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NONUNIFORM WAVELET PACKET BASES FOR THE SPACES
Lp(R) AND H

1

(R)

SOHRAB ALI

Abstract: In this paper, we prove the results on the existence of unconditional

nonuniform wavelet packet bases for the spaces Lp(R), 1 < p < ∞ and H 1(R) based

on the approach similar to that of Meyer and Coifman. Certain results are obtained

in this direction by assuming only that the nonuniform wavelet packets ωn and its

derivatives ω′n have a common radial decreasing L
1
–majorant function.

1. Introduction

In his pioneering paper, Mallat [15] first formulated a new and remarkable idea of

multiresolution analysis (MRA) which deals with a general formalism for the construc-

tion of an orthonormal basis of wavelet bases. Mathematically, an MRA consist of a

sequence of embedded closed subspaces, {Vj : j ∈ Z} of L2(R) such that f(x) ∈ Vj if

and only if f(2x) ∈ Vj+1. Furthermore, there exists an element ϕ ∈ V0 such that the

collection of integer translates of function ϕ, {ϕ(x− k) : k ∈ Z} represents a com-

plete orthonormal system for V0. The function ϕ is called the scaling function or

the father wavelet. Recently, the idea of MRA and wavelets have been generalized

in many different settings, for example, one can replace the dilation factor 2 by an
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integer M ≥ 2 and in higher dimensions, it can be replaced by a dilation matrix A,

in which case the number of wavelets required is |detA| − 1. But in all these cases,

the translation set is always a group. In the two papers [8,9], Gabardo and Nashed

considered a generalization of Mallat’s [15] celebrated theory of MRA based on spec-

tral pairs, in which the translation set acting on the scaling function associated with

the MRA to generate the subspace V0 is no longer a group, but is the union of Z

and a translate of Z. More precisely, this set is of the form Λ = {0, r/N} + 2Z,

where N ≥ 1 is an integer, 1 ≤ r ≤ 2N − 1, r is an odd integer relatively prime to

N . They call this a nonuniform multiresolution analysis (NUMRA). Moreover, they

have provided the necessary and sufficient conditions for the existence of associated

wavelets in L2(R). Later on, Gabardo and Yu [10,11] continued their research in

this non-standard setting and gave the characterization of all nonuniform wavelets

associated with nonuniform multiresolution analysis.

It is well-known that the classical orthonormal wavelet bases have poor frequency

localization. For example, if the wavelet ψ is band limited, then the measure of the

supp of (ψj,k)
∧ is 2j-times that of supp ψ̂. To overcome this disadvantage, Coifman

et al.[7] constructed univariate orthogonal wavelet packets. The fundamental idea

of wavelet packet analysis is to construct a library of orthonormal bases for L2(R),

which can be searched in real time for the best expansion with respect to a given

application. Chui and Li [5] generalized the concept of orthogonal wavelet packets to

the case of non-orthogonal wavelet packets so that they can be applied to the spline

wavelets and so on. Later on, Behera [2] constructed nonuniform wavelet packets

associated with nonuniform multiresolution analysis. He proved lemmas on the so-

called splitting trick and several theorems concerning the construction of nonuniform

wavelet packets on R. Other notable generalizations are the orthogonal p-wavelet
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packets and the p-wavelet frame packets related to the Walsh polynomials [17,18]

and the M -band framelet packets [19].

It is a part of the general wisdom that wavelet bases are unconditional bases

in Lp(R) for 1 < p < ∞. Results of this type are proven in almost every book

on wavelets, see, eg., [14,16]. In all those places, however, some assumptions on the

smoothness of the wavelets are used. But, Gripenberg [12] introduced the subject

of unconditionality of wavelet bases for Lebesgue spaces Lp(R), 1 < p < ∞ which

uses no smoothness of the wavelets. Later on, Wojtaszczyk [22] improved the results

of Gripenberg [12] and Chang [4], and proved that some unimodular wavelets also

yields unconditional bases in Lp(R), 1 < p < ∞. The constructive proofs of the

unconditional basis for H
1
(R) have been given by Carleson [3] and Wojtaszczyk

[21], where the later author has given an example of an unconditional basis for the

Hardy space H
1
(R) as the Franklin system. In fact, a large class of wavelets which

have unconditional basis for the Hardy spaces H
1
(R) was discovered by Meyer [16]

and recently, Khalil et al.[1] have generalized these results to the stationary wavelet

packets. It was Strömberg [20] who first discovered unconditional bases for spaces

H
1
(R) and Lp(R), 1 < p < ∞, and they are spline systems of higher order.

