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ON GENERALIZED HERMITE HADAMARD’S INEQUALITY

MATLOOB ANWAR ), JOSIP PECARIC (23 AND GHOLAM ROQIA ®)

ABSTRACT. The object is to construct the log-convex and the exponential con-
vex functions via functional generalization of Hermite Hadamard’s inequality for
some special classes of continuous functions defined on compact interval in R. Con-
structed n-exponentially convex functions are used to obtain the generalization of
already discovered mean with positive weights p and ¢, and prove their monotonicity
and also introduce several classes of Stolarsky means called Stolarsky type means.
Prove Minkowsky type inequalities for new discovered means as applications of

Lyponuve type inequalities of constructed log-convex functions.

1. INTRODUCTION

If f: I — R is a convex function on I and a,b € [ such that a < b, then the
following double inequality holds

(1.1) f (a;b) < bia/a F(t)dt < M

The inequality in (1.1) is due to C.Hemite, he obtained it in 1881.
On November 22, 1881, he sent to the journal of elementary mathematics ” Mathesis”,

where published in 1883.
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A leading expert in history and complex analysis was not apparently aware of C.
Hermite work and wrote that first inequality in (1.1) was proved by Hadamard in
1893.

In 1906, Fejer while studying trigonometric polynomials, obtain inequality which
generalize (1.1).

If w: [a,b] — (0,00) is an integrable function such that w(a + b — z) = w(x) and
f :]a,b] — R is convex, then (see [11, p. 138])

(1.2) f(a;b)/ dq:</ F@)w(z)dz < f(‘”)‘z*f(b) /abw(:c)d:c.

Obviously, for w = 1 in (1.2), Hermite-Hadamard inequality (1.1) is obtained.

In 1974, D.S Mitronovi¢ found (1.1) in ” Mathesis” as a short note. Due to these
historical facts, (1.1) referred to as Hermite-Hadamard inequality (see [14, p.137].
It is very important to observe that inequalities (1.1) give upper and lower bounds
for the average of conve x function f.

In 1976, Vasi¢ and Lackovi¢ [17] and Lupas [11] (see also [14, 12]) obtained a

generalization of Hermite Hadamard inequality

Theorem 1.1. ([14, Theorem 5.11]) Assume that p, q be positive real numbers and

a, b,€ R such that a < b. If f : [a,b] — R is continuous convex function, then the

mequalities

a+ gb +
(1.3) f(p q)_ / flw)dr < pf(a) qf())

p+q 2y p+q
hold for if and only if T = (pa + qb)/(p + q) and

b—a

1.4 0 <y < ——min{p,q}.
(1.4) S {p.q}
Proof. See [14, p. 143]. O

In 1991, Brenner and Alzer [5] obtained the following generalization of Theorem

1.1, which is in fact a Fejer type variant:
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Theorem 1.2. [14] If w : [a,b] — [0,00) is integrable and symmetric with respect
to 7 = (pa+ qb)/(p + q) with positive numbers p and q, y (y is given in (1.4)) and
f :la,b] — R is convex function,then

(1.5f) (Pa + qb) / ™ (e < / " papwlapts < O / | e

p+yq p+q y

In 1986, Pecari¢ and Beesack [3] (see also [14] ) generalized Theorem 1.1 for isotonic
normalized linear functionals .

In order to state the result, we need to define some notations.
Let E be a nonempty set and let L be a class of functions f : E — R having the
properties:

(L) af+08g€ L, Vo, e RYf,g € L.

(Ly) 1 € L, that is if f(t) =1 for t € E, then f € L.

A function A : L — R is a positive (isotonic) linear functional if it satisfies the
properties:

(A1) Alaf + Bg) = @A(f) + BA(9), Vf,g € L, Vo, f €R

(A2) A(f) >0VfeL, f(t) >0on E (A is positive or isotonic).

If additionally the condition A(1) = 1 is satisfied, we say that A is positive nor-

malized lineal functional on L.

