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CHEN INEQUALITIES FOR SUBMANIFOLDS OF SOME SPACE
FORMS ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC

CONNECTION

YUSUF DOĞRU

Abstract. In this paper, we prove Chen inequalities for submanifolds of complex

space forms and respectively Sasakian space form, endowed with a semi-symmetric

non-metric connection.

1. Introduction

In [9], H.A. Hayden introduced the notion of a semi-symmetric metric connection

on a Riemannian manifold. K. Yano studied in [17] some properties of a Riemannian

manifold endowed with a semi-symmetric metric connection.

In [18], Agashe and Chafle introduced the idea of semi-symmetric non-metric con-

nection on a Riemannian manifold. This was further developed by Agashe and Chafle

[19], De and Kamilya [21], De, Sengupta and Binh [11], De and Sengupta [12].

On the other hand, one of the basic problems in submanifold theory is to find

simple relationships between the extrinsic and intrinsic invariants of a submanifold.

B. Y. Chen [5], [6], [10] established some fundamental inequalities in this respect,

well-known as Chen inequalities.

Afterwards, many geometers studied similar problems for different submanifolds in

various ambient spaces, for example see [13]-[15], [16], [1] and [4].
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Recently, in [2] , [3] and [8] , the authors studied Chen inequalities for submanifolds

of real space forms ,complex space forms and Sasakian space forms with a semi-

symmetric metric connection and Chen inequalities for submanifolds of real space

forms with a semi-symmetric non-metric connections, respectively.

In this paper we will study Chen inequalities for submanifolds in complex and

Sasakian space forms endowed with semi-symmetric non-metric connections, respec-

tively. The paper is organized as follows. In Section 2, we give a brief introduction

about a semi-symmetric non-metric connection, Chen Lemma and Ricci curvature. In

Section 3, for submanifolds of complex space forms endowed with a semi-symmetric

non-metric connection we establish Chen first inequality. In Section 4, we state

a relationships between Ricci curvature of a submanifold Mn of a complex space

form N2m(4c) of constant holomorphic sectional curvature, endowed with a semi-

symmetric non-metric connection, and the squared mean curvature ‖H‖2 .In Section

5, for submanifolds of Sasakian space forms endowed with a semi-symmetric non-

metric connection we establish Chen first inequality. In Section 6, we state a rela-

tionship between the sectional curvature of a submanifold Mn of a Sasakian space

form N2m+1(c) of constant ϕ-sectional curvature c endowed with a semi-symmetric

non-metric connection ∇̃ and the squared mean curvature ‖H‖2. Using this inequal-

ity, we prove a relationship between the Ricci curvature of Mn and the squared mean

curvature ‖H‖2.

2. Preliminaries

Let Nn+p be an (n+p)-dimensional Riemannian manifold and ∇̃ a linear connection

on Nn+p. If the torsion tensor T̃ of ∇̃, defined by

T̃
(
X̃, Ỹ

)
= ∇̃ eX Ỹ − ∇̃eY X̃ − [X̃, Ỹ ],
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for any vector fields X̃ and Ỹ on Nn+p, satisfies

T̃
(
X̃, Ỹ

)
= φ(Ỹ )X̃ − φ(X̃)Ỹ

for a 1-form φ, then the connection ∇̃ is called a semi-symmetric connection.

Let g be a Riemannian metric on Nn+p. If ∇̃g = 0, then ∇̃ is called a semi-

symmetric metric connection on Nn+p. If ∇̃g 6= 0, then ∇̃ is called a semi-symmetric

non-metric connection on Nn+p.

Following [12], a semi-symmetric non-metric connection ∇̃ on Nn+p is given by

∇̃ eX Ỹ =
◦
∇̃ eX Ỹ + φ(Ỹ )X̃ − g(X̃, Ỹ )P̃ − η(X̃)Ỹ − η(Ỹ )X̃,

for any vector fields X̃ and Ỹ on Nn+p, where
◦
∇̃ denotes the Levi-Civita connection

with respect to the Riemannian metric g and P is a vector field associated with the

1-form φ defined by

(2.1) φ(X̃) = g(X̃, P )

and E is a vector field associated with the 1-form

(2.2) η(X̃) = g(X̃, E).

We will consider a Riemannian manifold Nn+p endowed with a semi-symmetric

non-metric connection ∇̃ and the Levi-Civita connection denoted by
◦
∇̃.

Let Mn be an n-dimensional submanifold of an (n + p)-dimensional Riemannian

manifold Nn+p. On the submanifold Mn we consider the induced semi-symmetric

non-metric connection denoted by ∇ and the induced Levi-Civita connection denoted

by
◦
∇.

Let R̃ be the curvature tensor of Nn+p with respect to ∇̃ and
◦
R̃ the curvature

tensor of Nn+p with respect to
◦
∇̃. We also denote by R and

◦
R the curvature tensors

of ∇ and
◦
∇, respectively, on Mn.
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The Gauss formulas with respect to ∇ and
◦
∇ can be written as:

∇̃XY = ∇XY + h(X, Y ), X, Y ∈ χ(M),

◦
∇̃XY =

◦
∇XY +

◦
h(X, Y ), X, Y ∈ χ(M),

where
◦
h is the second fundamental form of Mn in Nn+p and h is a (0, 2)-tensor on Mn.