Motivated and inspired by the importance of nonuniform wavelet packets, in the

present paper, we prove the results on the existence of unconditional nonuniform

wavelet packet bases for spaces H
1
(R) and Lp(R), 1 < p < ∞ based on the approach

similar to that of Meyer [16] and Coifman [6].

2. Preliminaries

Definition 2.1. Let N be an integer, N ≥ 1, and Λ = {0, r/N}+ 2Z, where r is an

odd integer relatively prime to N with 1 ≤ r ≤ 2N − 1. A sequence {Vj : j ∈ Z} of
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closed subspaces of L2(R) is called a nonuniform multiresolution analysis (NUMRA)

associated with Λ if the following conditions are satisfied:

(2.1) Vj ⊂ Vj+1 for all j ∈ Z,

(2.2)
⋃

j∈Z Vj is dense in L2(R) and
⋂

j∈Z Vj = {0} ,

(2.3) f ∈ Vj if and only if f(2N.) ∈ Vj+1,

(2.4) there exists a function ϕ in V0 such that the system of functions {ϕ(.− λ)}λ∈Λ

forms an orthonormal basis for subspace V0.

The function ϕ whose existence is asserted in (2.4) is called a scaling function of the

given NUMRA.

It is worth noting that, when N = 1, one recovers from the definition above the

standard definition of a one-dimensional multiresolution analysis with dilation factor

equal to 2. When, N > 1, the dilation factor of 2N ensures that 2NΛ ⊂ 2Z ⊂ Λ.

Equation (2.3) implies that

(2.5) ϕ
( x

2N

)
=

∑

λ∈Λ

aλ ϕ(x− λ),

where
∑

λ∈Λ |aλ|2 < ∞.

Now, we consider W0 the orthogonal complement of V0 on V1, i.e.,

V1 = V0 ⊕W0.

If ψ1, ψ2, ...., ψ2N−1 are the functions in W0, then for ` = 0, 1, ..., 2N − 1, there exists

sequences
{
a`

λ

}
λ∈Λ

satisfying
∑

λ∈Λ |a`
λ|2 < ∞ such that

(2.6)
1

2N
ψ`

( x

2N

)
=

∑

λ∈Λ

a`
λ ϕ(x− λ).
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Now, consider

(2.7) ψ̂`(2Nξ) = m`(ξ) ϕ̂(ξ)

where the functions m`(ξ) =
∑

λ∈Λ a`
λ e−2πiλξ are locally L2. Since Λ = {0, r/N}+2Z,

we can write that

(2.8) m`(ξ) = m1
`(ξ) + e−2πiξr/N m2

`(ξ), ` = 0, 1, ...., 2N − 1,

where m1
` and m2

` are locally L2, 1/2−periodic functions.

In this case {ψ1, ψ2, ...., ψ2N−1} is a set of basic wavelets associated with a scaling

function ϕ. It is easy to show that {ψ`(x− λ) : 1 ≤ ` ≤ 2N − 1} is an orthonormal

basis of W0. An obvious rescaling shows that

{
ψ`,j,λ = (2N)j/2ψ`

(
(2N)jx− λ

)
: 1 ≤ ` ≤ 2N − 1, λ ∈ Λ

}

is an orthonormal basis of Wj. Since ∪j∈ZVj is dense in L2(R), the collection

{ψ`,j,λ : j ∈ Z, λ ∈ Λ, 1 ≤ ` ≤ 2N − 1, }

is an orthonormal basis of L2(R).

We, now, define ωn for each integer n ≥ 0 as follows. Suppose that for p ≥ 0, ωp

is already defined. Then, define basic nonuniform wavelet packets ωq+2Np, 0 ≤ q ≤
2N − 1, by

(2.9) ωq+2Np(x) =
∑

λ∈Λ

(2N)aq
λωp(2Nx− λ),

where
∑

λ∈Λ |aq
λ|2 < ∞.
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Clearly, the set
{
ωn(x− λ

)
: λ ∈ Λ, n = 0, 1, ....

