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TOPOLOGY ON GRILL M-SPACE

SHYAMAPADA MODAK

Abstract. This paper is devoted to obtain a topology from a non topological

space which is already in literature. Some characterizations of this topology will be

discussed in detail.

1. Introduction

Study of ideal and grill on a topological space is going on from 1930 and 1947 respec-

tively to till date. Mathematicians like Al-Omari and Noiri[1,2,3], Bandyopadhyay

and Modak[4,13,14,15], Hamlett and Jankovic[8,10], Kuratowski[11], Vaidyanathaswa-

my[20], Natkaniec[16] Thron, Chattopadhyay, Njastad, and Choqet[5,6,7] had en-

riched this field and their contributions in this field is worthy. Recently Roy and

Mukherjee[18] had used grill on topological space in different aspect. Using this con-

cept, Noiri and Al-Omari in [2,1] had defined a new topology. More rscently Al-Omari

and Noiri in [3] had introduced generalized space and in this space Modak et al[15]

had made a new topology.

In this paper, we have introduced a new type of space which is the joint venture of

Choqet’s grill and Al-Omari and Noiri’s generalized space. Also we shall define two
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operators and obtain a new topology. Further we shall characterize this topology

with the help of topological properties.

2. Preliminaries

In this section we shall refer to some results and definitions which are relevant for

this paper. We shall also prove some results which are preliminaries for this paper.

At first we give formal definition of grill.

A subcollection G (not containing the empty set) of ℘(X) is called a grill[7,19] on X

if G satisfies the following conditions:

(1) A ∈ G and A ⊆ B implies B ∈ G.

(2) A,B ⊆ X and A ∪B ∈ G implies that A ∈ G or B ∈ G.

Definition 2.1.[3]. A subfamily M of the power set ℘(X) of a nonempty set X is

called a m-structure on X if M satisfies the following conditions:

(1) M contains φ and X,

(2) M is closed under the finite intersection.

The pair (X,M) is called a m-space. An m-space (X,M) with an grill G on X is

called a grill m-space and is denoted as (X,M,G)

Definition 2.2.[3]. A set A ∈ ℘(X) is called a m-open set if A ∈ M and B ∈ ℘(X)

is called an m-closed set if X \B ∈M. We define the m-interior of A and m-closure

of A as follows mInt(A) = ∪{U : U ⊆ A, U ∈M} and

mCl(A) = ∩{F : A ⊆ F,X \ F ∈M}.
Here we are mentioning two results which are used in this paper.

Theorem 2.3[15]. Let (X,M) be an m-space. Then x ∈ mCl(A) if and only if every

m-open set Ux containing x, Ux ∩ A 6= φ.

Theorem 2.4[15]. Let (X,M) be an m-space and A ⊆ X. Then mInt(A) =

X \mCl(X \ A).
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Theorem 2.5. Let (X,M) be an m-space. Then for G ∈ M, G ∩ mCl(A)⊆
mCl(G ∩ A).

Proof. Let x ∈ G ∩ mCl(A). Then x ∈ G and x ∈ mCl(A). Implies that x ∈ G

and for every m-open set Ux containing x, Ux ∩ A 6= φ. Again G ∩ Ux is an m-

open set containing x, then (G ∩ Ux) ∩ A 6= φ. Hence x ∈ mCl(G ∩ A). Therefore

G ∩mCl(A)⊆ mCl(G ∩ A). ¤

Definition 2.6[13]. Let (X,M) be an m-space and G be a grill on X. Then a

mapping ϕG : ℘(X) → ℘(X) is defined by ϕG(A) = ϕ(A) = {x ∈ X : A ∩ U ∈ G for

all U ∈M(x)} and for each A ∈ ℘(X), where M(x) = {U ∈M: x ∈ U}. The map-

ping ϕ is called the operator associated with the grill G and the m-structure M on X.

Remark 2.7[13]. Let G be a grill on the m-space (X,M). We define a map CL :

℘(X) → ℘(X) by CL(A) = A ∪ ϕ(A), for all A ∈ ℘(X). Then the map ′CL′ is a

Kuratowski closure operator. We will denote by τMG the topology generated by CL,

that is, τMG = {V ⊆ X : CL(X \ V ) = X \ V }.

In this paper we shall denote the interior and the closure operator of (X, τMG) by

IntMG and ClMG respectively.

Theorem 2.8[13]. Let (X,M,G) be a grill m-space. Then β(M,G) = {V \G: V ∈
M, G/∈ G} is an open base for the topology τMG.