Theorem 1.3. [14, Theorem 5.13] Let L satisfying (L1) and (La) and let A be positive
normalized linear functional. If f : T 2 [a,b] — R, a < b is continuous convex

function and g € L such that f(g) € L then

pa + gb pfla) +qf(b)
(1.6) f( P+q ) < A(f(9) < W

holds for p = py, q = q, are nonnegative real numbers (with p+ q > 0 such that

_ pa+qgb

A(g) g
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Remark 1. (i) Note that Theorem 1.2, (thus Theorem 1.1 for w = 1) can be
obtained as a special case of Theorem 1.3. Namely, for given p and ¢, 7 and
w as in Theorem 1.2 and y satisfying (1.4) such that f:ryy w(z)dx # 0, define
E =la,b] , L = B(E) (space of all bounded, Remain integrable functions on
[a,b]), g = e; and
1 [Ty
(1.7 AU@DZ%[ﬂwmﬂ@M

Observe that A is a normalized isotonic linear functional and

1 [TV pa+ qb
A(g) = A(e ::/ aw(x)de =717 = )
(@)= Al =5 [ avtz) o

(ii) Let £ = [a,b] X [a,b] , L = B(FE) (space of all bounded, integrable functions
on [a,b] x [a,b]) , g = e; and normalized isotonic linear functional

(1.8) A(f)_ﬁ/ / Ftz + (1 — t)y)dady.

satisfying

mmzA@n:@éaz//km+u—wwmwza§@

(iii) As a special E = [a,b] , L = B(FE) (space of all bounded, integrable functions

on [a,b]) , g = e; and

1
(b—a)

b
(L9) A= gy [ Utk (1= 00+ b+ (1 o) do.

It is easy to verify that A is a normalized isotonic linear functional and

1 a+b

A(g):A(el):m/ (Ha+b)(1 = t)(x +y))de = ——.

Let L satisfying (L;) and (L) and . If f : T D [a,b] — R,: a < b is continuous
function, g € L such that @ < g(t) < bont € F and f(g) € Land A: L — R is
positive normalized linear functional such that

_ pa+qgb
p+q

Ag)
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Let us define H; : C([a,b]) — R two linear functionals as follows:

_ pfla) +qf()
(110 ()]
o B pa + gb
(1) () = At - £ ().

satisfy the property
(1.12) f € Cla,b] is convex = H;(f) > 0.

In 1975, Stolarsky [16] (see also [2, 14, 12]) consider Cauchy mean value theorem
and applied functions x +— z* and =z — z" ( u, v are nonzero real numbers ) on

interval [a, b] (a, b are positive reals) to produces

Wbt — g\ M
§= (5&)“—&“)

and a < £ < b, thus £ = E, ,(a,b), uv(u —v) # 0 is mean of a and b. He showed that

this mean can be extended continuously and get the form :

(
(=), vu(v —u) #0,
1/u
1 bu—g®
= ) u#0,v=0,
119 Bty Gw) ’
exp (— 1+ loboatlone) )y £ )
\ Vab, v=u=0.

This mean is called the Storalsky mean.
Stolarsky proved that the function E, s(a,b) is increasing in both parameters r and

s, that is for r > p and s > ¢:
(1.14) E.s(a,b) > E,,(a,b).

These means, since their invention, are generalized in various directions. However,

in 2010 [2] Stolarsky means are recognized as application of the linear functional

f@) = fy)

r—y

(1.15) f— LT Fy
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on the family of functions {¢, : r € R} (defined on (0, 00))

x/r, r#0;
logz, r=020.

(1.16) pr(r) =

Since functional defined above is nonnegative on monotonically increasing functions,

and dg () = 27! > 0, r € R, then using Cauchy mean-value theorem and log-
convexity we get construction and monotonicity property of Stolarsky means, as is
showed in [2]. In that paper, this idea is further extended via application of func-
tionals defined by differences of (1.1) on a family of convex functions {f, : r € R}

(defined on (0, c0)

7'(7:{{1) r % ]-7 07
(1.17) fr(x)=¢ —lnz r=0,

rlnx r=1,

another two classes of Stolarsky type means are constructed and monotonicity prop-
erty is proved again using log-convexity.

In [12], weighted version of Stolarsky type means form [2] is obtained and three classes
of monotonous generalized Stolarsky type meas.

In this paper we generalize means from [12] (thus from [2])in several directions.
First, Hermite-Hadamard functionals are generalized through generalized Hermite-
Hadamard inequality (1.6) (thus (1.5)). Second, these functionals are applied on new
families (aside of (1.17)) of convex functions which give us quite different means.
Third, it is showed that log-convexity can be shifted on finer classes such as n-
exponentially convex and exponentially convex functions. Also, our approach give us

non-trivial examples of exponentially convex functions.
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2. MEAN VALUE THEOREMS

Theorem 2.1. Let f € C?*([a,b]) and H; (i = 1,2) be non-negative linear functionals
defined as in (1.10) and (1.11). Then there exists £ € [a, a] such that

G
2

(2.1) H;(f) Hi(es), i =1,2,

where ey = x°.

