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A NEW SHARP OSTROWSKI-GRÜSS TYPE INEQUALITY

ZHENG LIU

Abstract. Using a Grüss type inequality for Lipschitzian type functions to obtain

a sharp Ostrowski-Grüss type inequality in which a unified treatment of sharp

integral inequalities for Lipschitzian type functions of mid-point, trapezoid and

Simpson type is provided. Applications for cumulative distribution functions are

given.

1. Introduction

In 1935, G. Grüss (see[5,p.296]) proved the following integral inequality which gives

an approximation for the integral of a product of two functions in terms of the product

of integrals of the two functions.

Theorem 1.1. Let h, g : [a, b] → R be two integrable functions such that φ ≤ h(x) ≤
Φ and γ ≤ g(x) ≤ Γ for all x ∈ [a, b], where φ, Φ, γ, Γ are real numbers. Then we

have

(1.1)
|T (h, g)| := | 1

b−a

∫ b

a
h(x)g(x) dx− 1

b−a

∫ b

a
h(x) dx · 1

b−a

∫ b

a
g(x) dx|

≤ 1
4
(Φ− φ)(Γ− γ),
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and the inequality is sharp, in the sense that the constant 1
4

cannot be replaced by a

smaller one.

It is clear that the constant 1
4

is achieved for

h(x) = g(x) = sgn(x− a + b

2
).

.

From then on, (1.1) is well known in the literature as Grüss inequality.

In 1998, S. S. Dragomir and I. Fedotov [2, Theorem 2.1] established the following

Grüss type inequality for Riemann-Stieltjes integrals:

Theorem 1.2. Let h, u : [a, b] → R be so that u is L-Lipschitzian on [a, b], i.e.,

|u(x)− u(y)| ≤ L|x− y|

for all x, y ∈ [a, b], h is Riemann integrable on [a, b] and there exist the real numbers

m,M so that m ≤ h(x) ≤ M for all x ∈ [a, b]. Then we have the inequality

(1.2) |
∫ b

a

h(x) du(x)− u(b)− u(a)

b− a

∫ b

a

h(x) dx| ≤ 1

2
L(M −m)(b− a),

and the constant 1
2

is sharp.

In [4,Theorem 2], the inequality (1.2) has been generalized and refined as

Theorem 1.3. Let h, u : [a, b] → R be so that u is (l, L)-Lipschitzian on [a, b], i.e.,

satisfies the condition

l(x2 − x1) ≤ u(x2)− u(x1) ≤ L(x2 − x1)

for all a ≤ x1 ≤ x2 ≤ b with l < L, h is Riemann integrable on [a, b]. Then we have

the inequality
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(1.3)

|
∫ b

a

h(x) du(x)− u(b)− u(a)

b− a

∫ b

a

h(x) dx| ≤ L− l

2

∫ b

a

|h(x)− 1

b− a

∫ b

a

h(t) dt| dx.

In this paper, we will use the Grüss type inequality (1.3) to obtain a sharp Ostrowski-

Grüss type inequality for Lipschitzian type functions. From which a unified treatment

of sharp integral inequalities of midpoint, trapezoid and Simpson type for Lipschitzian

type functions is provided.

Applications for cumulative distribution functions are given.

2. MAIN RESULTS

Theorem 2.1. Let u : [a, b] → R be (l, L)–Lipschitzian on [a, b]. Then for all

x ∈ [a, b] we have

(2.1)
| ∫ b

a
u(t) dt− (b− a)[(1− θ)u(x) + θ u(a)+u(b)

2
]

+(1− θ)(x− a+b
2

)[u(b)− u(a)]| ≤ L−l
2

I(θ, x),

where

(2.2) I(θ, x) =





[a+b
2
− (1− θ)a− θx]2, a ≤ x ≤ a+(1−2θ)b

2(1−θ)
,

[1
4

+ (θ − 1
2
)2][(x− a)2 + (b− x)2], a+(1−2θ)b

2(1−θ)
< x < (1−2θ)a+b

2(1−θ)
,

[θx + (1− θ)b− a+b
2

]2, (1−2θ)a+b
2(1−θ)

≤ x ≤ b

for 0 ≤ θ ≤ 1
2
, and

(2.3) I(θ, x) =





[a+b
2
− θa− (1− θ)x]2, a ≤ x ≤ a+(2θ−1)b

2θ
,

[1
4

+ (θ − 1
2
)2][(x− a)2 + (b− x)2], a+(2θ−1)b

2θ
< x < (2θ−1)a+b

2θ
,

[(1− θ)x + θb− a+b
2

]2, (2θ−1)a+b
2θ

≤ x ≤ b
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for 1
2

< θ ≤ 1.