According to the formula (17) from [22] h is also symmetric. The Gauss equation for

the submanifold Mn into an (n + p) dimensional Riemannian manifold Nn+p is

◦
R̃(X, Y, Z, W ) =

◦
R(X, Y, Z, W ) + g(

◦
h(X, Z),

◦
h(Y,W ))(2.3)

−g(
◦
h(X, W ),

◦
h(Y, Z)).

One denotes by
◦
H the mean curvature vector of Mn in Nn+p.

Then the curvature tensor R̃ with respect to the semi-symmetric non-metric con-

nection ∇̃ on Nn+p can be written as (see [12])

R̃(X, Y, Z, W ) =
◦
R̃(X, Y, Z, W )− α(Y, Z)g(X, W )(2.4)

+α(X,Z)g(Y,W )− α(X, W )g(Y, Z)

+α(Y, W )g(X, Z) + β (Y, X) g(Z, W )

−β (X, Y ) g(Z,W ) + β (Y, Z) g(X, W )

−β (X, Z) g(Y, W ),

for any vector fields X,Y, Z,W ∈ χ(Mn), where α and β are (0, 2)-tensor field defined

by

(2.5) α (X,Y ) =

( ◦
∇̃Xφ

)
Y − φ(X)φ(Y ) +

1

2
φ(P )g (X,Y ) ,

(2.6) QX =
◦
∇̃XP − φ(X)P +

1

2
φ(P )X
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and

β (X, Y ) = (
◦
∇̃Xη)(Y )− η(X)φ (Y ) + η(X)η (Y )(2.7)

−φ(X)η (Y ) + η(P )g (X,Y ) .

Denote by λ the trace of α and γ the trace of β.

Let π ⊂ TxM
n, x ∈ Mn, be a 2-plane section. Denote by K(π) the sectional

curvature of Mn with respect to the induced semi-symmetric non-metric connection

∇. For any orthonormal basis {e1, ..., en} of the tangent space TxM
n, the scalar

curvature τ at x is defined by

τ(x) =
∑

1≤i<j≤n

K(ei ∧ ej).

Recall that the Chen first invariant is given by

δMn(x) = τ(x)− inf {K(π) | π ⊂ TxM
n, x ∈ Mn, dim π = 2} ,

(see for example [10]), where Mn is a Riemannian manifold, K(π) is the sectional

curvature of Mn associated with a 2-plane section, π ⊂ TxM
n, x ∈ Mn and τ is the

scalar curvature at x.

The following algebraic Lemma is well-known.

Lemma 2.1. [5] Let a1, a2, ..., an, b be (n + 1) (n ≥ 2) real numbers such that

(
n∑

i=1

ai

)2

= (n− 1)

(
n∑

i=1

a2
i + b

)
.

Then 2a1a2 ≥ b, with equality holding if and only if a1 + a2 = a3 = ... = an.

Let Mn be an n-dimensional Riemannian manifold, L a k-plane section of TxM
n,

x ∈ Mn, and X a unit vector in L.

We choose an orthonormal basis {e1, ..., ek} of L such that e1 = X.
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Ones define [7] the Ricci curvature of L at X by

RicL(X) = K12 + K13 + ... + K1k,

where Kij denotes, as usual, the sectional curvature of the 2-plane section spanned

by ei, ej. For each integer k, 2 ≤ k ≤ n, the Riemannian invariant Θk on Mn is

defined by:

Θk(x) =
1

k − 1
inf
L,X

RicL(X), x ∈ Mn,

where L runs over all k-plane sections in TxM
n and X runs over all unit vectors in

L.

3. Chen First Inequality for submanifolds of complex space forms

Let N2m be a Keahler manifold and J the canonical almost complex structure. The

sectional curvature of N2m in the direction of an invariant 2-plane section by J is

called the holomorphic sectional curvature. If the holomorphic sectional curvature

is constant 4c for all plane sections π of TxN
2m invariant by J for any x ∈ N2m,

then N2m is called a complex space form and is denoted by N2m(4c). The curvature

tensor
◦
R̃ with respect to the Levi-Civita connection

◦
∇̃ on N2m(4c) is given by

◦
R̃(X,Y, Z,W ) = c[g(X, W )g(Y, Z)− g(X, Z)g(Y, W )−(3.1)

−g(JX,Z)g(JY, W ) + g(JX, W )g(JY, Z)−

−2g(X, JY )g(Z, JW )].

If N2m(4c) is a complex space form of constant holomorphic sectional curvature

4c with a semi-symmetric non-metric connection ∇̃, then from (2.4) and (3.1), the

curvature tensor R̃ of N2m(4c) can be expressed as
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R̃(X,Y, Z,W ) = c[g(X, W )g(Y, Z)− g(X, Z)g(Y, W )−(3.2)

−g(JX,Z)g(JY, W ) + g(JX, W )g(JY, Z)−

−2g(X, JY )g(Z, JW )]− α(Y, Z)g(X, W ) +

+α(X, Z)g(Y, W )− α(X,W )g(Y, Z) +

+α(Y,W )g(X,Z) + β (Y,X) g(Z, W )−

−β (X, Y ) g(Z, W ) + β (Y, Z) g(X, W )−

−β (X, Z) g(Y, W ).

Let Mn,n ≥ 3, be an n-dimensional submanifold of an 2m-dimensional complex

space form N2m(4c) of constant holomorphic sectional curvature 4c. For any tangent

vector field X to Mn, we put

JX = TX + FX,

where TX and FX are the tangential and normal components of JX, respectively.

