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THE ANTI-CENTRO-SYMMETRIC EXTREMAL RANK
SOLUTIONS OF THE MATRIX EQUATION AX = B

XIAO QINGFENG

Abstract. A matrix A = (aij) ∈ Rn×n is said to be a centro-symmetric matrix

if aij = −an+1−i,n+1−j , i, j = 1, 2, . . . , n. In this paper, we mainly investigate

the anti-centro-symmetric maximal and minimal rank solutions to the system of

matrix equation AX = B. We present necessary and sufficient conditions for the

existence of the maximal and minimal rank solutions with anti-centro-symmetric

to the system. The expressions of such solutions to this system are also given when

the solvability conditions are satisfied. In addition, in corresponding the minimal

rank solution set to the system, the explicit expression of the nearest matrix to a

given matrix in the Frobenius norm has been provided.

1. Introduction

Throughout this paper, let Rn×m be The set of all n×m real matrices, ORn×n be

The set of all n×n orthogonal matrices. Denote by In the identity matrix with order

n. For a matrix A, AT , A+, ‖A‖ and r(A) represent its transpose, Moore-Penrose

inverse, Frobenius norm and rank, respectively.
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Definition 1.1. A matrix A = (aij) ∈ Rn×n is said to be an anti-centro-symmetric

matrix if aij = −an+1−i,n+1−j, i, j = 1, 2, . . . , n. The set of all n × n anti-centro-

symmetric matrices is denoted by ACSRn×n.

Anti-centro-symmetric matrices have practical applications in information theory,

linear system theory, linear estimate theory, and numerical analysis(see, e.g. [1-4]).

In matrix theory and applications, many problems are closely related to the ranks

of some matrix expressions with variable entries, and so it is necessary to explicitly

characterize the possible ranks of the matrix expressions concerned. The study on

the possible ranks of matrix equations can be traced back to the late 1970s (see, e.g.

[5-9]). Recently, the extremal ranks, i.e. maximal and minimal ranks, of some matrix

expressions have found many applications in control theory [10,11], statistics, and

economics (see, e.g. [12-14]).

In this paper, we consider the anti-centro-symmetric extremal rank solutions of the

matrix equation

AX = B,(1.1)

where A and B are given matrices in Rm×n. In 1987, Uhlig [8] gave the maximal and

minimal ranks of solutions to system (1.1). By applying the matrix rank method,

recently, Tian [15] obtained the minimal rank of solutions to the matrix equation A =

BX + Y C. Xiao et al. [16] in 2009 considered the symmetric minimal rank solution

to system (1.1). The centro-symmetric and anti-centro-symmetric matrices are two

classes of important matrices and have engineering and scientific applications. The

anti-centro-symmetric maximal and minimal rank solutions of the matrix equation

(1.1), however, has not been considered yet. In this paper, we will discuss this

problem.
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We also consider the matrix nearness problem

min
X∈Sm

∥∥∥X − X̃
∥∥∥

F
,(1.2)

where X̃ is a given matrix in Rn×n and Sm is the minimal rank solution set of Eq.

(1.1).

The matrix nearness problem (1.2) is so-called the optimal approximation problem,

which has important application in practice, and has been discussed far and wide (see,

e.g., [17-22] and the references therein).

We organize this paper as follows. In Section 2, we first establish a representation

for the anti-centro-symmetric matrix. Then we give necessary and sufficient condi-

tions for the existence of anti-centro-symmetric solution to (1.1). We also give the

expressions of such solutions when the solvability conditions are satisfied. In Sec-

tion 3, we establish formulas of maximal and minimal ranks of anti-centro-symmetric

solutions to (1.1), and present the anti-centro-symmetric extremal rank solutions to

(1.1). In Section 4, we present the expression of the optimal approximation solution

to the set of the minimal rank solution.

2. Anti-centro-symmetric solution to (1.1)

In this section we first establish the representations of anti-centro-symmetric ma-

trix. Then we give the necessary and sufficient conditions for the existence of and

the expressions for anti-centro-symmetric solution of Eq. (1.1).

Let ei be the ith column of In and set Sn = (en, en−1, · · · , e1). It is easy to see that

ST
n = Sn, ST

n Sn = I.
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Let k = [n
2
], where [n

2
] is the maximum integer which is not greater than n

2
. Define

Dn as

(2.1) Dn =
1√
2


 Ik Ik

Sk −Sk


 (n = 2k), Dn =

1√
2




Ik 0 Ik

0
√

2 0

Sk 0 −Sk


 (n = 2k+1),

then it is easy verified that the above matrices Sn and Dn are orthogonal matrices.