Proof. Integrating by parts produces the identity

(2.4)

∫ b

a

K(x, t) du(t) = (1− θ)(b− a)u(x) + θ(b− a)
u(a) + u(b)

2
−

∫ b

a

u(t) dt

where

(2.5) K(x, t) =





t− [a + θ b−a
2

], t ∈ [a, x],

t− [b− θ b−a
2

], t ∈ (x, b],

Moreover,

(2.6)
1

b− a

∫ b

a

K(x, t) dt = (1− θ)(x− a + b

2
).

Applying the Grüss type inequality (1.3) by associating h(t) with K(x, t) gives

| ∫ b

a
K(x, t) du(t)− u(b)−u(a)

b−a

∫ b

a
K(x, t) dt|

≤ L−l
2

∫ b

a
|K(x, t)− 1

b−a

∫ b

a
K(x, s) ds| dt.

Then for any fixed x ∈ [a, b] we can derive from (2.4), (2.5) and (2.6) that

(2.7)
| ∫ b

a
u(t) dt− (b− a)[(1− θ)u(x) + θ u(a)+u(b)

2
]

+(1− θ)(x− a+b
2

)[u(b)− u(a)]| ≤ L−l
2

I(θ, x),

where

I(θ, x) =
∫ x

a
|t− [a + θ b−a

2
]− (1− θ)(x− a+b

2
)| dt

+
∫ b

x
|t− [b− θ b−a

2
]− (1− θ)(x− a+b

2
)| dt

=
∫ x

a
|t− [(1− θ)x + θb− b−a

2
]| dt

+
∫ b

x
|t− [θa + (1− θ)x + b−a

2
]| dt.

The last two integrals can be calculated as follows:
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For brevity, we put

p1(t) := t− [(1− θ)x + θb− b− a

2
], t ∈ [a, x],

p2(t) := t− [θa + (1− θ)x +
b− a

2
], t ∈ [x, b]

and denote

t1 = (1− θ)x + θb− b− a

2
, t2 = θa + (1− θ)x +

b− a

2
.

It is clear that both p1(t) and p2(t) are strictly increasing on [a, x] and [x, b] re-

spectively. Moreover, we have

p1(a) = (1− θ)(b− x)− b− a

2
, p1(x) =

b− a

2
− θ(b− x);

p2(x) = θ(x− a)− b− a

2
, p2(b) =

b− a

2
− (1− θ)(x− a).

For 0 ≤ θ ≤ 1
2
, it is immediate that p1(x) > 0 and p2(x) < 0. Meanwhile, p1(a) ≥ 0

if x ∈ [a, a+(1−2θ)b
2(1−θ)

] and p1(a) < 0 if x ∈ (a+(1−2θ)b
2(1−θ)

, b], p2(b) ≤ 0 if x ∈ [ (1−2θ)a+b
2(1−θ)

, b]

and p2(b) > 0 if x ∈ [a, (1−2θ)a+b
2(1−θ)

).

Noticed that a+(1−2θ)b
2(1−θ)

≤ (1−2θ)a+b
2(1−θ)

, there are three possible cases to be determined.

In case x ∈ [a, a+(1−2θ)b
2(1−θ)

], p1(t) ≥ 0 for t ∈ [a, x] and p2(b) > 0 with t2 ∈ (x, b) such

that p2(t2) = 0. We have

(2.8)

I(θ, x) =
∫ x

a
(t− t1) dt +

∫ t2
x

(t2 − t) dt +
∫ b

t2
(t− t2) dt

= (1−2θ)(x−a)(b−x)
2

+ θ(θ − 1)(x− a)2 + (x−a)2+(b−x)2

4

= [1
2
(b− x) + (1

2
− θ)(x− a)]2

= [a+b
2
− (1− θ)a− θx]2.
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In case x ∈ (a+(1−2θ)b
2(1−θ)

, (1−2θ)a+b
2(1−θ)

), p1(a) < 0 with t1 ∈ (a, x) such that p1(t1) = 0

and p2(b) > 0 with t2 ∈ (x, b) such that p2(t2) = 0. We have

(2.9)
I(θ, x) =

∫ t1
a

(t1 − t) dt +
∫ x

t1
(t− t1) dt +

∫ t2
x

(t2 − t) dt +
∫ b

t2
(t− t2) dt

= [1
4

+ (1
2
− θ)2][(x− a)2 + (b− x)2].