We define

‖T‖2 =
n∑

i,j=1

g2(Jei, ej).

Following [20], we denote by Θ2(π) = g2(Te1, e2) = g2(Je1, e2) and where {e1, e2}
is an orthonormal basis of a 2-plane section π. Θ2(π) is a real number in [0, 1],

independent of the choice of e1, e2.

Denote by

(3.3) Ω(e2) = β22 + η(h(e2, e2)),
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for any orthonormal basis {e1, ..., en} of the tangent space TxM
n. Detailed explana-

tions will be given in the proof of Theorem 3.1 and Theorem 5.1.

For submanifolds of complex space form endowed with a semi-symmetric non-

metric connection we establish the following optimal inequality, which will call Chen

first inequality:

Theorem 3.1. Let Mn, n ≥ 3, be an n-dimensional submanifold of an 2m-dimensional

complex space form N2m(4c) of constant holomorphic sectional curvature 4c, endowed

with a semi-symmetric non-metric connection ∇̃. We have:

τ(x)−K(π) ≤ n− 2

2

[
n2

(n− 1)
‖H‖2 + (n + 1)c− 2λ

]
−(3.4)

−Ω(e2) +
n− 1

2
(γ + nη(H))−

−[6Θ2(π)− 3 ‖T‖2]
c

2
− trace

(
α|

π⊥

)
,

where π is a 2-plane section of TxM
n, x ∈ Mn .

Proof. From [22], the Gauss equation with respect to the semi-symmetric non-metric

connection is

R̃(X,Y, Z,W ) = R(X,Y, Z, W ) + g(h(X,Z), h(Y, W ))−(3.5)

−g(h(Y, Z), h(X, W ))− η(h(Y, Z))g(X,W )

+η(h(X,Z))g(Y,W ).

Let x ∈ Mn and {e1, e2, ..., en} and {en+1, ..., en+p} be orthonormal basis of TxM
n

and T⊥
x Mn, respectively. For X = W = ei, Y = Z = ej, i 6= j, from the equation

(3.2) it follows that:

(3.6) R̃(ei, ej, ej, ei) = c[1 + 3g2(Jei, ej)]− α(ei, ei)− α(ej, ej) + β(ej, ej).
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From (3.5) and (3.6) we get

c[1 + 3g2(Jei, ej)]− α(ei, ei)− α(ej, ej) + β(ej, ej) = R(ei, ej, ej, ei) +

+g(h(ei, ej), h(ei, ej))−

−g(h(ei, ei), h(ej, ej))−

−η(h(ej, ej)).

By summation after 1 ≤ i, j ≤ n, it follows from the previous relation that

(3.7) c[n2 − n + 3
n∑

i,j=1

g2(Jei, ej)] + (n− 1)[−2λ + γ] =

= 2τ + ‖h‖2 − n2 ‖H‖2 − (n2 − n)η(H),

where we recall that λ is the trace of α and γ is the trace of β and denote by

‖h‖2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)),

H =
1

n
traceh.

One takes

(3.8) ε = 2τ +
n2(2− n)

n− 1
‖H‖2−n(n−1)η(H)− [n2−n+3 ‖T‖2]c−(n−1)[−2λ+γ].

Then, from (3.7) and (3.8) we get

(3.9) n2 ‖H‖2 = (n− 1)
(‖h‖2 + ε

)
.

Let x ∈ Mn, π ⊂ TxM
n, dim π = 2, π = sp {e1, e2}. If H = 0 at x, one may choose

en+1 to be any unit normal vector at x. From the relation (3.9) we obtain:

(
n∑

i=1

hn+1
ii )2 = (n− 1)(

n∑
i,j=1

n+p∑
r=n+1

(hr
ij)

2 + ε),
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or equivalently,

(
n∑

i=1

hn+1
ii )2 = (n− 1){

n∑
i=1

(hn+1
ii )2 +

∑

i 6=j

(hn+1
ij )2 +(3.10)

+
n∑

i,j=1

n+p∑
r=n+2

(hr
ij)

2 + ε}.

By using Lemma 2.1 we have from (3.10):

(3.11) 2hn+1
11 hn+1

22 ≥
∑

i6=j

(hn+1
ij )2 +

n∑
i,j=1

n+p∑
r=n+2

(hr
ij)

2 + ε.

The Gauss equation for X = Z = e1, Y = W = e2 gives

K(π) = R(e1, e2, e2, e1) = c[1 + 3g2(Je1, e2)]− α(e1, e1)− α(e2, e2)+

+β(e2, e2) + η(h(e2, e2)) +

p∑
r=n+1

[hr
11h

r
22 − (hr

12)
2] ≥

≥ c[1 + 3g2(Je1, e2)]− α(e1, e1)− α(e2, e2) + β(e2, e2) + η(h(e2, e2))+

+
1

2
[
∑

i6=j

(hn+1
ij )2 +

n∑
i,j=1

2m∑
r=n+2

(hr
ij)

2 + ε] +
2m∑

r=n+2

hr
11h

r
22 −

2m∑
r=n+1

(hr
12)

2 =

= c[1 + 3g2(Je1, e2)]− α(e1, e1)− α(e2, e2) + β(e2, e2) + η(h(e2, e2))+

+
1

2

∑

i6=j

(hn+1
ij )2 +

1

2

n∑
i,j=1

2m∑
r=n+2

(hr
ij)

