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PROPERTY (m) FOR BOUNDED LINEAR OPERATORS

M.H.M.RASHID

Abstract. A bounded linear operator T acting on a Banach space satisfies prop-

erty (m) if σ(T ) \ σub(T ) = E0(T ), where σub(T ) is the upper semi-Browder spec-

trum of T , σ(T ) is the usual spectrum of T and E0(T ) is the set of isolated points of

the spectrum σ(T ) of T which are eigenvalues of finite multiplicity. In this paper we

introduce and study new properties (m), and (gm), which are related to Weyl type

theorems. These properties are also studied in the framework of polaroid operators.

1. Introduction and Preliminary

In this paper we shall introduce properties which are related to Weyl type theorem

for bounded linear operators T ∈ L (X ), defined on a complex Banach space X .

These properties, that we call property (m), means that the isolated points of the

spectrum σ(T ) of T which are eigenvalues of finite multiplicity are exactly those

points λ of the spectrum for which T−λ is an upper semi-Browder (see Definition 2.1)

and we call property (gm), means that the isolated points of the spectrum σ(T ) of T

which are eigenvalues are exactly those points λ of the spectrum for which T − λ is

a left Drazin invertible (see Definition 2.1). Properties (m) and (gm) are related to

a variant of Weyl type theorems. We shall characterize properties (m) and (gm) in

several ways and we shall also describe the relationships of it with the other variants of
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Weyl type theorems. Our main tool is localized version of the single valued extension

property. Also, we consider the properties (m) and (gm) in the frame of polaroid

type operators.

Throughout this paper, X denotes an infinite-dimensional complex Banach space,

L (X ) the algebra of all bounded linear operators on X . For an operator T ∈
L (X ) we shall denote by α(T ) the dimension of the kernel ker(T ), and by β(T ) the

codimension of the range <(T ). The closure of a set S will be denoted by S and

we shall henceforth shorten T − λI to T − λ. Here and elsewhere in this paper, for

A ⊂ C, iso A denotes the set of all isolated points of A and acc A denotes the set of

all points of accumulation of A.

Let

SF+(X ) := {T ∈ L (X ) : α(T ) < ∞ and <(T ) is closed}

be the class of all upper semi-Fredholm operators, and let

SF−(X ) := {T ∈ L (X ) : β(T ) < ∞}

be the class of all lower semi-Fredholm operators. The class of all semi-Fredholm op-

erators is defined by SF±(X ) := SF+(X )∪SF−(X ), while the class of all Fredholm

operators is defined by SF (X )) := SF+(X )∩ SF−(X ). If T ∈ SF±(X ), the index

of T is defined by

ind(T ) := α(T )− β(T ).

Recall that a bounded operator T is said bounded below if it injective and has closed

range. Evidently, if T is bounded below then T ∈ SF+(X ) and ind(T ) ≤ 0. Define

SF−
+ (X ) : = {T ∈ SF+(X ) : ind(T ) ≤ 0} ,

and

SF+
− (X ) : = {T ∈ SF−(X ) : ind(T ) ≥ 0} .
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The set of Weyl operators is defined by

W (X ) := SF−
+ (X ) ∩ SF+

− (X ) = {T ∈ SF (X ) : ind(T ) = 0} .

The classes of operators defined above generate the following spectra. Denote by

σa(T ) := {λ ∈ C : T − λ is not bounded below}

the approximate point spectrum, and by

σs(T ) := {λ ∈ C : T − λ is not surjective}

the surjectivity spectrum of T ∈ L (X ). The Weyl spectrum is defined by

σw(T ) := {λ ∈ C : T − λ /∈ W (X )} ,

the Weyl essential approximate point spectrum is defined by

σSF−+
(T ) :=

{
λ ∈ C : T − λ /∈ SF−

+ (X )
}

,

while the Weyl essential surjectivity spectrum is defined by

σSF+
−
(T ) :=

{
λ ∈ C : T − λ /∈ SF+

− (X )
}

,

Obviously, σw(T ) = σSF−+
(T ) ∪ σSF+

−
(T ) and from basic Fredholm theory we have

σSF−+
(T ) = σSF+

−
(T ∗) σSF+

−
(T ) = σSF−+

(T ∗).

Note that σSF−+
(T ) is the intersection of all approximate point spectra σa(T + K) of

compact perturbations K of T , while σSF+
−
(T ) is the intersection of all surjectivity

spectra σs(T + K) of compact perturbations K of T , see, for instance, [1, Theorem

3.65].

Recall that the ascent, a(T ), of an operator T is the smallest non-negative integer

p such that ker(T p) = ker(T p+1). If such integer does not exist we put a(T ) = ∞.

Analogously, the descent, d(T ), of an operator T is the smallest non-negative integer

q such that <(T q) = <(T q+1), and if such integer does not exist we put d(T ) = ∞. It
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is well known that if a(T ) and d(T ) are both finite then a(T ) = d(T ) [22, Proposition

1.49]. Moreover, 0 < a(T − λ) = d(T − λ) < ∞ precisely when λ is a pole of the

resolvent of T , see Dowson [22, Theorem 1.54].

The class of all upper semi-Browder operators is defined by

B+(X ) := {T ∈ SF+(X ) : a(T ) < ∞} ,

while the class of all lower semi-Browder operators is defined by

B−(X ) := {T ∈ SF+(X ) : d(T ) < ∞} .