Lemma 2.1. [18] X ∈ ACSR2k×2k if and only if there exist M,H ∈ Rk×k such that

(2.2) X =


 M HSk

−SkH −SkMSk


 = D2k


 0 M −H

M + H 0


 DT

2k.

X ∈ ACSR(2k+1)×(2k+1) if and only if there exist M,H ∈ Rk×k, u, v ∈ Rk×1 and

α ∈ R such that

(2.3)

X =




M u HSk

−vT 0 vT Sk

−SkH −Sku −SkMSk


 = D2k+1




0 0 M −H

0 0 −√2vT

M + H
√

2u 0


 DT

2k+1.

Lemma 2.2. [18] Let X ∈ Rn×n and Dn with the forms of (2.1), then X is the anti-

centro-symmetric matrix if and only if there exist X1 ∈ R(n−k)×k and X2 ∈ Rk×(n−k),

whether n is odd or even, such that

(2.4) X = Dn


 0 X1

X2 0


 DT

n .

Here, we always assume k = [n
2
].

Given matrices A1 ∈ Rm×n, B1 ∈ Rm×p, by making generalized singular value

decomposition to [A1, B1], we have

A1 = M1ΣA1U1, B1 = M1ΣB1V1,(2.5)
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where M1 is an m×m nonsingular matrix, U1 ∈ ORn×n, V1 ∈ ORp×p,

ΣA1 =




I 0 0

0 SA1 0

0 0 0

0 0 0




r1 − s1

s1

k1 − r1

m− k1

, ΣB1 =




0 0 0

0 SB1 0

0 0 I

0 0 0




r1 − s1

s1

k1 − r1

m− k1

,

k1 = r[A1, B1], r1 = r(A1), s1 = r(A1) + r(B1) − r[A1, B1], SA1 = diag(α1, . . . , αs1),

SB1 = diag(β1, . . . , βs1), 0 < αs1 ≤ · · · ≤ α1 < 1, 0 < β1 ≤ · · · ≤ βs1 < 1, α2
i +β2

i = 1,

i = 1, . . . , s1.

Lemma 2.3. Given matrices A1 ∈ Rm×n, B1 ∈ Rm×p, the generalized singular value

decomposition of the matrix pair [A1, B1] is given by (2.5), then matrix equation

A1X = B1 is consistent, if and only if

r[A1, B1] = r(A1),(2.6)

and the expression of its general solution is

(2.7) X = UT
1




0 0

0 S−1
A1

SB1

Y31 Y32


 V1,

where Y31 ∈ R(n−r1)×(p−s1), Y32 ∈ R(n−r1)×s1 are arbitrary.

Proof. With (2.5) we have

r(B1 − A1X) = r(M1ΣB1V1 −M1ΣA1U1X) = r(ΣB1 − ΣA1U1XV T
1 ).

Let Y = U1XV T
1 and Partition Y with Y = (Yij)3×3, then

ΣB1 − ΣA1Y =




−Y11 −Y12 −Y13

−SA1Y21 SB1 − SA1Y22 −SA1Y23

0 0 I

0 0 0




r1 − s1

s1

k1 − r1

m− k1

.(2.8)
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Noting that Yij(i = 1, 2, j = 1, 2, 3) are arbitrary, then

min r(B1 − A1X) = min r(ΣB1 − ΣA1Y ) = k1 − r1 = r(A1, B1)− r(A1).

A1X = B1 is solvable in Rn×p if and only if min r(B1 − A1X) = 0. Then matrix

equation A1X = B1 is consistent, if and only if (2.6) holds. In this case, from

(2.8) and Y = U1XV T
1 , its general solution can be expressed as (2.7). The proof is

completed.

Assume Dn with the form of (2.1), and ADn and BDn have the following partition

form

ADn = [A2, A3], BDn = [B2, B3],(2.9)

where A2 ∈ Rm×(n−k), A3 ∈ Rm×k, B2 ∈ Rm×(n−k), B3 ∈ Rm×k, and the generalized

singular value decomposition of the matrix pair [A2, B2], [A3, B3] are, respectively,

A2 = M2ΣA2U2, B3 = M2ΣB3V2,(2.10)

A3 = M3ΣA3U3, B2 = M3ΣB2V3,(2.11)

where U2 ∈ OR(n−k)×(n−k), V2 ∈ ORk×k, U3 ∈ ORk×k, V3 ∈ OR(n−k)×(n−k), nonsin-

gular matrices M2,M3 ∈ Rm×m, k2 = r[A2, B3], r2 = r(A2), s2 = r(A2) + r(B3) −
r[A2, B3], and k3 = r[A3, B2], r3 = r(A3), s3 = r(A3) + r(B2)− r[A3, B2],

ΣA2 =




I 0 0

0 SA2 0

0 0 0

0 0 0




r2 − s2

s2

k2 − r2

m− k2

, ΣB3 =




0 0 0

0 SB3 0

0 0 I

0 0 0




r2 − s2

s2

k2 − r2

m− k2

,

ΣA3 =




I 0 0

0 SA3 0

0 0 0

0 0 0




r3 − s3

s3

k3 − r3

m− k3

, ΣB2 =




0 0 0

0 SB2 0

0 0 I

0 0 0




r3 − s3

s3

k3 − r3

m− k3

,
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Then we can establish the existence theorems as follows.