}
is an orthonormal basis of L2(R).

Corresponding to some orthonormal scaling function ϕ = ω0, the family of nonuni-

form wavelet packets ωn defines a family of subspaces of L2(R) as follows:

(2.10) Un
j = span

{
(2N)

j/2ωn

(
(2N)

j

x− λ
)

: λ ∈ Λ
}

; j ∈ Z, n = 0, 1, 2, ....

Since ω0 = ϕ is the scaling function and ωn, 1 ≤ n ≤ 2N − 1, are the nonuniform

wavelet packets, we observe that

U0
j = Vj, U

1
j = Wj =

2N−1⊕
r=1

U r
j , j ∈ Z

so that the orthogonal decomposition Vj+1 = Vj ⊕Wj, can be written as

(2.11) U0
j+1 = U0

j ⊕ U1
j =

2N−1⊕
r=0

U r
j .

A generalization of this result for other values of n = 1, 2, ....., can be written as

(2.12) Un
j+1 =

2N−1⊕
r=0

U r+2Nn
j , j ∈ Z.

Lemma 2.2[2]. If j ≥ 0, then

Wj =
2N−1⊕
r=1

U r
j =

(2N)
2−1⊕

r=2N

U r
j−1 = ......... =

(2N)
m+1−1⊕

r=(2N)m

U r
j−m, m ≤ j

=

(2N)
j+1−1⊕

r=(2N)
j

U r
0 ,

where Un
j is defined in (2.10). Using this decomposition, we get the nonuniform

wavelet packets ωr,j,λ, decomposition of subspaces Wj, j ≥ 0. Therefore, for any
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function f ∈ L2(R), we have

f(x) =

(2N)m+1−1∑

n=(2N)m

∑

j∈Z

∑

λ∈Λ

Cr,n,λ ωr,j,λ(x),

where r = j −m, m = 0 if j < 0 and m = 0, 1, 2, ..., j if j ≥ 0; will be a nonuniform

wavelet packet expansion of f and Cr,n,λ the wavelet packet coefficients, defined as

Cr,n,λ = 〈f, ωr,j,λ〉.

Let Pj and Qj, respectively be the orthogonal projections onto the spaces Vj and Wj

with the kernels Pj(x, y) and Qj(x, y), defined as follows:

(2.13) Pj(x, y) =
∑

λ∈Λ

ϕj,λ(x) ϕj,λ(y),

where ϕj,λ(x) = (2N)j/2ϕ
(
(2N)jx− λ

)
and

(2.14) Qj(x, y) =
2N−1∑

`=0

∑

λ∈Λ

ψ`,j,λ(x) ψ`,j,λ(y).

In the light of Vj+1 = Vj ⊕Wj, Pj(x, y) can be written as

(2.15) Pj(x, y) =
∑
m<j

Qm(x, y) =
2N−1∑

`=0

∑
m<j

∑

λ∈Λ

ψ`,j,λ(x) ψ`,j,λ(y).

Now, we consider a projection Qn
j onto Un

j with kernel Qn
j (x, y) defined as

(2.16) Qn
j (x, y) =

∑

λ∈Λ

ωj,n,λ(x) ωj,n,λ(y) ; j ∈ Z, n = 0, 1, 2, ...

where ωj,n,λ are the nonuniform wavelet packets.

Lemma 2.3[14]. For a basis {xj : j ∈ N} of a Banach space (B, ‖.‖) the following

statements are equivalent:

(i): {xj : j ∈ N} is an unconditional basis for B.
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(ii): There exists a constant C > 0 such that ‖Sβ(x)‖ ≤ C‖x‖ for all sequences

β = {βj}j∈N with |βj| ≤ 1, where Sβ(x) =
∑

j∈N βjfj(x)xj, for all x ∈ B, and

f ′js are the coefficient functionals.

(iii): There exists a constant C > 0 such that ‖Sβ(x)‖ ≤ C‖x‖ for all finitely

non-zero sequences β = {εj}j∈N with εj = ±1.