An important relation between interior and closure operator in topological space

(X, τ) is; IntA = X\Cl(X\A)[11]. Similar, the relation also holds in m-space(Theorem

2.4). Hamlett and Jankovic in [8], Al-Omari and Noiri in [2] have defined similar re-

lation using different types of operator on different spaces. We have already defined

this type of relation in [13]. Here we also mention the following definition:

Definition 2.9[13]. Let (X,M,G) be a grill m-space. An operator ψϕ : ℘(X) →M
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is defined as follows for every A ∈ ℘(X), ψϕ(A) = {x ∈ X: there exists U ∈ M(x)

such that U \ A /∈ G}, hence we observe that ψϕ(A) = X \ ϕ(X \ A).

Now, we shall prove in the following some characterizations of grill m-spaces:

Theorem 2.10. Let (X,M,G) be a grill m-space. Then M\ {φ} ⊆ G if and only if

ϕ(X) = X.

Proof. Suppose that M \ {φ} ⊆ G. It is obvious that ϕ(X) ⊆ X. For the reverse

inclusion, let x ∈ X but x /∈ ϕ(X). Then there exists U ∈ M(x), U ∩X /∈ G. Then

U /∈ G, which is a contradiction with the fact that M\ {φ} ⊆ G. Hence, ϕ(X) = X.

Conversely. Suppose that ϕ(X) = X. Let φ 6= V ∈ M. Then V ∩ X 6= φ. Since

ϕ(X) = X, then V ∩X ∈ G which implies that V ∈ G, and hence M\ {φ} ⊆ G. ¤

Corollary 2.11. Let (X,M,G) be a grill m-space and A ∈M. Then M\{φ} ⊆ G
if and only if ϕ(A) = mCl(A).

Proof. Suppose that M \ {φ} ⊆ G. It is obvious that ϕ(A) ⊆ mCl(A)[13]. For

the reverse inclusion, let α ∈ mCl(A). Then for every Uα ∈ M(α), Uα ∩ A 6= φ

(from Theorem 2.3), implies that Uα ∩ A ∈ M \ {φ} ⊆ G. So α ∈ ϕ(A) and hence

ϕ(A) = mCl(A).

Converse part is obvious from Theorem 2.10. ¤

Joint result of the Theorem 2.10 and the Corollary 2.11 is:

Theorem 2.12. Let (X,M,G) be a grill m-space. Then following properties are

equivalent:

(1) M\ {φ} ⊆ G;

(2) For every G ∈M, G ⊆ ϕ(G);

(3) X = ϕ(X);

(4) If A ∈M, then ϕ(A) = mCl(A).

(5) ϕ(ψϕ(A)) = mCl(ψϕ(A)).
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Theorem 2.13. Let (X,M,G) be a grill m-space and M\{φ} ⊆ G. Then ψϕ(A)\A

= φ, for m-closed subset A.

Proof. Since, by Theorem 2.11 ψϕ(A)\A = [X \ϕ(X \A]\A = [X \mCl(X \A)]\A

= mInt(A) \ A = φ. ¤

Definition 2.14[12]. A subset A in a topological space (X, τ) is called semi-open

if A ⊆ cl(int(A)).

The set of all semi-open sets in a topological space (X, τ) is denoted as SO(X, τ).

Definition 2.15[17]. A subset A in a topological space (X, τ) is called α-set if A ⊆
int(cl(int(A))).

The set of all α-sets in a topological space (X, τ) is denoted as τα.

A topological space (X, τ) is said to be resolvable[9] if for a subset D of X both D

and X \D are dense in (X, τ), otherwise it is said to be irresolvable.

The space of reals with usual topology provides an example of a resolvable space

while any topological space with an isolated point furnishes for an irresolvable one.

3. ψϕ-C set and Properties of ψϕ(X,M)

This section is devoted to deal with a new type of set and its properties :

Definition 3.1. Let (X,M,G) be a grill m-space. A subset A of X is called a ψϕ-C

set if A ⊆ mCl(ψϕ(A)).

The collection of all ψϕ-C sets in (X,M,G) is denoted as ψϕ(X,M).

Remark 3.2. It is obvious that M ⊆ τMG[13]⊆ψϕ(X,M), but the reverse inclu-

sion does not hold in general.