In case x ∈ [ (1−2θ)a+b
2(1−θ)

, b], p1(a) < 0 with t1 ∈ (a, x) such that p1(t1) = 0 and

p2(t) ≤ 0 for t ∈ [x, b]. We have

(2.10)

I(θ, x) =
∫ t1

a
(t1 − t) dt +

∫ x

t1
(t− t1) dt +

∫ b

x
(t2 − t) dt

= (1−2θ)(x−a)(b−x)
2

+ θ(θ − 1)(b− x)2 + (x−a)2+(b−x)2

4

= [1
2
(x− a) + (1

2
− θ)(b− x)]2

= [θx + (1− θ)b− a+b
2

]2.

For 1
2

< θ ≤ 1, it is immediate that p1(a) < 0 and p2(b) > 0. Meanwhile, p1(x) ≤ 0

if x ∈ [a, a+(2θ−1)b
2θ

] and p1(x) > 0 if x ∈ [a+(2θ−1)b
2θ

, b], p2(x) ≥ 0 if x ∈ [ (2θ−1)a+b
2θ

, b]

and p2(x) < 0 if x ∈ [a, (2θ−1)a+b
2θ

).

Noticed that a+(2θ−1)b
2θ

≤ (2θ−1)a+b
2θ

, there are three possible cases to be determined.

In case x ∈ [a, a+(2θ−1)b
2θ

], p1(t) ≤ 0 for t ∈ [a, x] and p2(x) < 0 with t2 ∈ (x, b) such

that p2(t2) = 0. We have

(2.11)

I(θ, x) =
∫ x

a
(t1 − t) dt +

∫ t2
x

(t2 − t) dt +
∫ b

t2
(t− t2) dt

= (2θ−1)(x−a)(b−x)
2

+ θ(θ − 1)(x− a)2 + (x−a)2+(b−x)2

4

= [1
2
(b− x) + (θ − 1

2
)(x− a)]2

= [a+b
2
− θa− (1− θ)x]2.

In case x ∈ (a+(2θ−1)b
2θ

, (2θ−1)a+b
2θ

), p1(x) > 0 with t1 ∈ (a, x) such that p1(t1) = 0

and p2(x) < 0 with t2 ∈ (x, b) such that p2(t2) = 0. We have
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(2.12)
I(θ, x) =

∫ t1
a

(t1 − t) dt +
∫ x

t1
(t− t1) dt +

∫ t2
x

(t2 − t) dt +
∫ b

t2
(t− t2) dt

= [1
4

+ (θ − 1
2
)2][(x− a)2 + (b− x)2].

In case x ∈ [ (2θ−1)a+b
2θ

, b], p1(x) > 0 with t1 ∈ (a, x) such that p1(t1) = 0 and

p2(t) ≥ 0 for t ∈ [x, b]. We have

(2.13)

I(θ, x) =
∫ t1

a
(t1 − t) dt +

∫ x

t1
(t− t1) dt +

∫ b

x
(t− t2) dt

= (2θ−1)(x−a)(b−x)
2

+ θ(θ − 1)(b− x)2 + (x−a)2+(b−x)2

4

= [1
2
(x− a) + (θ − 1

2
)(b− x)]2

= [(1− θ)x + θb− a+b
2

]2.

Consequently, the inequality (2.1) with (2.2) and (2.3) follows from (2.7), (2.8),

(2.9), (2.10), (2.11), (2.12) and (2.13).

The Proof is completed.

Remark 1. It is not difficult to prove that the inequality (2.1) with (2.2) and (2.3)

is sharp in the sense that we can construct the function u to attain the equality in

(2.1) with (2.2) and (2.3).

Indeed, if 0 ≤ θ ≤ 1
2

then we may choose u such that

u(t) =





L(t− a), a ≤ t < x,

l(t− x) + (x− a)L, x ≤ t < t2,

L(t− t2 + x− a) + (t2 − x)l, t2 ≤ t ≤ b

for any x ∈ [a, a+(1−2θ)b
2(1−θ)

], and
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u(t) =





l(t− a), a ≤ t < t1,

L(t− t1) + (t1 − a)l, t1 ≤ t < x,

l(t− x + t1 − a) + (x− t1)L, x ≤ t < t2

L(t− t2 + x− t1) + (t2 − x + t1 − a)l, t2 ≤ t ≤ b

for any x ∈ (a+(1−2θ)b
2(1−θ)

, (1−2θ)a+b
2(1−θ)

), and

u(t) =





l(t− a), a ≤ t < t1,

L(t− t1) + (t1 − a)l, t1 ≤ t < x,

l(t− x + t1 − a) + (x− t1)L, x ≤ t ≤ b

for any x ∈ [ (1−2θ)a+b
2(1−θ)