2 +
1

2
ε +

2m∑
r=n+2

hr
11h

r
22 −

2m∑
r=n+1

(hr
12)

2 =

= c[1 + 3g2(Je1, e2)]− α(e1, e1)− α(e2, e2) + β(e2, e2) + η(h(e2, e2))+

+
1

2

∑

i6=j

(hn+1
ij )2 +

1

2

2m∑
r=2m

∑
i,j>2

(hr
ij)

2 +
1

2

2m∑
r=2m

(hr
11 +hr

22)
2 +

∑
j>2

[(hn+1
1j )2 +(hn+1

2j )2]+
1

2
ε ≥

≥ c[1 + 3g2(Je1, e2)]− α(e1, e1)− α(e2, e2) + β(e2, e2) + η(h(e2, e2)) +
ε

2
,

which implies

K(π) ≥ c[1 + 3g2(Je1, e2)]− α(e1, e1)− α(e2, e2) + β(e2, e2) + η(h(e2, e2)) +
ε

2
.
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We remark that

α(e1, e1) + α(e2, e2) = λ− trace
(
α|

π⊥

)
.

By using (3.8) and (3.3) we get

K(π) ≥ τ − (n− 2)

2

[
(n + 1)c− 2λ +

n2

(n− 1)
‖H‖2

]
+ Ω(e2)−

−(n− 1)

2
(γ + nη(H)) + [6Θ2(π)− 3 ‖T‖2]

c

2
+ trace

(
α|

π⊥

)
,

which represents the inequality to prove. ¤

Recall the following important result (Theorem 3.2) from [22].

Proposition 3.1. The mean curvature H of Mn with respect to the semi-symmetric

non-metric connection coincides with the mean curvature
◦
H of Mn with respect to

the Levi-Civita connection if and only if the vector field P is tangent to Mn.

Remark 1. According to the formula (17) from [22] (see also Proposition 3.2) it follows

that h =
◦
h if P is tangent to Mn.In this case inequality proved in (Theorem 3.1)

becomes

τ(x)−K(π) ≤ n− 2

2

[
n2

(n− 1)

∥∥∥∥
◦
H

∥∥∥∥
2

+ (n + 1)c− 2λ

]
− Ω(e2) +

+
n− 1

2

(
γ + nη(

◦
H)

)
− [6Θ2(π)− 3 ‖T‖2]

c

2
− trace

(
α|

π⊥

)
.

Theorem 3.2. Under the same assumptions as in Theorem 3.1, if the vector field P

is tangent to Mn, then the equality case of inequality from Theorem 3.1 holds at a

point x ∈ Mn if and only if there exists an orthonormal basis {e1, e2, ..., en} of TxM
n
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and an orthonormal basis {en+1, ..., e2m} of T⊥
x Mn such that the shape operators of

Mn in N2m(4c) at x have the following forms:

Aen+1 =




a 0 0 · · · 0

0 b 0 · · · 0

0 0 µ · · · 0
...

...
...

. . .
...

0 0 0 · · · µ




, a + b = µ,

Aer =




hr
11 hr

12 0 · · · 0

hr
12 −hr

11 0 · · · 0

0 0 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 0




, n + 2 ≤ i ≤ 2m,

where we denote by hr
ij = g(h(ei, ej), er), 1 ≤ i, j ≤ n and n + 2 ≤ r ≤ 2m.

Proof. The equality case holds at a point x ∈ Mn if and only if it achieves the equality

in all the previous inequalities and we have the equality in the Lemma.

hn+1
ij = 0, ∀i 6= j, i, j > 2,

hr
ij = 0, ∀i 6= j, i, j > 2, r = n + 1, ..., 2m,

hr
11 + hr

22 = 0, ∀r = n + 2, ..., 2m,

hn+1
1j = hn+1

2j = 0, ∀j > 2,

hn+1
11 + hn+1

22 = hn+1
33 = ... = hn+1

nn .

We may chose {e1, e2} such that hn+1
12 = 0 and we denote by a = hr

11, b = hr
22, µ =

hn+1
33 = ... = hn+1

nn .

It follows that the shape operators take the desired forms. ¤
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4. Ricci curvature for submanifolds of complex space forms

In this section we prove relationships between Ricci curvature of a submanifold

Mn of a complex space form N2m(4c) of constant holomorphic sectional curvature,

endowed with a semi-symmetric non-metric connection ∇̃ and the squared mean

curvature ‖H‖2. We suppose that the vector field P is tangent to Mn.

Theorem 4.1. Let Mn, n ≥ 3, be an n-dimensional submanifold of an 2m-dimensional

complex space form N2m(4c) of constant holomorphic sectional curvature 4c endowed

with a semi-symmetric non-metric connection ∇̃ such that the vector field P is tan-

gent to Mn. Then we have

(4.1) ‖H‖2 ≥ 2τ

n(n− 1)
− 1

n
[nc− 2λ + γ]− η(H)− 3c

n(n− 1)
‖T‖2 .

Proof. Let x ∈ Mn and {e1, e2, ..., en} and orthonormal basis of TxM
n. The relation

(3.7) is equivalent with

(4.2) n2 ‖H‖2 = 2τ + ‖h‖2 − c[n2 − n + 3 ‖T‖2]− (n− 1)[−2λ + γ]− (n2 − n)η(H).

