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{b\}, \{a, d\}, \{a, b, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}\}$. Then $A = \{a, c\}$ is a $C_{\mathcal{I}}$ -set but not an \mathcal{I} - ω_t -set.

Remark 2. From the above, we have the following implications:

$$\begin{array}{c} \text{G-}\mathcal{I}\text{-LC *-set} \\ & \uparrow \\ \text{*-closed set} \Rightarrow \omega\text{-}\mathcal{I}\text{-LC *-set} \Rightarrow \mathcal{I}\text{-}\omega_t\text{-set} \Rightarrow C_{\mathcal{I}}\text{-set} \\ & \uparrow \\ \\ \mathcal{I}\text{-LC set} \Rightarrow \text{weakly-}\mathcal{I}\text{-LC set} \end{array}$$

Theorem 2.2. Let (X, τ, \mathcal{I}) be an ideal space and A be an \mathcal{I} -subset of X. Then the following hold:

- (1) If B is a t- \mathcal{I} -set, then $A \cap B$ is an \mathcal{I} - ω_t -set;
- (2) If B is an ω -open set, then $A \cap B$ is an \mathcal{I} - ω_t -set;
- (3) If B is an \mathcal{I} - ω_t -set, then $A \cap B$ is an \mathcal{I} - ω_t -set.

Remark 3. The union of any two \mathcal{I} - ω_t -sets need not be an \mathcal{I} - ω_t -set.

Example 2.7. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}\}$. Then, $A = \{a\}$ and $B = \{c\}$ are \mathcal{I} - ω_t -sets but $A \cup B = \{a, c\}$ is not an \mathcal{I} - ω_t -set.

Theorem 2.3. The following are equivalent for a subset A of an ideal topological space (X, τ, \mathcal{I}) :

- (1) A is *-closed;
- (2) A is a weakly- \mathcal{I} -LC set and an \mathcal{I}_g^* -closed set;
- (3) A is an ω -I-LC *-set and an \mathcal{I}_g^* -closed set;
- (4) A is an ω -I-LC *-set and an \mathcal{I}_{ω}^* -closed set;
- (5) A is an \mathcal{I} - ω_t -set and an \mathcal{I}^*_{ω} -closed set.

Proof. $(1) \Rightarrow (2)$: This is obvious.

- $(2)\Rightarrow(3)$: Follows from Proposition 2.1.
- $(3)\Rightarrow (4)$: Follows from Proposition 2.2.
- $(4)\Rightarrow(5)$: Follows from Proposition 2.3.
- (5) \Rightarrow (1): Let A be an \mathcal{I} - ω_t -set and an \mathcal{I}^*_{ω} -closed set. Since A is an \mathcal{I} - ω_t -set, $A = C \cap D$, where C is ω -open and D is a t- \mathcal{I} -set. Now $A \subseteq C$ and A is \mathcal{I}^*_{ω} -closed implies $A^* \subseteq C$. Also $A \subseteq D$ and D is a t- \mathcal{I} -set implies $Int(D) = Int(Cl^*(D)) = Int(D \cup D^*) \supseteq Int(D) \cup Int(D^*)$. This shows that $Int(D^*) \subseteq Int(D)$. Thus $D^* \subseteq D$ and hence $A^* \subseteq D$. Therefore $A^* \subseteq C \cap D = A$. Hence A is *-closed.

Remark 4. 1. The notions of weakly- \mathcal{I} -LC-sets and \mathcal{I}_g^* -closed sets are independent.

- 2. The notions of ω - \mathcal{I} -LC *-sets and \mathcal{I}_g^* -closed sets are independent.
- 3. The notions of $\omega\text{-}\mathcal{I}\text{-LC}$ *-sets and $\mathcal{I}_{\omega}^*\text{-closed}$ sets are independent.
- 4. The notions of \mathcal{I} - ω_t -sets and \mathcal{I}^*_{ω} -closed sets are independent.

Example 2.8. Let $X = \{a, b, c, d, e\}$, $\tau = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then

- (1) $A = \{a, b\}$ is a weakly- \mathcal{I} - \mathcal{L} C-set but not an \mathcal{I}_q^* -closed set.
- (2) $A = \{b, e\}$ is an \mathcal{I}_q^* -closed set but not a weakly- \mathcal{I} - \mathcal{L} C-set.