, b], and if 1
2

< θ ≤ 1 then we may choose u such that

u(t) =





l(t− a), a ≤ t < t2,

L(t− t2) + (t2 − a)l, t2 ≤ t ≤ b

for any x ∈ [a, a+(2θ−1)b
2θ

], and

u(t) =





l(t− a), a ≤ t < t1,

L(t− t1) + (t1 − a)l, t1 ≤ t < x,

l(t− x + t1 − a) + (x− t1)L, x ≤ t < t2

L(t− t2 + x− t1) + (t2 − x + t1 − a)l, t2 ≤ t ≤ b

for any x ∈ (a+(2θ−1)b
2θ

, (2θ−1)a+b
2θ

), and

u(t) =





l(t− a), a ≤ t < t1,

L(t− t1) + (t1 − a)l, t1 ≤ t ≤ b

for any x ∈ [ (2θ−1)a+b
2θ

, b].

It is clear that the above all u(t) satisfy the condition of the Theorem.

Remark 2. Let θ = 0. Then for all x ∈ [a, , b], we have
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(2.14) |
∫ b

a

u(t) dt− (b− a)u(x) + (x− a + b

2
)[u(b)− u(a)]| ≤ (L− l)(b− a)2

8
.

It should be noted that (2.14) is a sharp Ostrowski-Grüss type inequality with a

uniform bound independent of x, and in particular, if we choose in (2.14), x = a+b
2

,

we get a sharp midpoint inequality

|
∫ b

a

u(t) dt− (b− a)u(
a + b

2
)| ≤ (L− l)(b− a)2

8
.

Remark 3. Let θ = 1. Then we get a sharp trapezoid inequality

|
∫ b

a

u(t) dt− b− a

2
[u(a) + u(b)]| ≤ (L− l)(b− a)2

8
.

Remark 4. Let θ = 1
2
. Then for all x ∈ [a, b], we have

(2.15)

|
∫ b

a

u(t) dt− 1

2
[(b− a)u(x) + (x− a)u(a) + (b− x)u(b)]| ≤ L− l

8
[(x− a)2 + (b− x)2].

Remark 5. Let x = a+b
2

. Then for all θ ∈ [0, 1], we have

(2.16)

|
∫ b

a

u(t) dt− (b−a)[(1− θ)u(
a + b

2
)+ θ

u(a) + u(b)

2
]| ≤ (L− l)(b− a)2

4
[
1

4
+(θ− 1

2
)2].
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It should be noted that taking x = a+b
2

in (2.15) or θ = 1
2

in (2.16) is equivalent to

taking both these values in (2.1) which produces a sharp averaged midpoint-trapezoid

inequality as

(2.17) |
∫ b

a

u(t) dt− b− a

4
[u(a) + 2u(

a + b

2
) + +u(b)]| ≤ (L− l)(b− a)2

16
.

Remark 6. Let θ = 1
3
. Then for all x ∈ [a, b], we have

(2.18)

|
∫ b

a

u(t) dt− b− a

4
[u(a)+4u(x)++u(b)]+

2

3
(x− a + b

2
)[u(b)−u(a)]| ≤ L− l

2
I(

1

3
, x),

where

(2.19) I(
1

3
, x) =





1
36

[(x− a) + 3(b− x)]2, a ≤ x ≤ 3a+b
4

,

5
18

[(x− a)2 + (b− x)2], 3a+b
4

< x < a+3b
4

,

1
36

[3(x− a) + (b− x)]2, 3a+b
4
≤ x ≤ b.

It should be noted that (2.18) with (2.19) is a sharp generalized Simpson type

inequality for unprescribed x, and in particular, if we choose in (2.18) and (2.19),

x = a+b
2

, we get a sharp Simpson inequality

(2.20) |
∫ b

a

u(t) dt− b− a

6
[u(a) + 4u(

a + b

2
) + +u(b)]| ≤ 5(L− l)(b− a)2

72
.

It is interesting to note that from (2.17) and (2.20) we can conclude that the

averaged midpoint-trapezoid quadrature rule has a better estimation of error than

the well-known Simpson quadrature rule.
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Corollary 2.1. Let u : [a, b] → R be L-lipschitzian on [a, b]. Then for all x ∈ [a, b],

we have

|
∫ b

a

u(t) dt−(b−a)[(1−θ)u(x)+θ
u(a) + u(b)

2
]+(1−θ)(x−a + b

2
)[u(b)−u(a)]| ≤ LI(θ, x),

where I(θ, x) is given in (2.2) and (2.3).