(iv): There exists a constant C > 0 such that ‖Sε(x)‖ ≤ C‖x‖ for all sequences

ε = {βj}j∈N with βj = 1 or 0.

Definition 2.4[14]. For a function f defined on R, we say that a bounded function

E : [0,∞) −→ R+ is a radial decreasing L
1

-majorant of f if |f(x)| ≤ E(|x|) and E

satisfies the following conditions:

(2.17)





(i)E ∈ L
1
[0,∞),

(ii)E is decreasing,

(iii)E(0) < ∞.

Lemma 2.5[13]. Let E be the function on [0,∞) satisfying the conditions of (2.17).

Then

∑

λ∈Λ

E(|x− λ|)E(|y − λ|) ≤ CE

( |x− y|
2N

)
, for all x, y ∈ R, and N ≥ 1.

where C is a constant depending on E.

Lemma 2.6[13]. A Calderon-Zygmund operator T is a bounded linear operator on

L
2
(R) such that

(Tf)(x) =

∫

R
K(x, y)f(y) dy,
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where x /∈ supp (f) and the kernel K is a jointly measurable function satisfying

(2.18)
∣∣K(x, y)

∣∣ ≤ C1

|x− y| ;

(2.19)
∣∣K(x0, y)−K(x, y)

∣∣ ≤ C2|x− x0|
|x− y|2 if |x− x0| ≤ 1

2
|x− y|;

(2.20)
∣∣K(x, y0)−K(x, y)

∣∣ ≤ C3|y − y0|
|x− y|2 if |y − y0| ≤ 1

2
|x− y|.

Lemma 2.7[13]. Let T be a Calderon-Zygmund operator such that

∫

R
Tf(x) dx = 0 and

∫

R
T ∗f(x) dx = 0,

whenever f ∈ L
2
(R) ∩ L

∞
(R) and

∫
R f(x) dx = 0, where T ∗ is the dual of T . Then,

T extends to a bounded operator on H
1
(R), BMO(R) and on L

p
(R), 1 < p < ∞,

with operator norm depending only on ‖T‖L2(R) and the constants involved in the

inequalities (2.18), (2.19) and (2.20).

3. Main Results

To study that the nonuniform wavelet packets forms an unconditional basis for

H
1
(R) and L

p
(R), 1 < p < ∞, we first define an operator Tβ by

(3.1) Tβf =

(2N)m+1−1∑

n=(2N)m

∑

j∈Z

∑

λ∈Λ

βr,n,λ〈f, ωr,n,λ〉ωr,n,λ(x)

in H
1
(R) and in L

p
(R), 1 < p < ∞; where r = j − m, m = 0 if j ≤ 0 and m =

0, 1, 2, ..., j if j > 0. Suppose β = {βr,n,λ} is a sequence such that βr,n,λ = 1 for finite
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number of indices and βr,n,λ = 0 for remaining indices. Then in order to study the

boundedness of this operator Tβ, we write it in the integral form as

(3.2) Tβf(x) =

∫

R
Kβ(x, y)f(y) dy,

where

(3.3) Kβ(x, y) =

(2N)m+1−1∑

n=(2N)m

∑

j∈Z

∑

λ∈Λ

βr,n,λ ωr,n,λ(x), ωr,n,λ(y).

Suppose that the wavelet packets {ωn : n ≥ 0} are bounded by a radial decreasing

L
1
-majorant E, then by Lemma 2.5, we obtain

∣∣Kβ(x, y)
∣∣ ≤

(2N)m+1−1∑

n=(2N)m

∑

j∈Z

∑

λ∈Λ

(2N)r
∣∣ωn

(
(2N)rx− λ) ωn

(
(2N)ry − λ)

∣∣

≤
(2N)m+1−1∑

n=(2N)m

∑

j∈Z

∑

λ∈Λ

(2N)rE
(∣∣(2N)rx− λ

∣∣) E
(∣∣(2N)ry − λ

∣∣)

≤
(2N)m+1−1∑

n=(2N)m

∑

j∈Z
(2N)rCE

(
(2N)r|x− y|

2N

)

= C
∑

j∈Z
(2N)m(2N)rE

(
(2N)r−1|x− y|)

(3.4) = C
∑

j∈Z
(2N)jE

(
(2N)r−1|x− y|)

where C depends only on E and where r = j − m, m = 0 if j ≤ 0 and m =

0, 1, 2, ..., j if j > 0.
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Theorem 3.1. Let ωn be nonuniform wavelet packets such that ωn and ω′n (derivative

of ωn) have a common radial decreasing L
1
-majorant E, for all n, satisfying

∫

R
sE(s) ds < ∞.

