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ABSTRACT:  Inequalities are very useful to information theory for new results. Inequalities are 

widely used for some bounds of information divergence measure of in Information Theory. 

There are many information and divergence measures exists in the literature on information 

theory and statistics. In this paper we establish some bounds of information and divergence 

measures using some inequalities and Csiszar’s f-divergence measure. 

 

 

1. INTRODUCTION 
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be the set of all complete finite discrete probability distributions. There are many 

information and divergence measures exists in the literature of information theory and 

statistics. Csiszar [2] & [3] introduced a generalized measure of information using f-

divergence measure given by 
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Where :f + +→R R  is a convex function and , nP Q ∈ Γ  . As in Csiszar,[2]. We interpret 

undefined expressions by  
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The Csiszar’s f-divergence is a general class of divergence measures that includes 

several divergences used in measuring the distance or affinity between two probability 

distributions. This class is introduced by using a convex function f, defined on (0, ∞). An 

important property of this divergence is that many known divergences can be obtained from 

this measure by appropriately defining the convex function f.  

As to the divergence and inaccuracy of information, Kullback and Leibler (1951) [7] 

studied a measure of information from statistical aspects of view involving two probability 

distributions associated with the same experiment, calling discrimination function, later 

different authors named as cross entropy, relative information etc. It is a non-symmetric 

measure of the difference between two probability distributions P and Q. 

It is well known that ( , )fI P Q  is a versatile functional form. Most common choices of 

satisfy (1) 0f = , so that ( , ) 0fI P Q = . Convexity ensures that the divergence measure 

( , )fI P Q  is always non-negative. Some examples are 

� ( )*( ) log , ( ) logf u t t f t t= = −
 provides the Kullback-Leibler’s measure [6, 7].  

� 

2
2 * ( 1)

( ) ( 1) ( )
t

f t t f t
t

 −= − = 
 
   yields the

2χ −  divergence [9] and many more. 

The basic general properties of f − Divergences including their axiomatic properties 

and some important classes are given [8].  
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Here we shall give some examples of divergence measures in the category of Csiszar’s 

f-divergence measure. 

 

Kullback-Leibler divergence measure [7]: 

 If ( ) logf t t t=   then Kullback and Leibler divergence measure is given by 
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Chi-square divergence [9]:   

If 
2( ) ( 1)f t t= − then

2χ  -Divergence measure given by 
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Hellinger Discrimination [5]: 

If ( ) 2t ( 1)f t= −
then the Hellinger discrimination ( , )h P Q is given by 
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       is known as Bhattacharya divergence measure [1] 

Relative Jensen-Shannon divergence [10]: 

 If 

2
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 =  +    then Relative Jensen-Shannon divergence is given by 
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Relative arithmetic-geometric divergence [11]: 
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Triangular Discrimination [4]: 

If 

2( 1)
( )
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+   then Triangular discrimination is given by 
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  is known as harmonic mean divergence measure. 

 

2. Some Well Known Inequalities: 

Information and divergence measure are very useful and play an important role in many 

areas like as sensor networks, testing the order in a Markov chain, risk for binary 

experiments, region segmentation and estimation etc. Most of the achievable limits are thus 

stated in the form of inequalities involving fundamental measures of information such as 

entropy and mutual information. Such inequalities form a major tool chain to prove many 

results in information Theory.  

In a sense, these inequalities separate the possibilities from impossibilities in 

Information Theory. The study of information expressions and inequalities thus are of 

paramount importance in solving key results in information Theory. The information 

measures are the usual entropy (single, joint, or conditional) and mutual information 

(including conditional and those involving multiple random variables). Even though it is not 

impossible to find a non linear expression involving these measures, they are not much of 

interest in Information Theory. 
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 The following inequalities are well known in literature of pure and applied 

mathematics. 
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3. Bounds Of Information Divergence Measure Using Inequalities: 

In this section we shall discus some bounds and relations among well known 

information divergence measure which are may be interested in information theory and 

statistics using inequalities of (2.1) & (2.2). 

Proposition 3.1: Let , nP Q∈Γ  be two probability distributions then we have the 

following inequalities  

                    ( , ) 2 ( , ) 2W P Q F P Q+ ≤  and  0 ( , )F Q P≤                           (3.1) 
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Using the inequality (2.1)  
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Multiplying by 2 iq of equation (3.3) and Taking summation both side, then we get 
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We get the following relations using equation (3.4)  
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Hence proved of the result (3.3). 

Proposition 3.2: 

 Let , nP Q∈Γ  be two probability distributions then we have the following inequalities
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Proof:  

Using the first and second relation of inequality (2.2)  
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Proposition 3.3: 

 Let , nP Q∈Γ  be two probability distributions then we have the following inequalities
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Where ( , )h P Q & ( , )B P Q are the Hellinger discrimination & Bhattacharya divergence. 
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From equation (3.9) & (3.10) 
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Proposition 3.4: 

Let , nP Q∈Γ  be two probability distributions then we have the following inequalities
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Using the second and last relation of inequality (2.2)  
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