Proof. Since f € C?([a,b]), Wiestrass Theorem yields that m = min f"(z), M =

z€[a,b]

m[a>§] f"(z). Let us observe that functions ¢,(z) = f(z) — m% = f(x) — mga(x) and
xE|a,
pa(x) = M% — f(z) = Mgs(x) — f(z) are convex.The condition (1.12) implies that

H;(p;) >0,i=1,2, j =1,2. We conclude that

%Hi(@) < Hi(f) < - Hi(ea), 1=1,2.

From this, we have (2.1). O

Theorem 2.2. Let f, h € C*([a,b]) such that second derivative of h is nonzero on
la,b] and H;, (i = 1,2) linear functionals defined as in (1.10)-(1.11). Then there exits

¢ € [a,a] such that

e H)
(2:2) Wie) ~ Hih)

Proof. We prove the claim for the functional H;. Let us define ¢ € C*([a,a]) by

p(x) = ch(z) — df (z),
where
c=H(f)

and

d = H,(h).
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Apply Theorem 2.1 on f = ¢ to obtaine
h// "

This applies that

f”(f) _ c
h”(f) d

which is the claim. O

Remark 2. If the function i—x inverse on [a, b], then Theorem 2.2 enables us to define

various types of means that is, from (2.2) we have

= (k) (i)

The number a < ¢ < b we call mean on [a, b)].

3. n-EXPONENTIAL CONVEXITY RELATED TO HERMITE-HADAMARD'’S

DIFFERENCES

In 1929 Bernstein [4] introduced exponentially convex functions and identify as a
subclass of convex functions (also subclass of log-convex functions) on a given open
interval. General results about exponential convexity can be found in [1] and [7].

In 2011 J.Pecari¢ and J.Peri¢ [10] introduced n-exponentially convex functions.

Definition 3.1. For arbitrary natural number n, a function f : I — R is n-
exponentially convex in the Jensen sense on [ if
Y oG&f (M) =0
ij=1
holds for all choices of §; e R, w; €I, 1 =1,...,n.
A function f : I — R is n—exponentially convex on [ if it is n-exponentially convex

in the Jensen sense and continuous on /.
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Remark 3. Noted that 1-exponentially convex functions in the Jensen sense are non-
negative functions. Also, n-exponentially convex functions in the Jensen sense are

k-exponentially convex in the Jensen sense for every k € N, n > k.

Proposition 3.1. If f is n-exponentially convex in the Jensen sense on I then the

U; —|— Uj "
el

is positive semi-definite. By Gramm’s inequality

k
wp (5] =0
i,j=1

for1<k<n,andu; €I, i1=1,... k.

matrix

Corollary 3.1. (i) If f : I — (0,00) is 2-ezponentially conver in the Jensen sense
then f is a log-convex function in the Jensen sense on I.

(i) If f : I — (0,00) is 2-exponentially convex then f is a log-convex function on I.

Definition 3.2. A function f : I — R is exponentially convex in the Jensen sense if
it is n-exponentially convex in the Jensen sense for every n € N.
A function f : I — R is exponentially convex if it is exponentially convex in the

Jensen sense and continuous.

Proposition 3.2. [7] Let £ denote the set of all exponentially convexr functions on

an open interval J.

(1) € is a convex cone i.e. af + h € E for fih € & and o, > 0.
(11) & is closed under multiplication i.e. f-h €& for fih € €.

Proof. (i)-part follows directly from the definition. (i7)-part is a consequence of the

next theorem (see [7]). O

One of the main aspects of exponentially convex functions is its integral represen-

tation given in [1, p.211].
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Theorem 3.1. (see [7]) The function f: I — R is exponentially convex if and only

if
(3.1) fla) = /et“da(t), wel

for some non-decreasing function o : R — R.

A nontrivial example of exponentially convex as a consequence of above Theorem

is given below.

Example 3.1. For every a > 0 the function f: (0,00) — R defined as

flu) ==

is exponentially convexr on (0,00), since

e}

u = / e ¥ (%1(_%0)@))

—00

(see [7] and [15, p.210] ).

Remark 4. Every exponentially convex function is n-exponentially convex by defini-
tion. Converse is not generally true, since for example f(z) = e~ is 2-exponentially

convex on (0, 1) and not exponentially convex function on (0,1) (see [7] for details).