Let X = {a, b, c, d}, M = {φ, X, {a}, {b, c}, {a, b, c}} and G = {{a}, {b}, {a, c},
{a, b}, {a, d}, {a, b, c}, {c, b, d}, {a, b, d}, {a, c, d}, {b, c}, {b, d}, {b, c, d}, X}. Consider

A = {a, d}, then ψϕ(A) = {a}. Thus mCl(ψϕ(A)) = {a, d}. So {a, d} ∈ ψϕ(X,M).
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But {a, d} /∈ τMG.

Theorem 3.3. Let {Aα : α ∈ ∆} be a collection of nonempty ψϕ-C sets in a

grill m-space (X,M,G), then ∪α∈∆Aα ∈ ψϕ(X,M).

Proof. For each α ∈ ∆, Aα ⊆ mCl(ψϕ(Aα)) ⊆ mCl(ψϕ(∪α∈∆Aα))[13]. This implies

that ∪α∈∆Aα ⊆ mCl(ψϕ(∪α∈∆Aα)). Thus ∪α∈∆Aα ∈ ψϕ(X,M). ¤

Remark 3.4. The intersection of two ψϕ-C sets may not be a ψϕ-C set in general.

In Remark 3.1, consider A = {a, d}, and B = {b, c, d}, then ϕ(X \ A) = {b, c, d}
and mCl(ψϕ(A)) = {a, d}, hence A ∈ ψϕ(X,M). Again ϕ(X \ B) = {a, d} and

mCl(ψϕ(B)) = {b, c, d}, hence B ∈ ψϕ(X,M). Since A∩B = {d}, ϕ[X\(A∩B)] = X

and mCl(ψϕ(A ∩B)) = φ implies that A ∩B /∈ ψϕ(X,M).

Theorem 3.5. Let (X,M,G) be a grill m-space and A ∈ ψϕ(X,M). If U ∈ M,

then U ∩ A ∈ ψϕ(X,M).

Proof. Let U ∈ M and A ∈ ψϕ(X,M). Then U ∩ A ⊆ U ∩ mCl(ψϕ(A)). Since

ψϕ(X,M))⊆ mCl[U ∩ψϕ(A)], then by Theorem 2.5, ψϕ(X,M))⊆ mCl[U ∩ψϕ(A)]⊆
mCl[ψϕ(U) ∩ ψϕ(A)][13] = mCl[ψϕ(U ∩ A)]. Hence the result. ¤

4. τψ
MG-topology and Properties of τψ

MG

In this section we shall introduce a new type of set whose collection forms a topol-

ogy. Although this collection is used in section 3 does not form a topology.

Definition 4.1. Let (X,M,G) be a grill m-space. Then a subset A of X is called a

ψϕ- set if A ⊆ mInt(mCl(ψϕ(A))).

The collection of all ψϕ sets in (X,M,G) is denoted by τψ
MG. This collection lies

between M and ψϕ(X,M) i.e., M⊆ τψ
MG ⊆ ψϕ(X,M).
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If we take A = {b, c, d} in Remark 3.4., we can easily show that the reverse inclusion

of τψ
MG ⊆ ψϕ(X,M) does not hold.

In the following, we introduce some properties of τψ
MG-topology.

Theorem 4.2. Let (X,M,G) be a grill m-space. Then τψ
MG = {A ⊆ X : A ⊆

mInt(mCl(ψϕ(A)))} forms a topology on X, where M\ {φ} ⊆ G.

Proof. (i). Since ψϕ(φ) = X \ ϕ(X \ φ) = φ. So, φ ∈ τψ
MG and by Theorem 2.12,

ψϕ(X) = X \ ϕ(X \X) = X \ φ = X. Hence X ⊆ mInt(mCl(ψϕ(X))). Therefore

X ∈ τψ
MG.

(ii). Let Ai ∈ τψ
MG for all i. Now we show that ∪iAi ∈ τψ

MG. Since Ai ⊆ ∪iAi,

ψϕ(Ai) ⊆ ψϕ(∪iAi)[13], then mInt(mCl(ψϕ(Ai))) ⊆ mInt(mCl(ψϕ(∪iAi))). So Ai ⊆
mInt(mCl(ψϕ(Ai))) ⊆ mInt(mCl(ψϕ(∪iAi))) for all i. Therefore ∪iAi ∈ τψ

MG.

(iii). Let A1, A2 ∈ τψ
MG. We show that A1 ∩ A2 ∈ τψ

MG. If A1 ∩ A2 = φ, we are

done. Let A1 ∩ A2 6= φ. Let x ∈ A1 ∩ A2. Now A1 ⊆ mInt(mCl(ψϕ(A1))) and A2 ⊆
mInt(mCl(ψϕ(A2))), implies that x ∈ mInt(mCl(ψϕ(A1))) ∩ mInt(mCl(ψϕ(A2))).