Then, the operator Tβ defined by (3.2) and (3.3) is bounded in H
1
(R) and L

p
(R)

1 < p < ∞, with norm bounded by a constant independent of the finitely non-zero

sequence β consisting of zeros and ones.

Proof. Since the system {ωr,n,λ} is an orthonormal basis for L2(R), so it easy to verify

that the operator Tβ is bounded, i.e.,

‖Tβf‖2

L2(R) =

(2N)m+1−1∑

n=(2N)m

∑

j∈Z

∑

λ∈Λ

∣∣∣βr,n,λ 〈f, ωr,n,λ〉
∣∣∣
2

≤
(2N)m+1−1∑

n=(2N)m

∑

j∈Z

∑

λ∈Λ

∣∣∣〈f, ωr,n,λ〉
∣∣∣
2

= ‖f‖2

L2(R),

where r = j −m, m = 0 if j ≤ 0 and m = 0, 1, 2, ..., j if j > 0.

For any f ∈ L2(R), we have

∫

R
Tβf(x) dx = 0 =

∫

R
T ∗

βf(x) dx,

since Tβf and T ∗
βf are finite linear combinations of the ωr,n,λ’s. Moreover, we have

0 = ω̂n(0) =

∫

R
ωn(x) dx, for n ≥ 1.(see [1])

Now, in order to prove the theorem, it is required to show that Tβ is a Calderon-

Zygmund operator and then the theorem will follow by using Lemma 2.7. Therefore,
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it is sufficient to show that Kβ satisfies the conditions (2.18), (2.19) and (2.20). To

prove (2.18), we use (3.4) and obvious estimates, to obtain

∣∣∣Kβ(x, y)
∣∣∣ ≤ C

∑

j∈Z
(2N)jE

(
(2N)j−p−1|x− y|)

(3.5) ≤ C

0∑
j=−∞

(2N)jE
(
(2N)j−1|x− y|) + C

∞∑
j=1

(2N)jE
(
(2N)j−m−1|x− y|) .

Now, we decompose Wj spaces for some j = M , for sufficiently large M . Then, all

Wj spaces, for which j ≤ M , will decompose up to the last formula in Lemma 2.2

and other Wj spaces, for which j > M , will decompose according to intermediate

formula in the same Lemma 2.2. So inequality (3.5) takes the form

∣∣∣Kβ(x, y)
∣∣∣ ≤ C

0∑
j=−∞

(2N)jE
(
(2N)j−1|x− y|) + C

M∑
j=1

(2N)jE
(
(2N)j−1|x− y|)

+C

∞∑
j=M+1

(2N)jE
(
(2N)j−M−1|x− y|)

≤ C

0∑
j=−∞

(2N)jE
(
(2N)j−M−1|x− y|) + C

M∑
j=1

(2N)jE
(
(2N)j−M−1|x− y|)

+C

∞∑
j=M+1

(2N)jE
(
(2N)j−M−1|x− y|)

= C

∞∑
j=−∞

(2N)jE
(
(2N)j−M−1|x− y|)

≤ (2N)C

∫ ∞

0

E
(
(2N)−M−1t|x− y|) dt

=
C(2N)M+2

|x− y| ‖E‖L1(0,∞).

To prove (2.19), we assume that x < x0, then we shall show
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(3.6)
∣∣∣ ∂

∂x
Kβ(x, y)

∣∣∣ ≤ C

|x− y|2 for y ∈ R.