The class of all Browder operators is defined by

B(X ) := B+(X ) ∩B−(X ) = {T ∈ SF (X ) : a(T ), d(T ) < ∞} .

We have

B(X ) ⊆ W (X ), B+(X ) ⊆ SF−
+ (X ), B−(X ) ⊆ SF+

− (X ),

see [1, Theorem 3.4]. The Browder spectrum of T ∈ L (X ) is defined by

σb(T ) := {λ ∈ C : T − λ /∈ B(X )} ,

the upper Browder spectrum is defined by

σub(T ) := {λ ∈ C : T − λ /∈ B+(X )} ,

and analogously the lower Browder spectrum is defined by

σlb(T ) := {λ ∈ C : T − λ /∈ B−(X )} .

Clearly, σb(T ) = σub(T ) ∪ σlb(T ) and σw(T ) ⊆ σb(T ).

For T ∈ B(X) and a nonnegative integer n define T[n] to be the restriction of T to

<(T n) viewed as a map from <(T n) into <(T n) (in particular, T[0] = T ). If for some

integer n the range space <(T n) is closed and T[n] is an upper (a lower) semi- Fredholm

operator, then T is called an upper (a lower) semi-B-Fredholm operator. In this case



PROPERTY (m) FOR BOUNDED LINEAR OPERATORS 85

the index of T is defined as the index of the semi-Fredholm operator T[n], see [12].

Moreover, if T[n] is a Fredholm operator, then T is called a B-Fredholm operator.

A semi-B-Fredholm operator is an upper or a lower semi-B-Fredholm operator. An

operator T is said to be a B-Weyl operator if it is a B-Fredholm operator of index

zero. The B-Weyl spectrum σBW (T ) of T is defined by σBW (T ) = {λ ∈ C : T −
λ is not a B-Weyl operator}.

An operator T ∈ L (X ) is called Drazin invertible if it has a finite ascent and

descent. The Drazin spectrum σD(T ) of an operator T is defined by σD(T ) = {λ ∈
C : T − λ is not a Drazin invertible}. Define also the set LD(X) by LD(X) = {T ∈
L (X ) : a(T ) < ∞ and<(T a(T )+1) is closed} and σLD(T ) = {λ ∈ C : T − λ /∈
LD(X)}. Following [15], an operator T ∈ L (X ) is said to be left Drazin invertible

if T ∈ LD(X). We say that λ ∈ σa(T ) is a left pole of T if T − λ ∈ LD(X), and that

λ ∈ σa(T ) is a left pole of T of finite rank if λ is a left pole of T and α(T − λ) < ∞.

Let πa(T ) denotes the set of all left poles of T and let π0
a denotes the set of all left

poles of T of finite rank. From Theorem 2.8 of [15] it follows that if T ∈ L (X )

is left Drazin invertible, then T is an upper semi-B-Fredholm operator of index less

than or equal to 0.

Let π(T ) be the set of all poles of the resolvent of T and let π0(T ) be the set of all

poles of the resolvent of T of finite rank, that is π0(T ) = {λ ∈ π(T ) : α(T −λ) < ∞}.
According to [24], a complex number λ is a pole of the resolvent of T if and only if

0 < max{a(T −λ), d(T −λ)} < ∞. Moreover, if this is true then a(T −λ) = d(T −λ).

According also to [24], the space <((T − λ)a(T−λ)+1) is closed for each λ ∈ π(T ).

Hence we have always π(T ) ⊂ πa(T ) and π0(T ) ⊂ π0
a(T ). We say that Browders

theorem holds for T ∈ L (X ) if ∆(T ) = π0(T ), and that a-Browders theorem holds

for T ∈ L (X ) if ∆a(T ) = π0
a(T ). Following [14], we say that generalized Weyl’s

theorem holds for T ∈ L (X ) if ∆g(T ) = σ(T ) \ σBW (T ) = E(T ), where E(T ) =

{λ ∈ isoσ(T ) : α(T − λ) > 0} is the set of all isolated eigenvalues of T, and that
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generalized Browder’s theorem holds for T ∈ L (X ) if ∆g(T ) = π(T ). It is proved

in Theorem 2.1 of [10] that generalized Browder’s theorem is equivalent to Browder’s

theorem. In [15, Theorem 3.9], it is shown that an operator satisfying generalized

Weyl’s theorem satisfies also Weyl’s theorem, but the converse does not hold in

general. Nonetheless and under the assumption E(T ) = π(T ), it is proved in Theorem

2.9 of [17] that generalized Weyl’s theorem is equivalent to Weyl’s theorem.

Let SBF+(X) be the class of all upper semi-B-Fredholm operators,

SBF−
+ (X) = {T ∈ SBF+(X) : ind(T ) ≤ 0}.