Theorem 2.1. Let A,B ∈ Rm×n and Dn with the form of (2.1), ADn, BDn have

the partition forms of (2.9), and the generalized singular value decompositions of the

matrix pair [A2, B3] and [A3, B2] are given by (2.10) and (2.11). Then the equation

(1.1) has an anti-centro-symmetric solution X if and only if

r[A2, B3] = r(A2), r[A3, B2] = r(A3),(2.12)

and its general solution can be expressed as

X = Dn




0 UT
2




0 0

0 S−1
A2

SB2

Z31 Z32


 V2

UT
3




0 0

0 S−1
A3

SB3

W31 W32


 V3 0




DT
n ,(2.13)

where Z31 ∈ R(n−k−r2)×(k−s2), Z32 ∈ R(n−k−r2)×s2, W31 ∈ R(k−r3)×(n−k−s3), W32 ∈
R(k−r3)×s3 are arbitrary.

Proof. Suppose the matrix equation (1.1) has an anti-centro-symmetric solution

X, then it follows from Lemma 2.2 that there exist X1 ∈ R(n−k)×k, X2 ∈ Rk×(n−k)

satisfying

X = Dn


 0 X1

X2 0


 DT

n and AX = B(2.14)

By (2.9), that is

[A2 A3]


 0 X1

X2 0


 = [B2 B3],(2.15)
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i.e.

A2X1 = B3, A3X2 = B2.(2.16)

Therefore by Lemma 2.3, (2.12) holds, and

X1 = UT
2




0 0

0 S−1
A2

SB3

Z31 Z32


 V2, X2 = UT

3




0 0

0 S−1
A3

SB2

W31 W32


 V3,(2.17)

where Z31 ∈ R(n−k−r2)×(k−s2), Z32 ∈ R(n−k−r2)×s2 , W31 ∈ R(k−r3)×(n−k−s3), W32 ∈
R(k−r3)×s3 are arbitrary. Substituting (2.17) into (2.14) yields that the anti-centro-

symmetric solution X of the matrix equation (1.1) can be represented by (2.13). The

proof is completed.

3. Anti-centro-symmetric extremal rank solutions to (1.1)

In this section, we first derive the formulas of the maximal and minimal ranks of

anti-centro-symmetric solutions of (1.1), then present the expressions of anti-centro-

symmetric maximal and minimal rank solutions to (1.1).

Theorem 3.1. Suppose that the matrix equation (1.1) has an anti-centro-symmetric

solution X and let Ω be the set of all anti-centro-symmetric solutions of (1.1). Then

the extreme ranks of X are as follows:

(1) The maximal rank of X is

min{k, n− k − r(A2) + r(B3)}+ min{n− k, k − r(A3) + r(B2)}.(3.1)
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The general expression of X satisfying (3.1) is

X = Dn




0 UT
2




0 0

0 S−1
A2

SB3

Z31 Z32


 V2

UT
3




0 0

0 S−1
A3

SB2

W31 W32


 V3 0




DT
n ,(3.2)

where Z31 ∈ R(n−k−r2)×(k−s2), W31 ∈ R(k−r3)×(n−k−s3) are chosen such that r(Z31) =

min(n − k − r2, k − s2), r(W31) = min(k − r3, n − k − s3), Z32 ∈ R(n−k−r2)×s2,

W32 ∈ R(k−r3)×s3 are arbitrary.

(2) The minimal rank of X is

min
X∈Ω

r(X) = r(B2) + r(B3).(3.3)

The general expression of X satisfying (3.3) is

X = Dn




0 UT
2




0 0

0 S−1
A2

SB3

0 Z32


 V2

UT
3




0 0

0 S−1
A3

SB2

0 W32


 V3 0




DT
n ,(3.4)

where Z32 ∈ R(n−k−r2)×s2, W32 ∈ R(k−r3)×s3 are arbitrary.