It is easy to see that the inequality (3.6) implies (2.19). To see this we apply Mean

value Theorem to obtain a point x′ ∈ (x0, x) such that

∣∣Kβ(x0, y)−Kβ(x, y)
∣∣ ≤ |x0 − x|

∣∣∣∂Kβ(x′, y)

∂x

∣∣∣ ≤ C|x0 − x|
|x′ − y|2 .

Observe that (2.19) implies that y /∈ (x0, x). If y ≥ x, it is clear that

|x′ − y| ≥ |x− y| ≥ 1

2
|x− y|.

If y ≤ x0, we use (2.19) to obtain

|x′ − y| ≥ |x0 − y| ≥ |x− y| − |x− x0| ≥ 1

2
|x− y|.

Hence,
∣∣Kβ(x0, y)−Kβ(x, y)

∣∣ ≤ 4C|x0 − x|
|x− y|2

provided

|x− x0| ≤ 1

2
|x− y|.

Thus, we need to show (3.6), we use Lemma 2.5 and the fact that E is decreasing to

obtain

∣∣∣ ∂

∂x
Kβ(x, y)

∣∣∣ =

∣∣∣∣∣∣

(2N)m+1−1∑

n=(2N)m

∑

j∈Z

∑

λ∈Λ

βr,n,λ(2N)2rω′n
(
(2N)rx− λ) ωn

(
(2N)ry − λ)

∣∣∣∣∣∣

≤
(2N)m+1−1∑

n=(2N)m

∑

j∈Z

∑

λ∈Λ

(2N)2rE
(∣∣(2N)rx− λ

∣∣) E
(∣∣(2N)ry − λ

∣∣)

≤ C
∑

j∈Z
(2N)2r+m

∑

λ∈Λ

E
(∣∣(2N)rx− λ

∣∣) E
(∣∣(2N)ry − λ

∣∣)
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≤ C
∑

j∈Z
(2N)2j−mE

(
(2N)j−m−1|x− y|)

≤ C

0∑
j=−∞

(2N)2j−ME
(
(2N)j−1|x− y|) + C

M∑
j=1

(2N)2jE
(
(2N)−1|x− y|)

+C

∞∑
j=M+1

(2N)2j−ME
(
(2N)j−M−1|x− y|)

≤ C

0∑
j=−∞

(2N)2jE
(
(2N)j−M−1|x− y|) + C

M∑
j=1

(2N)2jE
(
(2N)j−M−1|x− y|)

+C

∞∑
j=M+1

(2N)2jE
(
(2N)j−M−1|x− y|)

= C

∞∑
j=−∞

(2N)2jE
(
(2N)j−M−1|x− y|)

≤ (2N)C

∫ ∞

0

tE
(
(2N)−M−1t|x− y|) dt

= (2N)C

∫ ∞

0

(2N)M+1

|x− y| sE(s)
(2N)M+1

|x− y| ds

=
(2N)2M+3

|x− y|2
∫ ∞

0

sE(s) ds.

This proves (3.6) and, consequently, (2.19) follows. Inequality (2.20) follows from a

similar argument as in (2.19). Hence Tβ is a Calderon-Zygmund operator. By using

Lemma 2.7, the proof of the theorem follows.

¤

Theorem 3.2. Let ωn be nonuniform wavelet packets for L
2
(R) such that ωn and

ω′n have a common radial decreasing L
1
-majorant E satisfying

∫ ∞

0

sE(s) ds < ∞.
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Then, the system

{
ωr,n,λ : r = j −m; n = (2N)m, (2N)m + 1, ..., (2N)m+1 − 1, j ∈ Z, λ ∈ Λ

}

is an unconditional basis for L
p
(R), 1 < p < ∞, m = 0 if j ≤ 0

and m = 0, 1, 2, ..., j if j > 0.

Proof. We start by showing that the system considered is a basis for

Lp(R), 1 < p < ∞. To this let, Su,vf be the “rectangular” partial sum of the nonuni-

form wavelet packet expansions of f , i.e.,

(3.7) Su,vf =

(2N)m+1−1∑

n=(2N)m

∑

|j|<u

∑

|λ|<v

〈f, ωr,n,λ〉ωr,n,λ,

where f ∈ Lp(R), 1 < p < ∞. This operator is well defined in view of Theorem 3.1.