The upper B-Weyl spectrum of T is defined by σSBF−+
(T ) = {λ ∈ C : T − λ /∈

SBF−
+ (X)}. We say that generalized a-Weyl’s theorem holds for T ∈ L (X ) if

∆g
a(T ) = σa(T ) \ σSBF−+

(T ) = Ea(T ), where Ea(T ) = {λ ∈ iso σa(T ) : α(T − λ) > 0}
is the set of all eigenvalues of T which are isolated in σa(T ) and that T ∈ L (X )

obeys generalized a-Browders theorem if ∆g
a(T ) = πa(T ). It is proved in [10, Theorem

2.2] that generalized a-Browder’s theorem is equivalent to a-Browder’s theorem, and

it is known from [15, Theorem 3.11] that an operator satisfying generalized a-Weyl’s

theorem satisfies a-Weyl’s theorem, but the converse does not hold in general and

under the assumption Ea(T ) = πa(T ) it is proved in [17, Theorem 2.10] that gener-

alized a-Weyl’s theorem is equivalent to a-Weyl’s theorem.

Following [28], we say that T ∈ L (X ) possesses property (w) if ∆a(T ) = E0(T ).

The property (w) has been studied in [1, 5, 28]. In Theorem 2.8 of [5], it is shown that

property (w) implies Weyl’s theorem, but the converse is not true in general. We say

that T ∈ L (X ) possesses property (gw) if ∆g
a(T ) = E(T ). Property (gw) has been

introduced and studied in [11]. Property (gw) extends property (w) to the context of

B-Fredholm theory, and it is proved in [11] that an operator possessing property (gw)

possesses property (w) but the converse is not true in general. According to [18], an

operator T ∈ L (X ) is said to possess property (gb) if ∆g
a(T ) = π(T ), and is said to
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possess property (b) if ∆a(T ) = π0(T ). It is shown in Theorem 2.3 of [18] that an

operator possessing property (gb) possesses property (b) but the converse is not true

in general, see also [30, 29]. Following [9], we say an operator T ∈ L (X ) is said to

be satisfies property (R) if π0
a(T ) = E0(T ). In Theorem 2.4 of [9], it is shown that T

satisfies property (w) if and only if T satisfies a-Browder’s theorem and T satisfies

property (R).

The single valued extension property plays an important role in local spectral the-

ory, see the recent monograph of Laursen and Neumann [26] and Aiena [1]. In this

article we shall consider the following local version of this property, which has been

studied in recent papers, [5, 25] and previously by Finch [23].

Let H(σ(T )) be the space of all functions that analytic in an open neighborhoods

of σ(T ). Following [23] we say that T ∈ L (X ) has the single-valued extension

property (SVEP) at point λ ∈ C if for every open neighborhood Uλ of λ, the only

analytic function f : Uλ −→ X which satisfies the equation (T − µ)f(µ) = 0 is the

constant function f ≡ 0. It is well-known that T ∈ L (X ) has SVEP at every point

of the resolvent ρ(T ) := C \ σ(T ). Moreover, from the identity Theorem for analytic

function it easily follows that T ∈ L (X ) has SVEP at every point of the boundary

∂σ(T ) of the spectrum. In particular, T has SVEP at every isolated point of σ(T ).

In [25, Proposition 1.8], Laursen proved that if T is of finite ascent, then T has SVEP.

Theorem 1.1. [3, Theorem 1.3] If T ∈ SF±(X) the following statements are equiv-

alent:

(i) T has SVEP at λ0;

(ii) a(T − λ0) < ∞;

(iii) σa(T ) does not cluster at λ0;

(iv) H0(T − λ0) is finite dimensional.
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By duality we have

Theorem 1.2. If T ∈ SF±(X) the following statements are equivalent:

(i) T ∗ has SVEP at λ0;

(ii) d(T − λ0) < ∞;

(iii) σs(T ) does not cluster at λ0.

2. Property (m)

Definition 2.1. Let T ∈ L (X ). We say that T satisfies

(i) property (m) if σ(T ) \ σub(T ) = E0(T ).

(ii) property (gm) if σ(T ) \ σLD(T ) = E(T ).

Theorem 2.2. Let T ∈ L (X ). If T satisfies property (m). Then T satisfies property

(R).

Proof. Assume that T satisfies property (m), then σ(T ) \ σub(T ) = E0(T ). If λ ∈
π0

a(T ) = σa(T ) \ σub(T ), then λ ∈ σ(T ) \ σub(T ) = E0(T ) and so π0
a(T ) ⊆ E0(T ). To

show the opposite inclusion, let λ ∈ E0(T ) be arbitrary. Then λ is an eigenvalue of

T isolated in σ(T ). Since T satisfies property (m), it follows that λ ∈ σ(T ) \ σub(T )

and T −λ ∈ B+(X ). As λ ∈ E0(T ), then λ ∈ isoσa(T ) and so λ ∈ σa(T ). Therefore,

λ ∈ σa(T ) \ σub(T ) = π0
a(T ). Hence E0(T ) ⊆ π0

a(T ) and so, E0(T ) = π0
a(T ), i.e., T

satisfies property (R). ¤

The following example shows the converse of the previous theorem does not hold

in general.

Example 2.3. Consider the operator T = R⊕S that defined on X = `2(N)⊕`2(N),

where R is the right unilateral shift operator and S(x1, x2, · · · ) = (x2/2, x3/3, · · · ).
Then σ(T ) = D(0, 1), where D(0, 1) is the unit disc of C. Hence, isoσ(T ) = ∅ and

so, E0(T ) = E(T ) = ∅. Moreover, σa(T ) = σSF−+
(T ) = σub(T ) = C(0, 1)∪{0} , where



PROPERTY (m) FOR BOUNDED LINEAR OPERATORS 89

C(0, 1) is the unit circle of C. Since σa(T ) \ σub(T ) = ∅ = E0(T ), then T satisfies

property (R). On the other hand, since σ(T ) \ σub(T ) 6= E0(T ), then T does not

satisfy property (m).