Example 2.9. Let $X = \{a, b, c, d, e\}, \ \tau = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}.$ Then

- (1) $A = \{b\}$ is an ω -I-LC *-set but not an \mathcal{I}_q^* -closed set.
- (2) $A = \{a, b\}$ is an \mathcal{I}_g^* -closed set but not an ω - \mathcal{I} -LC *-set.

Example 2.10. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}.$ Then

- (1) $A = \{a, b\}$ is an ω - \mathcal{I} -LC *-set but not an \mathcal{I}_{ω}^* -closed set.
- (2) $A = \{c\}$ is an \mathcal{I}_{ω}^* -closed set but not an ω - \mathcal{I} -LC *-set.

Example 2.11. Let $X = \{a, b, c, d\}, \ \tau = \{\emptyset, \{a\}, \{a, b\}, X\} \ and \ \mathcal{I} = \{\emptyset, \{a\}\}.$ Then

- (1) $A = \{b\}$ is an \mathcal{I} - ω_t -set but not an \mathcal{I}^*_{ω} -closed set.
- (2) $A = \{a, b\}$ is an \mathcal{I}^*_{ω} -closed set but not an \mathcal{I} - ω_t -set.

3. Decompositions of *-continuity

Definition 3.1. A function $f:(X,\tau,\mathcal{I})\to (Y,\sigma)$ is said to be \mathcal{I}^*_{ω} -continuous (resp. ω - \mathcal{I} -LC *-continuous, \mathcal{I} - ω_t -continuous) if $f^{-1}(V)$ is \mathcal{I}^*_{ω} -closed (resp. ω - \mathcal{I} -LC *-set, \mathcal{I} - ω_t -set) in (X,τ,\mathcal{I}) for every closed set V in (Y,σ) .

Remark 5. 1. Every *-continuous function is weakly \mathcal{I} -LC-continuous.

- 2. Every weakly \mathcal{I} -LC-continuous function is ω - \mathcal{I} -LC *-continuous.
- 3. Every *-continuous function is \mathcal{I}_q^* -continuous.
- 4. Every \mathcal{I}_g^* -continuous function is \mathcal{I}_ω^* -continuous.

Definition 3.2. A subset A of a topological space (X, τ) is said to be ω^* -closed if $Cl(A) \subset U$ whenever $A \subset U$ and U is ω -open in X.

Definition 3.3. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be ω^* -continuous if $f^{-1}(A)$ is ω^* -closed set in (X,τ) for every closed set A of (Y,σ) .

Remark 6. 1. Every g^* -continuous function is ω^* -continuous.

2. Every ω -LC *-continuous function is ω_t -continuous.

Example 3.1. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a, b, d\}, X\}$. Let $f : (X, \tau) \to (X, \sigma)$ be the identity map. Then for the set $V = \{c\}$, $f^{-1}(V) = \{c\}$ is ω^* -closed (resp. ω_t -set) but not g^* -closed (resp. ω -LC *-set). Hence f is ω^* -continuous (resp. ω_t -continuous) but not g^* -continuous (resp. ω -LC *-continuous).

Proposition 3.1. 1. Let $f:(X,\tau,\mathcal{I})\to (Y,\sigma,\mathcal{J})$ be \mathcal{I}^*_ω -continuous and $g:(Y,\sigma,\mathcal{J})\to (Z,\eta)$ be continuous. Then $g\circ f:(X,\tau,\mathcal{I})\to (Z,\eta)$ is \mathcal{I}^*_ω -continuous. 2. Let $f:(X,\tau,\mathcal{I})\to (Y,\sigma,\mathcal{J})$ be \mathcal{I}^*_ω -continuous and $g:(Y,\sigma,\mathcal{J})\to (Z,\eta)$ be *-continuous. Then $g\circ f:(X,\tau,\mathcal{I})\to (Z,\eta)$ is \mathcal{I}^*_ω -continuous.