So x ∈ mInt[mCl(ψϕ(A1)) ∩ mCl(ψϕ(A2))], from Definition 2.2. Therefore there

exists an m-open set Vx containing x such that Vx ⊆ mCl(ψϕ(A1))∩mCl(ψϕ(A2)). Let

Ux be any m-open set containing x in (X,M). Then φ 6= Vx∩Ux ⊆ mCl(ψϕ(A1)) and

Vx ∩Ux ⊆ mCl(ψϕ(A2)). Let y ∈ Vx ∩Ux. Consider any m-open set Gy containing y.

Without loss of generality we may suppose that Gy ⊆ Vx∩Ux. So Gy∩ (ψϕ(A1)) 6= φ.

From the definition of ψϕ(A1), there exists a U ∈ M(x) such that U ⊆ Gy and

U \A1 /∈ G. Again U ⊆ mCl(ψϕ(A2)), so there exists a nonempty m-open set U
′ ⊆ U

such that U
′\A2 /∈ G. Now U

′\(A1∩A2) = (U
′\A1)∪(U

′\A2) ⊆ (U \A1)∪(U
′\A2) /∈

G(from definition of grill). Hence from definition of ψϕ, U
′ ⊆ ψϕ(A1 ∩ A2). Since

U
′ ⊆ Gy, Gy ∩ ψϕ(A1 ∩ A2) 6= φ, therefore y ∈ mCl(ψϕ(A1 ∩ A2)). Since y was

any point of Vx ∩ Ux, it follows that Vx ∩ Ux ⊆ mCl(ψϕ(A1 ∩ A2)), implies that
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x ∈ mInt(mCl(ψϕ(A1 ∩ A2))). Thus A1 ∩ A2 ⊆ mInt(mCl(ψϕ(A1 ∩ A2))). Hence

A1 ∩ A2 ∈ τψ
MG.

From (i), (ii) and (iii) τψ
MG forms a topology. ¤

Proposition 4.3. Let (X,M,G) be a grill m-space with M\ {φ} ⊆ G. Then

ψϕ(A) 6= φ if and only if A contains a nonempty τMG-interior.

Proof. Let ψϕ(A) 6= φ. Then from definition of ψϕ(A), there exists a nonempty set

U ∈ M such that U \ A = P , where P /∈ G. Now U \ P ⊆ A. By the Theorem 2.8.,

U \ P ∈ τMG and A contains a nonempty τMG-interior.

Conversely suppose that A contains a nonempty τMG-interior. Hence there exists a

U ∈ M and P /∈ G such that U \ P ⊆ A. So U \ A ⊆ P . Let H = U \ A ⊆ P , then

H /∈ G. Thus ψϕ(A) 6= φ.

Two topologies τψ
MG and τMG have been obtained from (X,M,G) space. Now we

shall discuss the resolvability of τψ
MG vis-a-vis resolvability of τMG. ¤

Theorem 4.4. If M\ {φ} ⊆ G in (X,M,G), D(X, τMG) = D(X, τψ
MG)(where

D(X, τ) denotes the collection of all dense subsets in a topological space (X, τ)).

Proof. Since τMG ⊆ τψ
MG then, D(X, τψ

MG) ⊆D(X, τMG)————(i).

Next let D ∈ D(X, τMG). We are to show that D ∈ D(X, τψ
MG). Let φ 6= A ∈ τψ

MG, so

ψϕ(A) 6= φ. By proposition 4.3., A has a nonempty τMG-interior. Thus IntMG(A) 6=
φ. Now IntMG(A)∩D ⊆ A∩D, where IntMG(A)∩D 6= φ, since D ∈ (X, τMG). Thus

A ∩D 6= φ so that D ∈ D(X, τψ
MG). Therefore, D(X, τMG)⊆D(X, τψ

MG) ————(ii).

From (i) and (ii) we have D(X, τMG) = D(X, τψ
MG). ¤

Theorem 4.5. Let (X,M,G) be a grill m-space, where M \ {φ} ⊆ G. Then

(X, τψ
MG) is resolvable if and only if (X, τMG) is resolvable.
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Proof. Since D(X, τMG) = D(X, τψ
MG), it follows from definition of resolvability that

(X, τψ
MG) is resolvable if and only if (X, τMG) is resolvable.