Theorem 2.4. Let T ∈ L (X ). Then T satisfies property (m) if and only if T

satisfies property (R) and σ(T ) = σa(T ).

Proof. If T satisfies property (m), then T satisfies property (R) by Theorem 2.2.

Hence E0(T ) = σa(T ) \ σub(T ) = σ(T ) \ σub(T ). This implies that σ(T ) = σa(T ).

Conversely, assume that T satisfies property (R) and σ(T ) = σa(T ). Then

E0(T ) = σa(T ) \ σub(T ) = σ(T ) \ σub(T ).

That is, T satisfies property (m). ¤

Theorem 2.5. Let T ∈ L (X ). If T satisfies property (gm), then T satisfies property

(m).

Proof. Assume that T satisfies property (gm), then σ(T ) \ σLD(T ) = E(T ). If λ ∈
σ(T )\σub(T ), then λ ∈ σ(T )\σLD(T ) = E(T ). Since λ ∈ isoσ(T ) and T−λ ∈ B+(X ),

then λ ∈ E0(T ) and so σ(T ) \ σub(T ) ⊆ E0(T ). To show the opposite inclusion, let

λ ∈ E0(T ) be arbitrary. Then λ is an eigenvalue of T isolated in σ(T ). Since T satisfies

property (gm), it follows that λ ∈ σ(T )\σLD(T ) and T −λ is a left Drazin invertible.

As α(T − λ) is finite, we conclude that T − λ ∈ B+(X ). Hence λ ∈ σ(T ) \ σub(T ).

Therefore, σ(T ) \ σub(T ) = E0(T ), i.e., T satisfies property (m). ¤

The converse of the Theorem 2.5 is not true in general as shown by the following

example.

Example 2.6. Let Q be defined for each x = {ξi} ∈ `1(N) by

Q(ξ1, ξ2, · · · ) = (0, α1ξ2, α2ξ3, · · · , αk−1ξk, · · · ),
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where {αi} is a sequence of complex numbers such that 0 < |αi| ≤ 1 and
∞∑
i=1

|αi| < ∞.

Define T on X = `1(N)⊕ `1(N) by T = Q⊕0. Then σ(T ) = σa(T ) = {0} , E(T ) =

{0} , E0(T ) = ∅. It follows from Example 3.12 of [15] that <(T n) is not closed for all

n ∈ N. This implies that σSF−+
(T ) = σub(T ) = σLD(T ) = σSBF−+

(T ) = {0}. We then

have σ(T )\σLD(T ) = ∅ 6= E(T ) = {0} and σ(T )\σub(T ) = E0(T ). Hence T satisfies

property (m), but T does not satisfies property (gm).

Theorem 2.7. Let T ∈ L (X ). Then the following assertions hold.

(i) If T satisfies property (m), then Weyl’s theorem hold for T .

(ii) If T satisfies property (gm), then generalized Weyl’s theorem hold for T .

Proof. (i) Assume that T satisfies property (m), then ∆(T ) = E0(T ). If λ ∈ ∆(T ),

then λ ∈ σ(T ) \ σub(T ) = E0(T ) and so ∆(T ) ⊆ E0(T ). Conversely, if λ ∈ E0(T ) is

arbitrary, then λ ∈ iso σ(T ), T and T ∗ has SVEP at λ. Since T satisfies property

(m), then T −λ ∈ B+(X ). The SVEP of T and T ∗ implies that by Remark 1.2 of [5]

a(T − λ) = d(T − λ) < ∞. As α(T − λ) is finite, it follows from Theorem 3.4 of [1]

that α(T − λ) = β(T − λ) < ∞, so λ ∈ π0(T ) = σ(T ) \ σb(T ). Hence λ ∈ ∆(T ) and

this implies that E0(T ) ⊆ ∆(T ). Therefore, ∆(T ) = E0(T ), that is, Weyl’s theorem

holds for T .

(ii) Suppose that T satisfies property (gm) and let λ ∈ ∆g(T ). Since σLD(T ) ⊆
σBW (T ), then λ /∈ σLD(T ). If α(T − λ) = 0, as λ /∈ σBW (T ), then T − λ will be

invertible. But this impossible since λ ∈ σ(T ). Hence α(T −λ) > 0 and λ ∈ σ(T ). As

T satisfies property (gm), then λ ∈ E(T ). This implies that ∆g(T ) ⊆ E(T ). To show

the opposite inclusion, let λ ∈ E(T ) be arbitrary. Since T satisfies property (gm),

then T − λ is an upper semi-B-Fredholm with ind(T − λ) ≤ 0. On the other hand,

as λ ∈ E(T ), then λ is isolated in σ(T ), and hence T ∗ has SVEP at λ. This implies
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by Theorem 2.11 of [2] that ind(T −λ) = 0, and λ /∈ σBW (T ). Hence ∆g(T ) = E(T ),

that is, T satisfies generalized Weyl’s theorem. ¤

The converse of Theorem 2.7 doe not not hold in general as shown by the following

example.