Now, we show that for given f ∈ Lp(R), 1 < p < ∞ and ε > 0, we can find u and v

large enough so that

‖f − Su,vf‖L
p
(R) < ε.

Let C = sup ‖Tβ‖ < ∞, where Tβ’s are the operators defined in Theorem 3.1 and the

supremum is taken over all admissible sequence β = {βr,n,λ} considered in Theorem

3.1. Since L
2
(R)∩L

p
(R) is dense in L

p
(R), we can find g ∈ L

2
(R)∩L

p
(R) such that

‖f − g‖L
p
(R) <

ε

C + 3
.

Thus, we can write

(3.8) ‖f − Su,vf‖L
p
(R) ≤ ‖f − g‖L

p
(R) + ‖g − Su,vg‖L

p
(R) + ‖Su,v(g − f)‖L

p
(R).

The last summand on the right hand side of (3.8) is smaller than εC
C+3

in view of

Theorem 3.1. Now, we estimate ‖g − Su,vg‖L
p
(R) for g ∈ L

2
(R) ∩ L

p
(R). By duality,
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and the density of L
2
(R)∩L

p′
(R) in L

p′
(R), where (1

p
+ 1

p′ ), we can find h ∈ L
2
(R)∩L

p′

such that

(3.9) ‖g − Su,vf‖L
p
(R) ≤

∣∣∣∣
∫

R
{g(x)− Su,vg(x)}h(x) dx

∣∣∣∣ +
ε

C + 3
.

Using the Schwarz inequality, we deduce that

∣∣∣∣
∫

R
{g(x)− Su,vg(x)}h(x) dx

∣∣∣∣ =

∣∣∣∣
∫

R
g(x)

{
h(x)− Su,vh(x)

}
dx

∣∣∣∣

≤ ‖g‖L
2
(R) < ‖h− Su,vh‖L

2
(R).

Since {ωr,n,λ} is an unconditional basis for L
2
(R), we can find u and v large enough

so that

‖h− Su,vh‖L2(R) <
ε

‖g‖L2(R)(C + 3)
.

Hence

‖f − Su,vf‖Lp(R) ≤ ε

C + 3
+

ε

C + 3
+

ε

C + 3
+

εC

C + 3
= ε.

From the orthonormality of the system {ωr,n,λ}, it follows that the representation

(3.10) f =

(2N)m+1−1∑

n=(2N)m

∑

j∈Z

∑

λ∈Λ

Cr,n,λ ωr,n,λ

with convergence in L
p
(R), 1 < p < ∞ is unique. Now, multiplying both sides by

ωr,n,λ and integrating, we obtain Cr,n,λ = 〈f, ωr,n,λ〉. The unconditionality of the basis

follows from Theorem 3.1 and Lemma 2.3. ¤

Theorem 3.3. Let ωn be nonuniform wavelet packets for L2(R) such that ωn and

ω′n have a common radial decreasing L
1
-majorant E satisfying
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∫ ∞

0

sE(s) ds < ∞.

Then, the system

{
ωr,n,λ : r = j −m; n = (2N)m, (2N)m + 1, ..., (2N)m+1 − 1, j ∈ Z, λ ∈ Λ

}

is an unconditional basis for H
1
(R), where m = 0 if j ≤ 0 and m = 0, 1, 2, ..., j if j > 0.

Proof. The proof of this theorem is similar to that of Theorem 3.2. For this, we

need to show that the system under consideration is a basis for H
1
(R). Inequality

(3.8) is true with Lp-norm replaced by H
1
-norm and choosing g to be finite linear

combination of atoms. Since (H
1
(R))∗ = BMO(R), we can find a bounded function

h ∈ BMO(R) such that (3.9) is true by replacing ‖.‖Lp(R) by ‖.‖H 1(R). By choosing

sufficiently large M , we have

‖g − Su,vg‖H
1
(R) ≤

∣∣∣∣
∫

R
{g(x)− Su,vg(x)}χ

[−M,M ]
(x)h(x) dx

∣∣∣∣ +
ε

C + 3
.

Observe that χ
[−M,M ]

h ∈ L2(R) and, thus, the proof follows from the proof of Theorem

3.2.

¤
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