Now, we shall give a representation of α-topology of τMG with the help of ψϕ-operator

in following Theorems. ¤

Theorem 4.6. Let x ∈ X. Then {x} ∈ ψϕ(X,M) if and only if {x} is open in

(X, τMG).

Proof. Let {x} ∈ ψϕ(X,M) then ψϕ({x}) 6= φ. By Proposition 4.3, {x} contain

a nonempty τMG-interior. Therefore {x} is open in (X, τMG). Conversely suppose

that {x} is open in (X, τMG), implies that {x} ⊆ ψϕ({x})[13]. Therefore {x} ⊆
mCl(ψϕ({x})), that is {x} ∈ ψϕ(X,M). ¤

Theorem 4.7. Let x ∈ X. Then {x} ∈ ψϕ(X,M) if and only if {x} ∈ τψ
MG.

Proof. Let {x} ∈ ψϕ(X,M). Therefore {x} is open in (X, τMG) (by above theorem).

So {x} ⊆ ψϕ({x})[13] implies that {x} ⊆ mInt(mCl(ψϕ({x}))), since ψϕ({x}) is an

m-open set. Thus {x} ∈ τψ
MG. Conversely suppose that {x} ∈ τψ

MG, then {x} ⊆
mInt(mCl(ψϕ({x}))), implying that {x} ⊆ mCl(ψϕ({x})), hence {x} ∈ ψϕ(X,M).

¤

From the above two theorems we get the following corollary:

Corollary 4.8. τψ
MG is exactly the collection such that A belongs to τψ

MG and B

belongs to ψϕ(X,M) implies A ∩B ∈ ψϕ(X,M), where M\ {φ} ⊆ G.

Proof. Let A ∈ τψ
MG and B ∈ ψϕ(X,M). Now, we show that A ∩ B ∈ ψϕ(X,M).

If A ∩ B = φ, we are done. Let A ∩ B 6= φ. Let x ∈ A ∩ B. This implies that

x ∈ mInt(mCl(ψϕ(A))), therefore x ∈ mCl(ψϕ(A)). So for every m-open set Ux

containing x, Ux ∩ ψϕ(A) 6= φ. Again x ∈ B ⊆ mCl(ψϕ(B)), then for every m-

open set Vx containing x, Vx ∩ ψϕ(B) 6= φ. Therefore for m-open set Wx = Ux ∩ Vx
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containing x, Wx ∩ ψϕ(A) 6= φ and Wx ∩ ψϕ(B) 6= φ. Again Wx ∩ ψϕ(A) ⊆ Wx and

Wx∩ψϕ(B) ⊆ Wx. Therefore Wx∩ψϕ(A)∩ψϕ(B) 6= φ. So x ∈ mCl[ψϕ(A)∩ψϕ(B)],

that is x ∈ mCl[ψϕ(A ∩B)][13], therefore A ∩B ∈ ψϕ(X,M).

Next we consider a subset A of X such that A ∩ B ∈ ψϕ(X,M) for each B ∈
ψϕ(X,M). We have to show that A ∈ τψ

MG, that is A ⊆ mInt(mCl(ψϕ(A))), that

is A ⊆ mInt(ϕ(ψϕ(A)))(by Theorem 2.14.). If possible suppose that x ∈ A but

x /∈ mInt(ϕ(ψϕ(A))). Therefore x ∈ A ∩ [X \ mInt(ϕ(ψϕ(A)))] = A ∩ mCl[X \
ϕ(ψϕ(A))](from Theorem 2.4.) = A∩mClC, where C = X \ϕ(ψϕ(A)). It is obvious

that C is an nonempty m-open set in (X,M), since ϕ(ψϕ(A)) is an m-closed set[13].

Since x ∈ mClC then for all m-open set Vx containing x, Vx ∩ C 6= φ. Therefore

Vx ∩ ψϕ(C) 6= φ, since C ⊆ ψϕ(C)[13]. This implies that

x ∈ mCl(ψϕ(C)) ⊆ mCl[ψϕ({x} ∪ C)]—————-(i).

Hence C ⊆ mCl(ψϕ(C)) ⊆ mCl[ψϕ({x} ∪ C)]————-(ii).

From (i) and (ii) {x}∪C ⊆ mCl[ψϕ({x}∪C)]. Therefore {x}∪C ∈ ψϕ(X,M). Now

by hypothesis A∩({x}∪C) is a ψϕ-C set. We show that A∩({x}∪C) = {x}. If possible

suppose that y ∈ X and x 6= y such that y ∈ A ∩ ({x} ∪ C). So y ∈ A and y ∈ C.