Definition 3.3. The second order divided difference of a function f : [a,b] — R at

mutually different points ug, uq, us € [a,b] is defined recursively by

flui, uiph] = fliry) = Flus) 51=0,1
Uit1 — Uy

(32 T
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The value flug,ui,us] is independent of the order of the points ug, u; and sy .
This definition may be extended to include the case in which some or all the points
coincide. Namely, taking the limit u; — g in (3.2), we get

Jm fluo, ur, us] = fluo, o, ug] = fluz) = f(?zl :i;(;o)(uz — )

provided f’exists, and furthermore, taking the limits u; — ug,: ¢ = 1,2 in (3.2), we

get
f/l (U/O )

lim lim f[U,Q,Ul,UQ] = f[’lL(),Uo, U()] =
U —Up UL —UQ 2

provided that f” exists.

Theorem 3.2. Let F = {f, : [a,b] — R, u € I}, be a family of functions from
C([a,b]), such that u — f, [xg, x1, 23] is n-exponentially convex in the Jensen sense on
I for every triplet of distinct points xo, x1, xo € I. If H;, i = 1,2 are linear function-
als defined as in (1.10) and (1.11), then the functions u — H;(f.) are n-exponentially
convex in the Jensen sense on I. If the function u — H;(f,) are continuous on I,

then it is n-exponentially convex on I.

Proof. We proof the claim for the case i = 1. In the cases i = 2, 3 the proof is similar.

For &, e R, k=1,...,nandu, € I, k=1,...,n, we define the function

h(u) = ) &€ fuuzn (v).

k=1

Using the assumption that the function u — f,[xg, z1, x2] is n-exponentially convex

in the Jensen sense, we have

hlzo, 21, 2] = Z fifjf%TJruz [0, @1, 2] = 0,

k=1
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which in turn implies that h is a convex function on [a,b] and therefore from the
condition (1.12) we have

Hy(h) = ];1§klel(fuk2+“l) > 0.
Hence we conclude that the function u — Hi(f,) is n-exponentially convex on I in the
Jensen sense. If the function u — H;(f,) is continuous also on I, then u — H;(f,)

is n-exponentially convex by definition. ([l

We derive an immediate consequence of the above Theorem.

Corollary 3.2. Let F = {f, : [a,b] — R, u € I}, be a family of functions from
C([a,b]), such that uw — f, [xo, x1,x2] is exponentially convex in the Jensen sense on I
for every triplet of distinct points xo, x1, xo € I. If H;, 1 = 1,2 are linear functionals
defined as in (1.10) and (1.11), then the functions u — H;(f,) are exponentially
convex in the Jensen sense on I. If the functions uw — H;(f,) are continuous on I,

then it is exponentially convex on I.

Corollary 3.3. Let F = {f, : [a,b] — R, u € I}, be a family of functions from
C([a,b]), such that w v f, [xg,x1,22] is log-convex in the Jensen sense on I for
every triplet of distinct points xg, x1, o € I. If H;, i = 1,2 are linear functionals
defined as in (1.10) and (1.11), then the functions u — H;(f.) are log-convex in the

Jensen sense on I. Then the following statements hold:

(1) If the functions u — H;(f,) are continuous on I, then it is log convexr on I

and for t,u,v € I such thatt < u < v we have,

(3.3) (H; (f)"" < (Hi (f)" ™ (Hi (fo))" "

(13) If the functions w— H;(f,) are strictly positive and differentiable on I, then

for every u,v,u,t € I such thatu <r, v <t,



ON GENERALIZED HERMITE HADAMARD’S INEQUALITY 237

holds, where

(3:5) Eyo(Hi; F) =

fu€F.

Proof. We give prove for ¢ = 1.

(¢) This is an immediate consequence of Theorem 3.2 and (ii)-part Corollary 3.1

(77) Since by (i) the function u — Hi(f,) is log-convex on I, that is, the function

u+— Hi(f,) is convex on I, we get

log Hy(f.) —log Hi(f.) < log Hy(f,) —log Hy(f:)

(3.6)
U —v r—1
for u <r,v <t ,uz#wv,u+#t, and there from we conclude that
Eu,v(H’i; F) S Er,t<Hi; F)
For the case u = v, consider lim in (3.6) and conclude that
(3.7) E,.(Hi;F) <E,,(H;;F)

The case r =t can be treated similarly.