We choose an orthonormal basis {e1, ..., en, en+1, ..., e2m} at x such that en+1

is parallel to the mean curvature vector H(x) and e1, ..., en diagonalize the shape

operator Aen+1 . Then the shape operators take the forms

(4.3) Aen+1




a1 0 . . . 0

0 a2 . . . 0
...

...
. . .

...

0 0 . . . an




,

(4.4) Aer = (hr
ij), i, j = 1, ..., n; r = n + 2, ..., 2m, trace Aer = 0.
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From (4.2), we get

n2 ‖H‖2 = 2τ +
n∑

i=1

a2
i +

2m∑
r=n+2

n∑
i,j=1

(hr
ij)

2 − (n− 1)[−2λ + γ]−(4.5)

−(n2 − n)η(H)− c[n2 − n + 3 ‖T‖2].

On the other hand, since

0 ≤
∑
i<j

(ai − aj)
2 = (n− 1)

n∑
i=1

a2
i − 2

∑
i<j

aiaj,

we obtain

(4.6) n2 ‖H‖2 = (
n∑

i=1

ai)
2 =

n∑
i=1

a2
i + 2

∑
i<j

aiaj ≤ n

n∑
i=1

a2
i ,

which implies

(4.7)
n∑

i=1

a2
i ≥ n ‖H‖2 .

We have from (4.5)

n2 ‖H‖2 = 2τ + n ‖H‖2 − (n− 1)[−2λ + γ]−(4.8)

−(n2 − n)η(H)− c[n2 − n + 3 ‖T‖2],

i.e. (4.1)

‖H‖2 ≥ 2τ

n(n− 1)
− 1

n
[nc− 2λ + γ]− η(H)− 3c

n(n− 1)
‖T‖2 .

¤

Using Theorem 4.1, we obtain the following

Theorem 4.2. Let Mn, n ≥ 3, be an n-dimensional submanifold of an 2m-dimensional

complex space form N2m(4c) of constant holomorphic sectional curvature 4c endowed
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with a semi-symmetric non-metric connection ∇̃, such that the vector field P is tan-

gent to Mn. Then, for any integer k, 2 ≤ k ≤ n, and any point x ∈ Mn, we have

(4.9) ‖H‖2 (x) ≥ Θk(x)− 1

n
[nc− 2λ + γ]− 3c

n(n− 1)
‖T‖2 .

Proof. Let {e1, ...en} be an orthonormal basis of TxM . Denote by Li1...ik the k-plane

section spanned by ei1 , ..., eik . By the definitions, one has

(4.10) τ(Li1...ik) =
1

2

∑

i∈{i1,...,ik}
RicLi1...ik

(ei),

(4.11) τ(x) =
1

Ck−2
n−2

∑
1≤i1<...<ik≤n

τ(Li1...ik).

From (4.1), (4.10) and (4.11), one derives

(4.12) τ(x) ≥ n(n− 1)

2
Θk(x),

which implies (4.9). ¤

5. Chen First Inequality for submanifolds of Sasakian space forms

A (2m + 1)-dimensional Riemannian manifold (N2m+1, g) has an almost contact

metric structure if it admits a (1, 1)-tensor field ϕ, a vector field ξ and a 1-form ω

satisfying:

ϕ2X = −X + ω(X)ξ , ω(ξ) = 1

g(ϕX, ϕY ) = g(X,Y )− ω(X)ω(Y ),

g(X, ξ) = ω(X),

for any vector fields X, Y on TN. Let Φ denote the fundamental 2-form in N2m+1,given

by Φ(X,Y ) = g(X, ϕY ), for all X, Y on TN. If Φ = dω, then N2m+1 is called a contact

metric manifold. The structure of N2m+1 is called normal if
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[ϕ, ϕ] + 2dω ⊗ ξ = 0,

where [ϕ, ϕ] is the Nijenhuis torsion of ϕ. A Sasakian manifold is a normal contact

metric manifold.

A plane section π in TpN
2m+1 is called a ϕ-section if it is spanned by X and ϕX,

where X is a unit tangent vector field orthogonal to ξ. The sectional curvature of

a ϕ-section is called ϕ-sectional curvature. A Sasakian manifold with constant ϕ-

sectional curvature c is said to be a Sasakian space form and is denoted by N2m+1(c).

The curvature tensor
◦
R̃ with respect to the Levi-Civita connection

◦
∇̃ on N2m+1(c) is

expressed by

◦
R̃(X,Y, Z,W ) =

c + 3

4
[g(X,W )g(Y, Z)− g(X, Z)g(Y, W )] +(5.1)

+
c− 1

4
[ω(X)ω(Z)g(Y, W )− ω(Y )ω(Z)g(X, W ) +

+ω(Y )ω(W )g(X,Z)− ω(X)ω(W )g(Y, Z) +

+g(X,ϕZ)g(ϕY, W )− g(Y, ϕZ)g(ϕX,W ) +

+2g(X,ϕY )g(ϕZ,W )].

for vector fields X, Y, Z, W on N2m+1(c).