Proof. It is immediate by taking l = −L in Theorem 2.1.

3. APPLICATIONS FOR CUMULATIVE DISTRIBUTION FUNCTIONS

Now we consider some applications for cumulative distribution functions.

Let X be a random variable having the probability density function f : [a, b] → R

and the cumulative distribution function F (x) = Pr(X ≤ x), i.e.,

F (x) =

∫ x

a

f(t) dt, x ∈ [a, b].

E(X) is the expectation of X. Then we have

Theorem 3.1. With the above assumptions and if there exist constants M, m such

that

0 ≤ m ≤ f(t) ≤ M

for all t ∈ [a, b], then for all x ∈ [a, b] we have the inequality

(3.1) |E(X)−b+(b−a)[(1−θ)Pr(X ≤ x)+
θ

2
]+(1−θ)(x− a + b

2
)| ≤ M −m

2
I(θ, x),

where I(θ, x) is given by (2.2) for 0 ≤ θ ≤ 1
2

and (2.3) for 1
2
≤ θ ≤ 1, respectively.

Proof. It is easy to find that the function F (x) =
∫ x

a
f(t) dt is (m,M)-Lipschitzian

on [a, b]. So, by Theorem 1 we get
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| ∫ b

a
F (t) dt− (b− a)[(1− θ)F (x) + θF (a)+F (b)

2
]

+(1− θ)(x− a+b
2

)[F (b)− F (a)]| ≤ M−m
2

I(θ, x)

with (2.2) and (2.3).

As F (a) = 0, F (b) = 1 and

∫ b

a

F (t) dt = b− E(X),

then we can easily deduce the inequality (3.1).

Corollary 3.1. Under the assumption of Theorem 3.1, we have

(3.2) |E(X)− a + b

2
| ≤ M −m

8
(b− a)2.

Proof. We set θ = 1 in (3.1) to get (3.2).

Remark 7. It should be noted that the inequality (3.2) improves the inequality

(5.4) in [1].

Corollary 3.2. Under the assumption of Theorem 3.1, we have

(3.3) |E(X) + (b− a)Pr(X ≤ x)− x− b− a

2
| ≤ M −m

8
(b− a)2.

for all x ∈ [a, b].

Proof. We set θ = 0 in (3.1) to get (3.3).

Remark 8. It should be noted that the inequality (3.3) improves the inequality

(5.18) in [1].

If in (3.3), we choose x = a or x = b, then we recapture the inequality (3.2). If in

(3.3), we choose x = a+b
2

, then we get the inequality
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(3.4) |E(X) + (b− a)Pr(X ≤ a + b

2
)− b| ≤ M −m

8
(b− a)2.

The inequality (3.4) is an improvement of inequality (5.21) in [1].

Corollary 3.3. Under the assumption of Theorem 3.1, we have

(3.5) |E(X) +
b− a

2
Pr(X ≤ x)− b + x

2
| ≤ M −m

4
[(x− a + b

2
)2 +

(b− a)2

4
]

for all x ∈ [a, b].

Proof. We set θ = 1
2

in (3.1) to get (3.5).

Remark 9. It should be noted that the inequality (3.5) improves the inequality

(5.22) in [1].

If in (3.5), we choose x = a or x = b, then we recapture the inequality (3.2). If in

(3.5), we choose x = a+b
2

, then we get the inequality

(3.6) |E(X) +
b− a

2
Pr(X ≤ a + b

2
)− a + 3b

4
| ≤ M −m

16
(b− a)2.

The inequality (3.6) is an improvement of inequality (5.30) in [1].

Corollary 3.4. Under the assumption of Theorem 3.1, we have

(3.7) |Pr(X ≤ a + b

2
)− 1

2
| ≤ M −m

4
(b− a).

Proof. Using the triangle inequality, we get
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|Pr(X ≤ a+b
2

)− 1
2
|

= |Pr(X ≤ a+b
2

)− 1
2

+ 1
b−a

(E(X)− a+b
2

)− 1
b−a

(E(X)− a+b
2

)|
≤ |Pr(X ≤ a+b

2
)− b−E(X)

b−a
|+ 1

b−a
|E(X)− a+b

2
|,

and then the inequality (3.7) follows from (3.2) and (3.5).

Remark 10. Finally, we would like to point out that Theorem 3.1 provides a unified

treatment and different proofs for some previous results due to D. Y. Hwang (see [3],

Theorem 1, Theorem 11, Theorem 13).
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