O

Remark 5. Note that the results from Theorem 3.2, Corollary 3.2 and Corollary
3.3 still holds when two of the points xg, x1, 2 € [a,b] coincides for a family of
differentiable functions f, such that w +— f,[xo, 21, 22 is n-exponentially convex in
the Jensen’sense (exponentially convex in the Jensen’sense), further, they still hold
when all three points coincide for a family of twice differentiable functions with the
same property. The proofs are obtained using Theorem 3.2, Corollaries 3.2, 3.3 and

appropriate characterizations of convex functions.
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4. EXAMPLES AND APPLICATIONS

We define some notations, which will be used in the sequel.
Assume that A is an isotonic linear functional defined on L and g € L such that

g* logg,g"logg € L,: u # 0. The classical mean of order u € R of g is defined as:
(Alg"N"™,  u#o,
exp (A(logg)), u=0,

We state here some useful conditions for isotonic linear functional A, which will be

(4.1) M.(A,g) =

needed for this section:

lim A(g") = A(g");

t—to
. A(gtJrAt) —A(gt) o A(gtJrAt —gt).
Aimy Al =i T A
t (At
. g (9 - 1) . t
4 (AEEO T) - Algtlosg)

Example 4.1. Let a, b positive real numbers and I = (0,00) and a family of functions

F, = {fu,;u € I} from Cla,b] defined with

Y
e

e = <2
Since ngé“ (z) = e >0, f, is convex function on [a,b] for each u € I and

u — e ™V is exponentially convex being Laplace transform of nonnegative function
(see [7]). Corollary 3.2 yields that w — H;(f,) are exponentially convez functions.

Ezpression corresponding to (3.5):

1/(u—v)
Hi(fu)
(imJ = u# v,
Eu,t(Hl; Fl) = 1 1 paefa‘/iigbe*bﬁiA(ge_ﬂg)
eXp | =y — 2Vu pe—a\/ﬂ+qe—b\/§7A(ei\/ag) , ¢ =u,
p+q
1/(u—v)

Ha(fu)

(ﬁm» ’ uF v,

— b b
i e e =)

_1_ -
exp u 2./u A(e—\/ag)fexp(*\/apszLglv ) 4 u‘
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It is interesting to observe that using Theorem 2.2, these Stolarsky type quotient can

be used to defined new class of Stolarsky type means:
Ruy(Hi, Fy) := (Vu+Vv)log B, (Hy, Fy), i = 1,2,

Example 4.2. Let a, b positive real numbers and I = (0,00) and a family of functions
Fo ={fsuec I} from Cla,b] defined with
i) = | T ML
u x2
5 u=1.
As %fu(x) =~ = e ®%8% > () shows that f, is convex function on [a,b] for every
u € I and u — %hu(:v) = u~" 1s exponentially convex by Fxample 3.1. Corollary
3.2 yields that u — H;(f,) are exponentially convex functions. Stolarsky quotient

corresponding to (3.5):

( 1/(u—v)
Hl(fu)
(Fe) w# v,
pau7a+qbu7b 714( —g
2 15y —Algu™?)
Eu7’l)(H17 FQ) e < eXp <_ulogu - Z pufpaTqufb —A(u—g) ) 9 V=1U % 17
pt+q
pu3+qb3_M3(A )
exp —%—pﬁi‘;bzi = ) v=u=1
\ p+q M2 (Avg)
( 1/(u—v)
H2(fu)
<H2(fv)> 3 Uu 7é v,
A(gu*g)—Mexp(—Mlnu)
2 1 + + _
EU,U<H2; F2) = exp T ulogu | w A(ufg)feip<_1"z%g?:hfu) , =1 # 17
M3(A,g)— pa+qb)3
exXp _% 23( 2 (pazj:;?,)2>7 'U:U:17
0 M3 (Ag)— (e )

We can convert the above Stolarsky quotient into Stolarsky type means:

Suv(Hi, Fo) := L(u,v)log E, ,(H;; Fa), i =1,2,

where L(u,v) = o u # v and L(u,u) = u is the logarithmic mean.
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Example 4.3. Let a,b real numbers and I = R and a family of functions Fz =
{fu;u € I} from Cla,b] defined with

#e“x, u # 0,

fulz) =

1,2 _
25, u=0,

We have j—;fu(ac) = €"* > 0 which shows that f, is convex on |a, b] for everyu € I and
U +— j—;fu(x) = e"* by definition is exponentially convex function on I. Corollary 3.2
yields that uw— H;(f,) are exponentially convex functions. Expression corresponding

0 (3.5):