Now A = A ∩ X and X ∈ ψϕ(X,M), again by hypothesis A ∈ ψϕ(X,M). Since

y ∈ A, y ∈ mCl(ψϕ(A)), a contradiction to the fact that y ∈ C = [X \ ϕ(ψϕ(A))]

= [X \ mCl(ψϕ(A))]. Thus A ∩ ({x} ∪ C) = {x}. Since {x} ∈ ψϕ(X,M), then

{x} ∈ τψ
MG(by Theorem 4.7). So {x} ⊆ mInt(mCl(ψϕ({x}))) = mInt(mCl(ψϕ(A ∩

({x} ∪C)))) ⊆ mInt(mCl(ψϕ(A))). But x ∈ mInt(mCl(ψϕ(A))), a contradiction to

the fact that x /∈ mInt[ϕ(ψϕ(A))]. Therefore we get A ⊆ mInt(mCl(ψϕ(A))) that is

A ∈ τψ
MG. The proof of the corollary is completed. ¤

Theorem 4.9. Let (X,M,G) be a grill m-space, where M \ {φ} ⊆ G. Then

SO(X, τMG) = {A ⊆ X : A ⊆ mCl(ψϕ(A))} = ψϕ(X,M).
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Proof. Let A ∈ SO(X, τMG). Then A ⊆ ClMG(IntMG(A)) = ClMG(A ∩ ψϕ(A))[13]⊆
ClMG(ψϕ(A)) = [ψϕ(A) ∪ ϕ(ψϕ(A))] = ϕ(ψϕ(A)), since ψϕ(A) ∈ M. This implies

that A ⊆ mCl(ψϕ(A)). Hence A ∈ ψϕ(X,M).

So, SO(X, τMG) ⊆ ψϕ(X,M)————(i).

For reverse inclusion, let A ∈ ψϕ(X,M). We show that A ∈ SO(X, τMG). Take

x ∈ A. Consider G1 ∈ β(M,G) such that x ∈ G1. Then G1 is of the form G1 =

G \ E, where G ∈ M, E /∈ G. So x ∈ G. Since A ⊆ mCl(ψϕ(A)) and G ∈ M,

G ∩ (ψϕ(A)) 6= φ. Let y ∈ G ∩ (ψϕ(A)). Therefore there exists Oy ∈M(y) such that

Oy \ A /∈ G by definition of ψϕ(A). Consider φ 6= G ∩Oy. So (G ∩Oy) \ A /∈ G(from

definition of grill). Let G/ = G ∩ Oy. Then G/ 6= φ, G/ ∈ M and G/ \ A = P say,

where P /∈ G and so G/ \ P ⊆ A. Hence G/ \ (E ∪ P ) ⊆ A where G/ \ (E ∪ P ) 6= φ,

since M \ {φ} ⊆ G. Write M = G/ \ (E ∪ P ). Then φ 6= M ∈ τMG such that

M ⊆ A ∩ (G \ E). Hence A contains a nonempty τMG-open set M contained in

G \ E = G1. Since x is an arbitrary point of A, we get A ⊆ ClMG(IntMG(A)).

Therefore A ∈ SO(X, τMG). Thus ψϕ(X,M) ⊆SO(X, τMG)————(ii).

From (i) and (ii), ψϕ(X,M) = SO(X, τMG). ¤

Remark 4.10. Let x ∈ X. Then {x} ∈ SO(X, τMG) if and only if {x} ∈ τψ
MG,

where M\ {φ} ⊆ G.

Proof. Obvious from Theorem 4.7. ¤

Theorem 4.11. τψ
MG is exactly the collection such that A belongs to τψ

MG and B

belongs SO(X, τMG) implies A ∩B ∈ SO(X, τMG), where M\ {φ} ⊆ G.

Proof. Obvious from Corollary 4.8 and the Theorem 4.9.

Now, we shall discuss the relationship between (τMG)α and τψ
MG in the following

results. ¤
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Theorem 4.12.[17]. Let (X, τ) be a topological space. Then τα consists of exactly

those sets A for which A ∩B ∈ SO(X, τ) for all B ∈ SO(X, τ).

Proof. Follows Theorems 4.12, 4.11. ¤

Corollary 4.13. Let (X,M,G) be a grill m-space, where M\{φ} ⊆ G. Then τψ
MG

= (τMG)α.
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