If N2m+1(c) is a (2m + 1)-dimensional Sasakian space form of constant ϕ-sectional

curvature c endowed with a semi-symmetric non-metric connection ∇̃, then from (2.4)
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and (5.1) it follows that the curvature tensor R̃ of N2m+1(c) can be expressed as

R̃(X,Y, Z,W ) =
c + 3

4
[g(X,W )g(Y, Z)− g(X, Z)g(Y, W )] +(5.2)

+
c− 1

4
[ω(X)ω(Z)g(Y, W )− ω(Y )ω(Z)g(X, W ) +

+ω(Y )ω(W )g(X,Z)− ω(X)ω(W )g(Y, Z) +

+g(X,ϕZ)g(ϕY, W )− g(Y, ϕZ)g(ϕX,W ) +

+2g(X,ϕY )g(ϕZ,W )]− α(Y, Z)g(X, W ) +

+α(X, Z)g(Y, W )− α(X,W )g(Y, Z) +

+α(Y,W )g(X,Z) + β (Y,X) g(Z, W )−

−β (X, Y ) g(Z, W ) + β (Y, Z) g(X, W )−

−β (X, Z) g(Y, W ).

Let Mn,n ≥ 3, be an n-dimensional submanifold of an (2m + 1)-dimensional

Sasakian space form of constant ϕ-sectional curvature Nn+p(c) of constant sectional

curvature c. For any tangent vector field X to Mn, we put

ϕX = TX + FX,

where TX and FX are the tangential and normal components of ϕX, respectively

and we decompose

ξ = ξT + ξ⊥,

where ξT and ξ⊥ denotes the tangential and normal parts of ξ.

Recall that Θ2(π) = g2(Te1, e2) = g2(ϕe1, e2) and where {e1, e2} is an orthonormal

basis of a 2-plane section π. Θ2(π) is a real number in [0, 1], independent of the choice

of e1, e2.

For submanifolds Sasakian space forms endowed with a semi-symmetric non-metric

connection we establish the following optimal inequality.
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Theorem 5.1. Let Mn, n ≥ 3,be an n-dimensional submanifold of an (2m + 1)-

dimensional Sasakian space form N2m+1(c) of constant ϕ-sectional curvature endowed

with a semi-symmetric non-metric connection ∇̃. We have:

τ(x)−K(π) ≤ (n− 2)

[
n2

2(n− 1)
‖H‖2 + (n + 1)

c + 3

8
− λ

]
+(5.3)

+
c− 1

8

[
3 ‖T‖2 − 6Θ2(π)− 2(n− 1)

∥∥ξT
∥∥2

+ 2 ‖ξπ‖2
]
−

−Ω(e2) +
(n− 1)

2
(γ + nη(H))− trace

(
α|

π⊥

)
,

where π is a 2-plane section of TxM
n, x ∈ Mn .

Proof. From [22], the Gauss equation with respect to the semi-symmetric non-metric

connection is

R̃(X,Y, Z,W ) = R(X,Y, Z, W ) + g(h(X,Z), h(Y, W ))−(5.4)

−g(h(Y, Z), h(X, W ))− η(h(Y, Z))g(X,W )

+η(h(X,Z))g(Y,W ).

Let x ∈ Mn and {e1, e2, ..., en} and {en+1, ..., e2m+1} be orthonormal basis of TxM
n

and T⊥
x Mn, respectively. For X = W = ei, Y = Z = ej, i 6= j, from the equation

(5.2) it follows that:

R̃(ei, ej, ej, ei) =
c + 3

4
+

c− 1

4
[−ω(ei)

2 − ω(ej)
2 + 3g2(Tej, ei)]−(5.5)

−α(ei, ei)− α(ej, ej) + β(ej, ej).

From (5.4) and (5.5) we get

c + 3

4
+

c− 1

4
[−ω(ei)

2 − ω(ej)
2 + 3g2(Tej, ei)]− α(ei, ei)− α(ej, ej) + β(ej, ej) =

= R(ei, ej, ej, ei) + g(h(ei, ej), h(ei, ej))g(h(ei, ei), h(ej, ej))− η(h(ej, ej)).
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By summation after 1 ≤ i, j ≤ n, it follows from the previous relation that

(5.6) (n2 − n)
c + 3

4
+

c− 1

4

[
−2(n− 1)

∥∥ξT
∥∥2

+ 3 ‖T‖2
]

+ (n− 1)[−2λ + γ] =

= 2τ + ‖h‖2 − n2 ‖H‖2 − (n2 − n)η(H).

We take

where we recall that λ is the trace of α and γ is the trace of β and denote by

‖h‖2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)),

H =
1

n
traceh.

One takes

ε = 2τ +
n2(2− n)

n− 1
‖H‖2 − n(n− 1)η(H)− (n2 − n)

c + 3

4
−(5.7)

−c− 1

4

[
−2(n− 1)

∥∥ξT
∥∥2

+ 3 ‖T‖2
]
− (n− 1)[−2λ + γ].

Then, from (5.6) and (5.7) we get

(5.8) n2 ‖H‖2 = (n− 1)
(‖h‖2 + ε

)
.

Let x ∈ Mn, π ⊂ TxM
n, dim π = 2, π = sp {e1, e2}. We define en+1 = H

‖H‖ and

from the relation (5.8) we obtain:

(
n∑

i=1

hn+1
ii )2 = (n− 1)(

n∑
i,j=1

2m+1∑
r=n+1

(hr
ij)

2 + ε),

or equivalently,

(
n∑

i=1

hn+1
ii )2 = (n− 1){

n∑
i=1

(hn+1
ii )2 +

∑

i 6=j

(hn+1
ij )2 +(5.9)

+
n∑

i,j=1

2m+1∑
r=n+2

(hr
ij)

2 + ε}.
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By using algebraic Lemma we have from the previous relation

(5.10) 2hn+1
11 hn+1

22 ≥
∑

i6=j

(hn+1
ij )2 +

n∑
i,j=1

2m+1∑
r=n+2

(hr
ij)

2 + ε.