( o (fu) 1/(’“‘71))
<H1(fu)> ’ .
W_A(gexp(ug)))

b
2 ptq
Eu,v(Hl; F3) =q &P (_E - peua;’"eub —M¥(A,exp(g))
pa®+qb® 53 Ag
| oxp (%M—M(;) :

Il
N
RN
o

v=u=0.

p+q
2 2
+gb% _ ar2
FE= M5(A,g

[ (H(e
(Hl(fv ) u# v,
o Algexp(ug) P exp(uletl? ) B
Buo(Hzi F3) = § P\ 70 T Taion@)-on(ee=e) )0 V7Y 70

RO _Af(Ag)
exp (1 gL, 3 v=u=0,
\

5 a?4qb? 52
e —M35(Ayg)

Which shows that E, ,(H;; ), i = 1,2 is mean on [e%, €’]. According to Theorem

2.2, we have mean values:

(4.2)
for some £ € [a, b].

Example 4.4. Let a,b positive real numbers and I = R and a family of functions
Fy = {fu;u € I} from Cla,b] defined with (1.17).Since L5 (f,(x)) = 2%~2 = elv=2 e,

therefore u %(fu(x)) = g2 = W=z by definition is exponentially convex
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function on I. Corollary 3.2 yields that uw — H;(f,) are exponentially convex func-

tions. Expression corresponding to (3.5):

1/(u—v)
[ (34 ) uto,
—u M A( ulng)
eXp u(u—1) + Pa?:t%b“ —Mu(A,g) ) y UV=1U 7& Oa 17
(43) Euv(Hl;FZL) - pln? atqin?b —AQ
7 l p+q (H g) V=1u = O
2 pln;jﬁ»glnb lnMo( ) 9 I
paln a+qb1n b A(gln2 g)
l ptq — —
( 2 paln;i;]blnb A(glng) 9 v (% 1
( Hi(fa) 1/(u—v)
<H1(fv)) ’ U 7é v,
A(g¥1n g)— pa+gb\¥ n pa+qb
exp u(Qu_—ul) + 2 lMgﬂt)(A(g;+(EP?l+zlzb(>“p+q )) y U=1U 7é 07 17
)\ ptg
(44) E’UqU(HQ; F4) - 1 1 A(In? g)—In? (P;I;Zb) w0
exp| I+ 5 2 T Mo(g) 1 a(zeay ) v=1u=0,
A(gln g)— pa+gb 1n2(pa+qb)
141 ptaq ptq —u=1
[ P\ T Ay ) YT T
As
f//
(f//) ( ) =z*"
1s 1nvertible, that s
4.5 < <b
( ) “= (Hz(fv) -

which shows that E, ,(H;,Fy4), (i = 1,2) is mean on [a,b].

The replacement g — ¢°, u — % and p — £, (s # 0) and a — a*, b — b°, for
s> 0and a — b*, b — a®, for s <0 in (4.5):

Hi(fx)
Hi(fg)

enable to produce monotonic 3-parametrs mean from (4.5). We define this new gen-

s/u—wv
(4.6) min{a®, b°} < < ) < max{a®, b}, s(u—v)#0

eralized mean as

(E%,E(Hi,FD) , s#0;

(4.7) Ey s (H;,Fy) = B
Eu,v(Hi7 F3>7 s = 07
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H;, i =1,2 are the linear functionals (1.10) and (1.11) acting on C([loga,logd]).
Let us define functions ¢; ; : I — R by

(4.8) ¢ij(u) = Hi(fu), fu€Fj 1=1,2,7=123,4

I =(0,00) or I =R according as families Fy, Fo, or Fy, F;.

Theorem 4.1. If ¢;;, i =1,2, j =1,2,3,3 are functions defined as in (4.8) on I.

i) Forallu, € I, k=1,2,...,n, matriz [¢; ; (“F)]" s positive semi-definite
J\T 2 ) k=1

matriz. Particularly

(4.9) det [gb” (uk +ul)} >0, m=1,...,n.

2 k=1

(i) Foru, v,r, t € I such that u <r, v <t, we have
(4.10) E..(H;,F;) < E,.(H;,F;)

where

1/(u—v)
b1, (u)
<¢i;(v)> U 7& v,

Pii(w) ) '
Proof. (i) This directly follows from Proposition 3.1 O

(i) This conclusion is obtained by (ii)-part Corollary 3.3.