Example 2.8. Let R ∈ `2(N) be the unilateral right shift and

U(x1, x2, · · · ) := (0, x2, x3, · · · ) for all (xn) ∈ `2(N).

If T := R ⊕ U then σ(T ) = σw(T ) = σD(T ) = σBW (T ) = σb(T ) = D(0, 1), where

D(0, 1) is the unit disc of C. Hence iso σ(T ) = ∅, then E0(T ) = E(T ) = ∅. Then T

satisfies generalized Weyl’s theorem and hence Weyl’s theorem, since ∆g(T ) = E(T )

and ∆(T ) = E0(T ). Moreover, σa(T ) = C(0, 1) ∪ {0} , where C(0, 1) is the unit

circle of C. Hence σub(T ) = σSF−+
(T ) = σLD(T ) = σSBF−+

(T ) = C(0, 1). Since

σ(T )\σub(T ) 6= E0(T ) and σ(T )\σLD(T ) 6= E(T ). Then T does not satisfy property

(m) nor property (gm).

The following example show that property (w) and property (gw) does not imply

property (m).

Example 2.9. Consider the operator T = R⊕S that defined on X = `2(N)⊕`2(N),

where R is the right unilateral shift operator and S(x1, x2, · · · ) = (x2/2, x3/3, · · · ).
Then σ(T ) = D(0, 1), where D(0, 1) is the unit disc in C. Hence, isoσ(T ) = ∅ and

so, E0(T ) = E(T ) = ∅. Moreover, σa(T ) = σSF−+
(T ) = σub(T ) = C(0, 1)∪{0} , where

C(0, 1) is the unit circle of C. Since ∆a(T ) = ∅ = E0(T ) then T satisfies property

(w) and since ∆g
a(T ) = ∅ = E(T ) then T satisfies property (gw). On the other hand,

since σ(T ) \ σub(T ) 6= E0(T ), then T does not satisfy property (m).
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Theorem 2.10. Let T ∈ L (X ). Then the following assertions hold,

(i) T satisfies property (m) if and only if Weyl’s theorem holds for T and

σub(T ) = σw(T ).

(ii) T satisfies property (gm) if and only if generalized Weyl’s theorem holds for

T and σBW (T ) = σLD(T ).

Proof. (i) If T satisfies property (m), then it follows from Theorem 2.7 part (i) that

T satisfies Weyl’s theorem. Hence E0(T ) = σ(T ) \ σw(T ) = σ(T ) \ σub(T ). This

implies that σw(T ) = σub(T ). Conversely, assume that T satisfies Weyl’s theorem and

σw(T ) = σub(T ). Then

E0(T ) = σ(T ) \ σw(T ) = σ(T ) \ σub(T ).

That is, T satisfies property (m).

(ii) If T satisfies property (gm), then it follows from Theorem 2.7 part (ii) that T

satisfies generalized Weyl’s theorem. Hence E(T ) = σ(T )\σBW (T ) = σ(T )\σLD(T ).

This implies that σBW (T ) = σLD(T ). Conversely, assume that T satisfies generalized

Weyl’s theorem and σBW (T ) = σLD(T ). Then

E(T ) = σ(T ) \ σBW (T ) = σ(T ) \ σLD(T ).

That is, T satisfies property (gm). ¤

Example 2.11. Let T be defined as in Example 2.8. Then T satisfies generalized

a-Weyl’s theorem since ∆g
a(T ) = {0} = Ea(T ) and hence a-Weyl’s theorem.

The next result shows that the equivalence of property (m), property (R), property

(b), property (w), Weyl’s theorem and a-Weyl’s theorem is true whenever we assume

that T ∗ has SVEP at the points λ /∈ σSF−+
(T ).
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Theorem 2.12. Let T ∈ L (X ). If T ∗ has SVEP at every λ /∈ σSF−+
(T ). Then

property (w), property (b), property (R), property (m), Weyl’s theorem and a-Weyl’s

theorem are equivalent for T .

Proof. Assume that T ∗ has SVEP at every λ /∈ σSF−+
(T ). Then it follows from [1,

Corollary 2.5] that σ(T ) = σa(T ) and by Corollary 3.53 of [1], we then have σw(T ) =

σb(T ) = σSF−+
(T ) = σub(T ). Then the SVEP of T ∗ at every λ /∈ σSF−+

(T ) entails that

a-Browder’s theorem ( and hence Browder’s theorem) holds for T , see [6, Theorem

2.3]. Then it follows by Theorem 2.19 of [9] that

π0(T ) = E0(T ), π0
a(T ) = E0

a(T ), E0(T ) = π0
a(T )

are equivalent. Hence

π0(T ) = ∆(T ) = E0(T ) = σ(T ) \ σub(T ) = ∆a(T ) = π0
a(T ) = E0

a(T ).

Therefore, property (w), property (b), property (R), property (m), Weyl’s theorem

and a-Weyl’s theorem are equivalent for T . ¤

Dually, we have

Theorem 2.13. Let T ∈ L (X ). If T has SVEP at every λ /∈ σSF+
−
(T ). Then

property (w), property (b), property (R), property (m), Weyl’s theorem and a-Weyl’s

theorem are equivalent for T ∗.