If we denote by ξπ = prπξ we can write

−ω(e1)
2 − ω(e2)

2 = −‖ξπ‖2 .

The Gauss equation for X = Z = e1, Y = W = e2 gives

K(π) = R(e1, e2, e2, e1) =
c + 3

4
+

c− 1

4
[−‖ξπ‖2 + 3g2(Te1, e2)]−

−α(e1, e1)− α(e2, e2) + β(e2, e2) + η(h(e2, e2)) +

p∑
r=n+1

[hr
11h

r
22 − (hr

12)
2] ≥

≥ c + 3

4
+

c− 1

4
[−‖ξπ‖2 + 3g2(Te1, e2)]− α(e1, e1)− α(e2, e2) + β(e2, e2)+

+η(h(e2, e2)) +
1

2
[
∑

i6=j

(hn+1
ij )2 +

n∑
i,j=1

2m+1∑
r=n+2

(hr
ij)

2 + ε] +
2m+1∑
r=n+2

hr
11h

r
22 −

2m+1∑
r=n+1

(hr
12)

2 =

=
c + 3

4
+

c− 1

4
[−‖ξπ‖2 + 3g2(Te1, e2)]− α(e1, e1)− α(e2, e2) + β(e2, e2)+

+η(h(e2, e2)) +
1

2

∑

i6=j

(hn+1
ij )2 +

1

2

n∑
i,j=1

2m+1∑
r=n+2

(hr
ij)

2 +
1

2
ε +

2m+1∑
r=n+2

hr
11h

r
22 −

2m+1∑
r=n+1

(hr
12)

2 =

=
c + 3

4
+

c− 1

4
[−‖ξπ‖2+3g2(Te1, e2)]−α(e1, e1)−α(e2, e2)+β(e2, e2)+η(h(e2, e2))+

+
1

2

∑

i6=j

(hn+1
ij )2+

1

2

2m+1∑
r=n+2

∑
i,j>2

(hr
ij)

2+
1

2

2m+1∑
r=n+2

(hr
11+hr

22)
2+

∑
j>2

[(hn+1
1j )2+(hn+1

2j )2]+
1

2
ε ≥

≥ c + 3

4
+

c− 1

4
[−‖ξπ‖2+3g2(Te1, e2)]−α(e1, e1)−α(e2, e2)+β(e2, e2)+η(h(e2, e2))+

ε

2
,

which implies

K(π) ≥ c + 3

4
+

c− 1

4
[−‖ξπ‖2+3g2(Te1, e2)]−α(e1, e1)−α(e2, e2)+β(e2, e2)+η(h(e2, e2))+

ε

2
.
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We remark that

α(e1, e1) + α(e2, e2) = λ− trace
(
α|

π⊥

)
.

By using (5.7) and (3.3) we get

K(π) ≥ τ − (n− 2)

[
n2

2(n− 1)
‖H‖2 + (n + 1)

c + 3

8
− λ

]
−

−c− 1

8

[
3 ‖T‖2 − 6Θ2(π)− 2(n− 1)

∥∥ξT
∥∥2

+ 2 ‖ξπ‖2
]

+ Ω(e2)−

−(n− 1)

2
(γ + nη(H)) + trace

(
α|

π⊥

)
,

which represents the inequality to prove. ¤

Corollary 5.1. Under the same assumptions as in Theorem 5.1, if ξ is tangent to

Mn, we have

τ(x)−K(π) ≤ (n− 2)

[
n2

2(n− 1)
‖H‖2 + (n + 1)

c + 3

8
− λ

]
+

+
c− 1

8

[
3 ‖T‖2 − 6Θ2(π)− 2(n− 1) + 2 ‖ξπ‖2]− Ω(e2) +

+
(n− 1)

2
(γ + nη(H))− trace

(
α|

π⊥

)
.

If ξ is normal to Mn, we have

τ(x)−K(π) ≤ (n− 2)

[
n2

2(n− 1)
‖H‖2 + (n + 1)

c + 3

8
− λ

]
− Ω(e2) +

+
(n− 1)

2
(γ + nη(H))− trace

(
α|

π⊥

)
.
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Remark 2. According to the formula (17) from [22] (see also Proposition 3.2) it follows

that h =
◦
h if P is tangent to Mn. In this case inequality proved in (3.1) becomes

τ(x)−K(π) ≤ (n− 2)

[
n2

2(n− 1)

∥∥∥∥
◦
H

∥∥∥∥
2

+ (n + 1)
c + 3

8
− λ

]
+

+
c− 1

8

[
3 ‖T‖2 − 6Θ2(π)− 2(n− 1)

∥∥ξT
∥∥2

+ 2 ‖ξπ‖2
]
− Ω(e2) +

+
(n− 1)

2

(
γ + nη(

◦
H)

)
− trace

(
α|

π⊥

)
.

Theorem 5.2. If the vector field P is tangent to Mn, then the equality case of

inequality (5.3) holds at a point x ∈ Mn if and only if there exists an orthonormal

basis {e1, e2, ..., en} of TxM
n and an orthonormal basis {en+1, ..., en+p} of T⊥

x Mn such

that the shape operators of Mn in N2m+1(c) at x have the following forms:

Aen+1 =




a 0 0 · · · 0

0 b 0 · · · 0

0 0 µ · · · 0
...