Theorem 4.2. Assume that p,q are nonnegative real numbers and r, s are positive.
If A is normalized positive linear functional on L and g € L, then the following

iequalities holds

1 2r bQT’ r+s br+s
P g, A)| [P M (g, A)
20r+s)2r=D(r+s=1) | p+q p+q
1 r br 2r+s bQT+s
< PETTT (g, A)| |2 — M3 (9. A)
2r+s)(r—1)2r+s—1)| p+gq p+q
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and

1 . pa + gb 2 s pa+gb\""*

M22r (gv A) - ( ) Mris( A) -
2(r+s)2r—1)(r+s—1) p+q p+q

1 pa+qgb\" ) (pa—i—qb)wﬁ
< M (g, A) — M35 F5(g, A) — .
T 2r+s)(r—1)2r+s—-1) [ 19, 4) ( p+q ) } [ arss (9, 4) p+q
The reverse inequalities hold for r > 0, s > 0.
Proof. The inequality (3.3) can be written as
(4.12) H; (fu) < (H (f) ™70 (H; (f,)) 00
By the arithmetic-geometric mean inequality

u—1
(4.13) H; (fu) S (Hz' (f0)) + —— (Hi (f)).
O

Remark 6. Assume that p,q are nonnegative real numbers, r is positive. If A is

normalized positive linear functional and ¢" € L, then

1 pa2r + qb2r , 2
|: - MQQT’ (97 A)

4(2r — 1)2 p+q
1 par + qbr . pa3r + qb3r ,
3r—1)@Br-1)[ p+yq p+q

Theorem 4.3. Assume that p,q are nonnegative real numbers, v, s are positive such
that %—l—% = 1. If A is normalized positive linear functional and g, f, g", f", logg, log f,
fTlogg, g"log f € L then

o 1/s
r (pal/’“+qb”’" B M(fg,A)) < (TA(frlng) —sMI(f,A) plna+qlnb> /
- <

p+q M:(g, A) M:(g, A) p+yq

9 palna+gblnb r]\oﬂ"(g,A) — sA(gPIn f) Y
p+q M3(g, A)
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Proof. Setting i =1,t=0,v=11n (3.3) for f, € Fy

plna+qlnb>1“
p+q

— M*(A,g) < | InM
L (A 9) ( 0(9) o

" <palna+qblnb

—A(gln .
)

For 1—u=1/s, u=1/r and A(g") = %, g=g"f*, w= f*/A(¢®) the previous

inequality reduces to the required inequality. O

Theorem 4.4. Suppose that p,q,a,b, (a <b), r,u,v are nonnegative real numbers,

such that r < u <wv and g" € L (r # 0) then following holds

u(u—s) p+q v(v—s) p+q u—v

L [ — (g, 4)] - ks [P — (g, )

R )] - o [ )]

r(r—s) p+q v(v—s) p+q

u/s v/s
1 s _ [ pa®+qb® _ 1 s _ [ pa®+qb®
u(u—s) [Mu(Q’ A) <—p+q ) } o(o=5) {Mv (9, 4) < Pt ) } U — v
<
r/s v/s| T t—w
1 s pas+qb® _ 1 s _ [ pactgb®
r(r—s) |:MT (g7 A) - (p p+3 > :| v(v—s) |:Mv (ga A) (p p+;] ) :|
Proof. Let f, € Fy, the inequality (3.3) can be written as

H; (f) < (Hy (f)) D (B, (f,) 070 =1, 2.

By the arithmetic-geometric mean inequality

v— U u—t

H; (fe) +

H,L<fu)gv_t U_tHz(f,U),Z:172

v — U
t

Hi(fu) = Hi(fo) = —— (Hi(fi) = Hi (fo)), i=1,2.
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4.1. Alzer-Brenner mean value. Suppose that p, ¢, and y (y is given in (1.4))
are positive numbers, f : [a,b] — R be convex function and w : [a,b] — [0,00) be
integrable function symmetric about the line x = 7 = (pa + ¢b)/(p + q).