Proof. Assume that T has SVEP at every λ /∈ σSF+
−
(T ). Then it follows from [1,

Corollary 2.5] that σ(T ∗) = σ(T ) = σs(T ) = σa(T
∗) and by Corollary 3.53 of [1],

we then have σw(T ∗) = σw(T ) = σb(T ) = σSF+
−
(T ) = σlb(T ) = σub(T

∗) = σSF−+
(T ∗).

Then the SVEP of T at every λ /∈ σSF+
−
(T ) entails that a-Browder’s theorem ( and

hence Browder’s theorem) holds for T ∗, see [6, Theorem 2.3]. Then it follows by

Theorem 2.20 of [9] that

π0(T ∗) = E0(T ∗), π0
a(T

∗) = E0
a(T

∗), E0(T ∗) = π0
a(T

∗)



94 M.H.M.RASHID

are equivalent. Hence

π0(T ∗) = ∆(T ∗) = E0(T ∗) = ∆a(T
∗) = E0

a(T
∗)

= σa(T
∗) \ σub(T

∗) = π0
a(T

∗).

Therefore, property (w), property (b), property (R), property (m), Weyl’s theorem

and a-Weyl’s theorem are equivalent for T ∗. ¤

Theorem 2.14. Suppose that T ∗ has SVEP at every λ /∈ σSBF−+
(T ). Then the fol-

lowing assertions are equivalent:

(i) E(T ) = π(T );

(ii) Ea(T ) = πa(T );

(iii) E(T ) = πa(T ).

Consequently, property (gw), property (gb), property (gm), generalized a-Weyl’s the-

orem and generalized Weyl;s theorem are equivalent for T .

Proof. Suppose that T ∗ has SVEP at every λ /∈ σSBF−+
(T ). We prove first the equality

σSBF−+
(T ) = σBW (T ). If λ /∈ σSBF−+

(T ) then T − λ is an upper semi-B-Fredholm

operator and ind(T−λ) ≤ 0. As T ∗ has SVEP, then it follows from Corollary 2.8 of [16]

that T−λ is a B-Weyl operator and so λ /∈ σBW (T ). Therefore, σSBF−+
(T ) ⊆ σBW (T ).

Since the other inclusion is always verified, we have the equality. Now we prove that

σD(T ) = σBW (T ). Since σSBF−+
(T ) ⊆ σSF−+

(T ) is always verified. Then T ∗ has SVEP

at every λ /∈ σSF−+
(T ). This implies that T satisfies Browder’s theorem. As we

know from Theorem 2.1 of [10] that Browder’s theorem is equivalent to generalized

Browder’s theorem, we have σBW (T ) = σD(T ). On the other hand, as T ∗ has SVEP

at every λ /∈ σSF−+
(T ), then σ(T ) = σa(T ). From this we deduce that E(T ) = Ea(T )

and

πa(T ) = σa(T ) \ σSBF−+
(T ) = σ(T ) \ σD(T ) = π(T ),
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from which the equivalence of (i), (ii) and (iii) easily follows. To show the last

statement observed that the SVEP of T ∗ at the points λ /∈ σSBF−+
(T ) entails that

generalized a-Browder’s theorem (and hence generalized Browder’s theorem) holds

for T , see [19, Corollary 2.7]. Therefor,

π(T ) = ∆g(T ) = E(T ) = σ(T ) \ σLD(T ) = ∆g
a(T ) = Ea(T ).

That is, property (gm), property (gb), property (gw), generalized a-Weyl’s theorem

and generalized Weyl’s theorem are equivalent for T . ¤

Dually, we have

Theorem 2.15. Suppose that T has SVEP at every λ /∈ σSBF+
−
(T ). Then the follow-

ing assertions are equivalent:

(i) E(T ∗) = π(T ∗);

(ii) Ea(T
∗) = πa(T

∗);

(iii) E(T ∗) = πa(T
∗).

Consequently, property (gb), property (gw), generalized a-Weyl’s theorem and gener-

alized Weyl;s theorem are equivalent for T ∗.

Proof. Suppose that T has SVEP at every λ /∈ σSBF+
−
(T ). We prove first the equality

σSBF+
−
(T ∗) = σBW (T ∗). If λ /∈ σSBF+

−
(T ) then T − λ is a lower semi-B-Fredholm

operator and ind(T − λ) ≥ 0. As T has SVEP, then it follows from Theorem 2.5

of [16] that T − λ is a B-Weyl operator and so λ /∈ σBW (T ). As σBW (T ) = σBW (T ∗).