Theorem 3.1. For a function $f:(X,\tau,\mathcal{I})\to (Y,\sigma)$, the following are equivalent:

- (1) f is *-continuous;
- (2) f is weakly- \mathcal{I} -LC continuous and \mathcal{I}_q^* -continuous;
- (3) f is ω - \mathcal{I} -LC *-continuous and \mathcal{I}_g^* -continuous;
- (4) f is ω - \mathcal{I} -LC *-continuous and \mathcal{I}_{ω}^* -continuous;
- (5) f is \mathcal{I} - ω_t -continuous and \mathcal{I}^*_{ω} -continuous.

Proof. Immediately follows from Theorem 2.3.

Corollary 3.1. Let (X, τ, \mathcal{I}) be an ideal space and $\mathcal{I} = \{\emptyset\}$, for a function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$, the following are equivalent:

- (1) f is continuous;
- (2) f is LC-continuous and g^* -continuous;
- (3) f is ω -LC *-continuous and g*-continuous;
- (4) f is ω -LC *-continuous and ω *-continuous.
- (5) f is ω_t -continuous and ω^* -continuous.

4. On \mathcal{I}_{ω}^* -NORMAL SPACES

Definition 4.1. An ideal space (X, τ, \mathcal{I}) is said to be \mathcal{I}_{ω}^* -normal, if for any two disjoint closed sets F and G in (X, τ, \mathcal{I}) there exist disjoint \mathcal{I}_{ω}^* -open sets U and V such that $F \subseteq U$ and $G \subseteq V$.

Theorem 4.1. For an ideal space (X, τ, \mathcal{I}) , the following are equivalent:

- (1) (X, τ, \mathcal{I}) is \mathcal{I}_{ω}^* -normal.
- (2) For each closed set F and for each open set V containing F, there exists an \mathcal{I}_{ω}^* -open set U such that $F \subseteq U \subseteq Cl^*(U) \subseteq V$.

Proof. (1) \Rightarrow (2): Let F be a closed subset of X and D be an open set such that $F \subseteq D$. Then F and X - D are disjoint closed sets in X. Therefore, by hypothesis there exist disjoint \mathcal{I}_{ω}^* -open sets U and V such that $F \subseteq U$ and $X - D \subseteq V$. Hence $F \subseteq U \subseteq X - V \subseteq D$. Now with D being open it is also ω -open and since X - V is \mathcal{I}_{ω}^* -closed, we have $F \subseteq U \subseteq Cl^*(U) \subseteq Cl^*(X - V) \subseteq D \subseteq V$.

 $(2)\Rightarrow (1)$: Let F and G be two disjoint closed subsets of X. Then by hypothesis, there exists an \mathcal{I}_{ω}^* -open set U such that $F\subseteq U\subseteq Cl^*(U)\subseteq X-G$. If we take $W=X-Cl^*(U)$, then U and W are the required disjoint \mathcal{I}_{ω}^* -open sets containing F and G respectively. Hence (X,τ,\mathcal{I}) is \mathcal{I}_{ω}^* -normal.

Theorem 4.2. Let (X, τ, \mathcal{I}) be \mathcal{I}_{ω}^* -normal. Then the following statements are true.

- (1) If F is closed and A is an ω -closed set such that $A \cap F = \phi$, then there exist disjoint \mathcal{I}_{ω}^* -open sets U and V such that $A \subseteq U$ and $F \subseteq V$.
- (2) If A is closed and B is an ω -open set containing A, then there exists \mathcal{I}_{ω}^* -open set U such that $A \subseteq Int^*(U) \subseteq U \subseteq B$.
- (3) If A is ω -closed and B is an open set containing A, then there exists \mathcal{I}_{ω}^* -open set U such that $A \subseteq U \subseteq Cl^*(U) \subseteq B$.

Proof. (1) Since $A \cap F = \phi$, $A \subseteq X - F$, where X - F is open and hence semi-open. Hence by hypothesis, $Cl(A) \subseteq X - F$. Since $Cl(A) \cap F = \phi$ and X is \mathcal{I}_{ω}^* -normal, there exist disjoint \mathcal{I}_{ω}^* -open sets U and V such that $Cl(A) \subseteq U$ and $F \subseteq V$. The proofs of (2) and (3) are similar.