Define lineal functionals H; : C([a,b]) — R, i = 1,2 with

qu(p) = el ®) [T T e
(4'14) Hl(f)_ Py /T_y ()d /T_y f() ()d

) m) - [ optarte— 1 (BE0) [ oy

Ptq T—y

By Theroem 1.2, linear functionals H;, i = 1,2 satisfy (1.12), imediatly all cosequence

are obtainable. Particularly, explicit form of E, ,.s(Hy,Fy) := E,..s(H;, Fy) is given

as follows
( — 1/(u—v
H1(f%) / ) 3(u U) 7§ 0
_ , . :
Hi(fz) .
palnatqbInb _ 1 " Tstys ju d
25— pta % re-ys ¥ nzw(z)de B
eXp (u(u—s) + pa“iqbu _% ' :sj’ys $U‘W(1‘)d$ ) u="7v # 07 S S % O,
2 2bp ‘ R + ° st
pln“atqIn®b 1 " 7stys d
l l p+gq W Ts—Ys n IW(I) T . .
eXp (S + 2 PT'rsj»yS ln:DW(:l‘)dx—plnaiJrqlnb ) Uu=v= O, S % 07
s—Ys p+q

pas ln2 a+qbs ln2 b_71stys

I 7] _ R pe 7 ort9y B2 5TYs ¢ 1n? pw(z)de
Eu’U;S(Hl’ F,) = exp (_% + % LTV VR E=Te ) u=v=s#0,

Tstys
p | e A zInzw(z)dr
~ 1/(u—v
Hi(gu)
H1(9u) uFuv,s=0
(Hl (gﬂ) ’ R 7é ’ ’
paInatqb®Inb 1 "70+Y0 . ux d
2 PR g e w(@)de _ -
o ( u T pa+gb¥" 1 R TOFY0 pumy (1) dy ’ u=v#0s=0,
ﬁ7+q W T0—Y0
pad+qb3 1 Nrotug :1;3w(z)d:t:
exp 1 pte W om0-vg u=v=s=20
3 +qb% 1 " 7To+v0 ’ ’
\ pap+;1 T W T0—v0 ww(z)de

where H; is linear functional defined as in (4.14) acting on C([loga,logb]), g. € Fs

and
1 bs s
) (i o
log p+\q/a,pbq’ s =0. a %min{Z%Q}a s =0.

Note that there are misprint in the condition of 7, given in [12].
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Remark 7. For the special case w = 1, related consequences for the family of functions
F, are obtained in [12].
Forw=1,p=q¢,y=(b—a)/2,u—u—1,v— v—1, all the related results for the

family of functions Fy4 are given in [2].

4.2. The complete symmetric mean. The u—th complete symmetric polynomial
mean ( the complete symmetric mean) of the positive real n-tuple x is defined by see

[6]-

1 el (x z
(4.16) QU (x) = (4. (x)) " = (H) ,

where C[O]( ) =1 and clul x)= > (I] :cz”) and the sum is taken over all (”+Z_1)

nonnegative integer n-tuples (iy,...,4,) with Y i; = u, (v # 0). It is known that
j=1
complete symmetric polynomial mean can expressed via integral (see [8]):

(4.17) ”] (A/ leul d,u , u € NU{0},

where A, = { (Wo, -y Up—1) s u; > 0,30 Ouzgl}, U, = 1—2”01% and 1 rep-
resents a probability measure such that du(u) = (n — 1)lduy, ..., du, 1. If we put
M,(g,A) = 2 (x) in (4.3), (4.4) and (4.7), we get new mean values:

(4.18) 0 (6,%) 1= Eyo(H;, Fy)
and
(4.19) Eii,%) = Euye(H;, Fa)

respectively. It is interesting to observe that for r,t,u,v,s € R, n € N such that,

v<t, u<r, we have

(4.20) Bl x) < B, %).
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4.2.1. Whiteley means. Let x = (z1,...,2,) and p = (p1,..., pn) be positive real
n-tuples and v € NU{0}.The generalized complete symmetric polynomials are defined

in a way:
n

. 1
> heee =] (1= z:t)"

u=0 i=1
for |t| small enough.

The generalized Whiteley mean is now defined in a manner

h[uvp](x)
6] () — n
(4.21)  H, ”(X)—<ZPW

)

The generalized Whitely means can also be written in the following fashion:

(4.22) H, "7 (x) = (A/ (Z %Uz> dp(a) |,

>, u e NU{0}, p=(p1,---,pn)-

r(Ee) .
(4.23) du(u) = —~=l 2 H ufi_ldul, ey AUy

Similar to above examples, for M, (g, A) = H,"*(x) we define means:

(4.24) E;(i,x) := E,,(H;,F)
and
(425) EZELS] (17 X) = Eu,v;s(Hi: F4)

also for t,r,u,v,s € R, n € N such that, u <r, v <t, we have
(4.26) E; G, %) < B (%)
and

(4.27) B (i, x) < B7" (0, %)
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