Then λ /∈ σBW (T ∗). So σBW (T ∗) ⊆ σSBF+
−
(T ). As σSBF+

−
(T ) = σSBF−+

(T ∗), then

σBW (T ∗) ⊆ σSBF−+
(T ∗). Since the other inclusion is always verified, it then fol-

lows that σBW (T ∗) = σSBF−+
(T ∗). Now we show that σBW (T ∗) = σD(T ∗). Since we

have always σSBF+
−
(T ) ⊆ σSF+

−
(T ), then T has SVEP at every λ ∈ σSF+

−
(T ). Hence

T ∗ satisfies generalized Browder’s theorem. So σD(T ∗) = σBW (T ∗). Finally, we

have σBW (T ∗) = σSBF−+
(T ∗) = σD(T ∗) and σ(T ∗) = σa(T

∗), from which we obtain
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E(T ∗) = Ea(T
∗) and π(T ∗) = πa(T

∗). The SVEP at every λ ∈ σSBF+
−
(T ) ensure by

Corollary 2.7 of [19] that generalized a-Browder’s theorem (and hence generalized

Browder’s theorem) holds for T ∗. Hence

π(T ∗) = ∆g(T ∗) = E(T ∗) = σ(T ∗) \ σLD(T ∗) = ∆g
a(T

∗) = Ea(T
∗).

That is, property (gb), property (gm), property (gw), generalized a-Weyl’s theorem

and generalized Weyl’s theorem are equivalent for T ∗. ¤

3. Property (m) for polaroid type operators

In this section we consider classes of operators for which the isolated points of the

spectrum are poles of the resolvent.

An operator T ∈ L (X ) is said to be polaroid if isolated point of σ(T ) is a pole of

the resolvent of T . T ∈ L (X ) is said to be a-polaroid if every isolated of σa(T ) is a

pole of the resolvent of T .

It is easily seen that if T is a-polaroid, then T is polaroid, while in general the

converse is not true. It is well known that λ is a pole of the resolvent of T if and only

if λ is a pole of the resolvent of T ∗. Since σ(T ) = σ(T ∗) we then have

(3.1) T is polaroid if and only if T ∗ is polaroid.

From the proof of Theorem 2.14 we know that if T ∗ has SVEP, then σ(T ) = σa(T ).

Therefore, if T ∗ has SVEP then

(3.2) T is a-polaroid if and only if T is polaroid.

If T has SVEP, we know that σ(T ∗) = σa(T
∗). Therefore, if T has SVEP, then

(3.3) T ∗ a-polaroid ⇔ T ∗ polaroid ⇔ T polaroid.

Theorem 3.1. Suppose that T ∈ L (X ) is a-polaroid and σ(T ) = σa(T ). Then T

satisfies property (m).
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Proof. Note first that if T is a-polaroid then E0
a(T ) = π0(T ). In fact, if λ ∈ E0

a(T )

then λ is isolated in σa(T ) and hence a(T −λ) = d(T −λ) < ∞. As α(T −λ) is finite,

it follows by Theorem 3.4 of [1] that β(T−λ) is also finite, thus λ ∈ π0(T ). This shows

that E0
a(T ) ⊆ π0(T ), since we have always π0(T ) ⊆ E0

a(T ). Hence E0
a(T ) = π0(T ),

and so π0(T ) = π0
a(T ). Therefore,

πa(T ) = σa(T ) \ σub(T ) = σ(T ) \ σub(T ).

That is, T satisfies property (m). ¤

Theorem 3.2. Suppose that T ∈ L (X ) is a-polaroid and σ(T ) = σa(T ). Then T

satisfies property (gm).

Proof. Note first that if T is a-polaroid then Ea(T ) = π(T ). In fact, if λ ∈ Ea(T )

then λ is isolated in σa(T ) and hence a(T − λ) = d(T − λ) < ∞ and so λ ∈ π(T ).

Since the other inclusion is always verified, we then have Ea(T ) = π(T ) and hence

π(T ) = πa(T ). Therefore,

πa(T ) = σa(T ) \ σLD(T ) = σ(T ) \ σLD(T ).

That is, T satisfies property (gm). ¤

Let H(σ(T )) denote the set of analytic functions defined on an open neighborhood

of σ(T ), such that f is non constant on each of the components of its domain.

Theorem 3.3. Suppose that T ∈ L (X ) is polaroid and f ∈ H(σ(T )).

(i) If T ∗ has SVEP, then property (m) holds for f(T ), or equivalently, property

(R), property (w), Weyl’s theorem and a-Weyl’s theorem hold for f(T ).

(ii) If T has SVEP, then property (m) holds for f(T ∗), or equivalently, property

(R), property (w), Weyl’s theorem and a-Weyl’s theorem hold for f(T ∗).
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Proof. (i) It follows from Theorem 3.4 of [9] that property (R) holds for f(T ), or equiv-

alently, property (w), Weyl’s theorem and a-Weyl’s theorem hold for f(T ). Since the

SVEP of T ∗ implies by Corollary 2.45 that σ(T ) = σa(T ). So, the result follows now

by Theorem 2.4.

(ii) It follows from Theorem 3.4 of [9] that property (R) holds for f(T ∗), or equiva-

lently, property (w), Weyl’s theorem and a-Weyl’s theorem hold for f(T ∗). Since the

SVEP of T implies by Corollary 2.45 that σ(T ∗) = σa(T
∗). So, the result follows now

by Theorem 2.4. ¤

Theorem 3.4. Suppose that T ∈ L (X ) is polaroid and f ∈ H(σ(T )).

(i) If T ∗ has SVEP, then property (gm) holds for f(T ), or equivalently, property

(gw), generalized Weyl’s theorem and generalized a-Weyl’s theorem hold for

f(T ).

(ii) If T has SVEP, then property (gm) holds for f(T ∗), or equivalently, property

(gw), generalized Weyl’s theorem and generalized a-Weyl’s theorem hold for

f(T ∗).