...
...

. . .
...

0 0 0 · · · µ




, a + b = µ,

Aer =




hr
11 hr

12 0 · · · 0

hr
12 −hr

11 0 · · · 0

0 0 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 0




, n + 2 ≤ i ≤ 2m + 1,

where we denote by hr
ij = g(h(ei, ej), er), 1 ≤ i, j ≤ n and n + 2 ≤ r ≤ 2m + 1.
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Proof. The equality case holds at a point x ∈ Mn if and only if it achieves the equality

in all the previous inequalities and we have the equality in the Lemma.

hn+1
ij = 0, ∀i 6= j, i, j > 2,

hr
ij = 0, ∀i 6= j, i, j > 2, r = n + 1, ..., 2m + 1,

hr
11 + hr

22 = 0, ∀r = n + 2, ..., 2m + 1,

hn+1
1j = hn+1

2j = 0, ∀j > 2,

hn+1
11 + hn+1

22 = hn+1
33 = ... = hn+1

nn .

We may chose {e1, e2} such that hn+1
12 = 0 and we denote by a = hr

11, b = hr
22, µ =

hn+1
33 = ... = hn+1

nn .

It follows that the shape operators take the desired forms. ¤

6. Ricci curvature for submanifolds of Sasakian space forms

We first state a relationship between the sectional curvature of a submanifold Mn

of a Sasakian space form N2m+1(c) of constant ϕ-sectional curvature c endowed with

a semi-symmetric non-metric connection ∇̃ and the squared mean curvature ‖H‖2.

Using this inequality, we prove a relationship between the k-Ricci curvature of Mn

(intrinsic invariant) and the squared mean curvature ‖H‖2 (extrinsic invariant), as

another answer of the basic problem in submanifold theory which we have mentioned

in the introduction.

In this section we suppose that the vector field P is tangent to Mn.

Theorem 6.1. Let Mn, n ≥ 3, be an n-dimensional submanifold of an (2m + 1)-

dimensional Sasakian space form N2m+1(c) of constant ϕ-sectional curvature c en-

dowed with a semi-symmetric non-metric connection ∇̃ such that the vector field P
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is tangent to Mn. Then we have

‖H‖2 ≥ 2τ

n(n− 1)
− 1

n
[−2λ + γ]− η(H)− c + 3

4
−(6.1)

− c− 1

4n(n− 1)

[
−2(n− 1)

∥∥ξT
∥∥2

+ 3 ‖T‖2
]
.

Proof. Let x ∈ Mn and {e1, e2, ..., en} and orthonormal basis of TxM
n. The relation

(5.6) is equivalent with

n2 ‖H‖2 = 2τ + ‖h‖2 − (n− 1)[−2λ + γ]− (n2 − n)η(H)−(6.2)

−(n2 − n)
c + 3

4
− c− 1

4

[
−2(n− 1)

∥∥ξT
∥∥2

+ 3 ‖T‖2
]
.

We choose an orthonormal basis {e1, ..., en, en+1, ..., en+p} at x such that en+1

is parallel to the mean curvature vector H(x) and e1, ..., en diagonalize the shape

operator Aen+1 . Then the shape operators take the forms

(6.3) Aen+1




a1 0 . . . 0

0 a2 . . . 0
...

...
. . .

...

0 0 . . . an




,

(6.4) Aer = (hr
ij), i, j = 1, ..., n; r = n + 2, ..., 2m + 1, trace Aer = 0.

From (6.2), we get

n2 ‖H‖2 = 2τ +
n∑

i=1

a2
i +

2m∑
r=n+2

n∑
i,j=1

(hr
ij)

2 − (n− 1)[−2λ + γ]−(6.5)

−(n2 − n)η(H)− (n2 − n)
c + 3

4
−

−c− 1

4

[
−2(n− 1)

∥∥ξT
∥∥2

+ 3 ‖T‖2
]
,
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which implies

n2 ‖H‖2 = 2τ + n ‖H‖2 − (n− 1)[−2λ + γ]− (n2 − n)η(H)−(6.6)

−(n2 − n)
c + 3

4
− c− 1

4

[
−2(n− 1)

∥∥ξT
∥∥2

+ 3 ‖T‖2
]
,

because
∑n

i=1 a2
i ≥ n ‖H‖2(see (4.7)).

Last inequality represents (6.1) ¤

Using Theorem 6.1, we obtain the following

Theorem 6.2. Let Mn, n ≥ 3, be an n-dimensional submanifold of an (2m + 1)-

dimensional Sasakian space form N2m+1(c) of constant ϕ-sectional curvature c en-

dowed with a semi-symmetric non-metric connection ∇̃, such that the vector field P

is tangent to Mn. Then, for any integer k, 2 ≤ k ≤ n, and any point x ∈ Mn, we

have

‖H‖2 (x) ≥ Θk(x)− 1

n
[−2λ + γ]− η(H)− c + 3

4
−(6.7)

− c− 1

4n(n− 1)

[
−2(n− 1)

∥∥ξT
∥∥2

+ 3 ‖T‖2
]
.

Proof. It follows immediately from (6.1) and (4.12). ¤
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folds in ( k,µ)-contact space forms, Bull. Aust. Math. Soc. 64 (2001), 201-212
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