Proof (1) By (2.13),

max
X∈Ω

r(X) = max
Z31

r




0 0

0 S−1
A2

SB3

Z31 Z32


 + max

W31

r




0 0

0 S−1
A3

SB2

W31 W32


 ,(3.5)
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max
Z31

r




0 0

0 S−1
A2

SB3

Z31 Z32


 = s2 + min{n− k − r2, k − s2}(3.6)

= min{k, n− k − r2 + s2} = min{k, n− k − r(A2) + r(B3)},

and

max
W31

r




0 0

0 S−1
A3

SB2

W31 W32


 = s3 + min{k − r3, n− k − s3}(3.7)

= min{n− k, k − r3 + s3} = min{n− k, k − r(A3) + r(B2)}.

Taking (3.6) and (3.7) into (3.5) yields (3.1).

According to the general expression of the solution in theorem 2.1, it is easy to

verify the rest of part (1).

(2) By (2.13),

min
X∈Ω

r(X) = min
Z31

r




0 0

0 S−1
A2

SB3

Z31 Z32


 + min

W31

r




0 0

0 S−1
A3

SB2

W31 W32


 ,(3.8)

min
Z31

r




0 0

0 S−1
A2

SB3

Z31 Z32


 = s2 = r(B3)(3.9)

and

min
W31

r




0 0

0 S−1
A3

SB2

W31 W32


 = s3 = r(B2).(3.10)

Taking (3.9) and (3.10) into (3.8) yields (3.3).
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According to the general expression of the solution in theorem 2.1, it is easy to

verify the rest of part (2). The proof is completed.

4. The expression of the optimal approximation solution to the set

of the minimal rank solution

From (3.4), When the solution set Sm = {X | AX = B, X ∈ ACSRn×n, r(X) =

min
X∈Ω

r(X)} is nonempty, it is easy to verify that Sm is a closed convex set, therefore

there exists a unique solution X̂ to the matrix nearness Problem (1.2).

Theorem 4.1. Given a matrix X̃, and the other given notations and conditions are

the same as in Theorem 2.1. Let

DT
n X̃Dn =


 X̃11 X̃12

X̃21 X̃22


 , X̃12 ∈ C(n−k)×k, X̃21 ∈ Ck×(n−k),(4.1)

and we denote

U2X̃12V
T
2 =




Z̃11 Z̃12

Z̃21 Z̃22

Z̃31 Z̃32


 , U3X̃21V

T
3 =




W̃11 W̃12

W̃21 W̃22

W̃31 W̃32


 .(4.2)

If Sm is nonempty, then Problem (1.2) has a unique X̂ which can be represented as

X̂ = Dn




0 UT
2




0 0

0 S−1
A2

SB3

0 Z̃32


 V2

UT
3




0 0

0 S−1
A3

SB2

0 W̃32


 V3 0




DT
n ,(4.3)

where Z̃32, W̃32 are the same as in (4.2).
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Proof When Sm is nonempty, it is easy to verify from (3.4) that Sm is a closed

convex set. Since Rn×n is a uniformly convex banach space under the Frobenius

norm, there exists a unique solution for Problem (1.2). By Theorem 3.1, for any

X ∈ Sm, X can be expressed as

X = Dn




0 UT
2




0 0

0 S−1
A2

SB3

0 Z32


 V2

UT
3




0 0

0 S−1
A3

SB2

0 W32


 V3 0




DT
n ,(4.4)

where Z32 ∈ R(n−k−r2)×s2 , W32 ∈ R(k−r3)×s3 are arbitrary.

Using the invariance of the Frobenius norm under unitary transformations, we have

‖X − X̃‖2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




0 UT
2




0 0

0 S−1
A2

SB3

0 Z32


 V2

UT
3




0 0

0 S−1
A3

SB2

0 W32


 V3 0




−DT
n X̃Dn

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=
∥∥∥Z32 − Z̃32

∥∥∥
2

+
∥∥∥W32 − W̃32

∥∥∥
2

+
∥∥∥S−1

A2
SB3 − Z̃22

∥∥∥
2

+
∥∥∥S−1

A3
SB2 − W̃22

∥∥∥
2

+
∥∥∥X̃11

∥∥∥
2

+
∥∥∥X̃22

∥∥∥
2

+
∥∥∥Z̃11

∥∥∥
2

+
∥∥∥Z̃12

∥∥∥
2

+
∥∥∥Z̃21

∥∥∥
2

+
∥∥∥Z̃31

∥∥∥
2

+
∥∥∥W̃11

∥∥∥
2

+
∥∥∥W̃12

∥∥∥
2

+
∥∥∥W̃21

∥∥∥
2

+
∥∥∥W̃31

∥∥∥
2

.

Therefore, ‖X − X̃‖ reaches its minimum if and only if

Z32 = Z̃32, W32 = W̃32.(4.5)

Substituting (4.5) into (4.4) yields (4.3). The proof is completed.
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