Proof. (i) By Lemma 3.11 of [8] we know that f(T ) is polaroid. By Theorem 2.40

of [1] f(T ∗) has SVEP, hence f(T ) is a-polaroid by equivalence (3.2). Since f(T ∗)

has SVEP, then it follows from [1, Corollary 2.45] that σ(f(T )) = σa(f(T )). So, it

follows from Theorem 3.2 that f(T ) satisfies property (gm) and this is equivalent by

Theorem 2.14 to saying that property (gw), generalized Weyl’s theorem and gener-

alized a-Weyl’s theorem hold for f(T ).

(ii) It follows from equivalence ( 3.3) that T ∗ is polaroid and hence it then follows by

Lemma 3.11 of [8] that f(T ∗) is polaroid. Moreover, always by Theorem 2.40 of [1],

f(T ) has SVEP and so it follows from Corollary 2.45 of [1] that σ(f(T )) = σa(f(T ∗)).

So, it follows from equivalence ( 3.3) that f(T ∗) is a-polaroid. Therefore, it follows

by Theorem 3.2 that f(T ∗) satisfies property (gm) and this by Theorem 2.14 is
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equivalent to saying that property (gw), generalized Weyl’s theorem and generalized

a-Weyl’s theorem hold for f(T ∗). ¤

A bounded operator T ∈ L (X ) is said to be left polaroid if every isolated point

of σa(T ) is a left pole of the resolvent of T . T ∈ L (X ) is said to be right polaroid

if every isolated point of σa(T ) is a right pole of the resolvent of T .

Trivially,

(3.4) T a-polaroid ⇒ T left polaroid.

Furthermore,

(3.5) T left and right polaroid ⇒ T polaroid.

Theorem 3.5. Suppose that T ∈ L (X ) and f ∈ H(σ(T )). Then the following

assertions hold:

(i) If T ∗ has SVEP and T is left polaroid, then property (m) holds for f(T ), or

equivalently, property (R), property (w), Weyl’s theorem and a-Weyl’s theorem

hold for f(T ).

(ii) If T has SVEP and T is right polaroid, then property (gm) holds for f(T ∗), or

equivalently, property (R), property (w), Weyl’s theorem and a-Weyl’s theorem

hold for f(T ∗).

Proof. (i) It follows from Theorem 3.7 of [9] that property (R) holds for f(T ), or equiv-

alently, property (w), Weyl’s theorem and a-Weyl’s theorem hold for f(T ). Since the

SVEP of T ∗ implies by Corollary 2.45 that σ(T ) = σa(T ). So, the result follows now

by Theorem 2.4.

(ii) It follows from Theorem 3.7 of [9] that property (R) holds for f(T ∗), or equiva-

lently, property (w), Weyl’s theorem and a-Weyl’s theorem hold for f(T ∗). Since the

SVEP of T implies by Corollary 2.45 that σ(T ∗) = σa(T
∗). So, the result follows now

by Theorem 2.4. ¤
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Theorem 3.6. Suppose that T ∈ L (X ) and f ∈ H(σ(T )). Then the following

assertions hold:

(i) If T ∗ has SVEP and T is left polaroid, then property (gm) holds for f(T ),

or equivalently, property (gw), generalized Weyl’s theorem and generalized a-

Weyl’s theorem hold for f(T ).

(ii) If T has SVEP and T is right polaroid, then property (gm) holds for f(T ∗),

or equivalently, property (gw), generalized Weyl’s theorem and generalized a-

Weyl’s theorem hold for f(T ∗).

Proof. (i) Let λ ∈ isoσ(T ). Since T ∗ has SVEP, it then follows by Corollary 2.5 of [1]

that σ(T ) = σa(T ), so λ ∈ isoσa(T ) and hence a left pole for T . In particular, T − λ

is left Drazin invertible and hence a(T − λ) < ∞. By [7, Theorem 2.5] we know that

λ − f(T ) is semi B-Fredholm, i.e., there exists a natural number n ∈ N such that

<(T − λ)n is closed and the restriction T − λ|<(T−λ)n is semi-Fredholm, in particular

T − λ is quasi-Fredholm. The SVEP for T ∗ implies that d(T − λ) < ∞. Hence λ is a

pole of the resolvent of T . This proves that T is polaroid. By Lemma 3.11 of [8], f(T )

is polaroid and since by [1, Theorem 2.40], f(T ∗) has SVEP, the assertion follows now

from part (i) of Theorem 3.4.

(ii) Suppose that T has SVEP and T is right polaroid. The SVEP of T entails

σs(T ) = σ(T ), see Corollary 2.5 of [1]. Let λ ∈ isoσ(T ). Then λ ∈ σs(T ) and hence

is a right pole of T . Therefore, d(T − λ) < ∞. On the other hand, since T − λ

is right Drazin invertible, then T − λ is semi B-Fredholm, in particular T − λ is

quasi-Fredholm. The SVEP for T at λ entails that a(t − λ) < ∞. Consequently,

λ is a pole of the resolvent of T and hence T is polaroid. By Lemma 3.11 of [8],

f(T ∗) is polaroid and since f(T ) has SVEP, the assertion follows now from part (ii)

of Theorem 3.4. ¤
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