Definition 4.2. A function $f:(X,\tau,\mathcal{I})\to (Y,\sigma,\mathcal{J})$ is said to be \mathcal{I}_{ω}^* -irresolute if $f^{-1}(V)$ is \mathcal{I}_{ω}^* -open in (X,τ,\mathcal{I}) for every \mathcal{J}_{ω}^* - open set V in (Y,σ,\mathcal{J}) .

Theorem 4.3. If $f:(X,\tau,\mathcal{I})\to (Y,\sigma,\mathcal{I})$ is an \mathcal{I}^*_{ω} -irresolute closed injection and Y is an \mathcal{I}^*_{ω} -normal space, then X is \mathcal{I}^*_{ω} -normal.

Proof. Let F and G be disjoint closed sets of X. Since f is a closed injection, f(F) and f(G) are disjoint closed sets of Y. Now from the \mathcal{I}_{ω}^* -normality of Y, there exist disjoint \mathcal{I}_{ω}^* -open sets U and V such that $f(F) \subseteq U$ and $f(G) \subseteq V$. Also since, f is \mathcal{I}_{ω}^* -irresolute, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint \mathcal{I}_{ω}^* -open sets containing F and G respectively. Hence by Defention 4.1, it follows that X is \mathcal{I}_{ω}^* -normal.

Acknowledgement

The authors are very much thankful to the editor and the referees for their valuable comments which improved the paper.

References

- [1] J. Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., 2(1996).
- [2] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japan, 49(1999), 395-401.
- [3] M.Ganster and I.L Reilly, Locally closed sets and LC continuous functions, Internat. J. Math. Math. Sci., 3(1989), 417-424.
- [4] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96(4)(2002), 341-349.
- [5] E. Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215.

- [6] V. Inthumathi, M. Krishnaprakash and M. Rajamani, Strongly I locally closed sets and decomposition of *-continuity, Acta Math. Hungar., 130(4)(2011), 358-362.
- [7] S. Jafari, J. Jayasudha and K. Viswanathan, G-\(\mathcal{I}\)-LC*- sets and decompositions of *-continuity,
 IOSR-Jour. of Math., 2(2)(2012), 43-46.
- [8] S. Jafari, T. Noiri, K. Viswanathan and M. Rajamani, On decompositions of ω -continuity in topological spaces, J. Adv. Math. Studies, 3(2)(2010), 49-55.
- [9] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(1990), 295-310.
- [10] A. Keskin, T. Noiri and S. Yuksel, Decompositions of *I-continuity and continuity*, Commun. Fac. Sci. Univ. Ankara Series A1, 53(2004), 67-75.
- [11] K. Kuratowski, Topology, Vol. I, Academic press, New York, 1966.
- [12] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96.
- [13] M. Navaneethakrishnan, A study on ideal topological spaces, Ph.D Thesis, Manonmaniam Sundaranar University, Tirunelveli (2009).
- [14] M. Rajamani, V. Inthumathi, and M. Krishnaprakash, On $\mathcal{I}_g^{*\alpha}$ -closed sets and $\mathcal{I}_g^{*\alpha}$ -continuity, Jordan J. Math. Stat., 5(3)(2012), 201-208.
- [15] M. Sheik John, A study on generalized closed sets and continuous maps in topological and bitopological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore (2002).
- [16] J.Tong, A decomposition of continuity in topological spaces, Acta Math. Hungar., 54(1989), 51-55.
- [17] R. Vaidyanathaswamy, Set topology, Chelsea Publishing Company, New York, 1960.
- [18] M. K. R. S. Veera Kumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. (Math.), 21(2000), 1-19.
 - (1) COLLEGE OF VESTSJAELLAND SOUTH, HERRESTRADE 11, 4200 SLAGELSE, DENMARK. E-mail address: jafaripersia@gmail.com
- (2,3) Post-Graduate and Research Department of Mathematics, N G M College, Pollachi 642 001, Tamil Nadu, INDIA.

E-mail address: visungm@yahoo.com

E-mail address: jsudhu@gmail.com